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In this article, a full-scale computational model for fluid–particle interaction under a
magnetic field is developed. In this model, the fluid field is solved by the lattice
Boltzmann method, and the hydrodynamic force acting on the particle is computed by
the immersed boundary method . The numerical solutions of the magnetic field in the
fluid–solid domain are achieved by the immersed interface method with a finite difference
scheme, in which the normal and tangential jump conditions of the magnetic field intensity
are applied to modify the standard finite difference scheme. The magnetic stress tensor
along the fluid–particle interface can be calculated accurately. Unlike the widely used
point–dipole model, the magnetic force acting on the particle is determined by the stress
integration method. Numerical simulation of several numerical tests are carried out to
validate the proposed model. The numerical results demonstrate the validity of the present
model. Moreover, themagnetoviscous effect is studied by simulating themotion of elliptical
particles under the uniform magnetic field in shear flow.

Keywords: full-scale simulation, fluid-particle interactions, magnetic field, immersed interface method, immersed
boundary method, lattice Boltzmann method

INTRODUCTION

Fluid–particle two-phase flows under a magnetic field can be usually found in nature and engineering
applications, ranging from mineral screening (Ku et al., 2015), microfluidic control systems (Cao
et al., 2014), magnetorheological fluid (Climent et al., 2004), and other chemical and biological
applications. For the modeling of such flows, the two most important issues are to calculate the
interaction forces between the particles and fluid/magnetic fields accurately and efficiently.

Fluid–particle interaction is one of the research hotspots in the computational fluid community.
The existing models for fluid–particle interaction can fall into two categories: the Eulerian–Eulerian
models and the Eulerian–Lagrangian models (Chiesa et al., 2005; Patel et al., 2017). The
Eulerian–Eulerian models can capture the collective behavior of particles. However, it needs
complex constitutive equations, and it is difficult to predict the details of the flow. Alternatively,
the Eulerian–Lagrangianmodels easily obtain the detailed flowing behavior around the particles. The
Eulerian–Lagrangian models can also be classified into two types: the point source model and the
full-scale model (Luo et al., 2007; Hu et al., 2018). For the point source model, the empirical drag
force formula is utilized to compute the fluid-particle interaction force. However, the point model i
lacks enough accuracy for cases with dense or large-sized particles. For full-scale simulation, the fluid
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is governed by the Navier–Stokes equations, and the particle
motion is solved by the Newtonian laws. The interaction force
between the fluid and particle is determined by the no-slip
condition. From this point of view, the full-scale model is
most suitable for the study of flow mechanisms. Within the
framework of full-scale models, the fixed mesh methods,
which do not require time-consuming mesh generation, have
received considerable attention in recent years. Unlike the body-
fitted mesh methods, the governing equations of the fluid field are
discretized on a fixed mesh, and the boundary is tracked by a set
of Lagrangian points or captured by an implicit function. As a
result, the computational efficiency is greatly improved. Kang
et al. applied the distributed Lagrange multiplier/fictitious
domain method to solve flows with suspended paramagnetic
particles, in which the no-slip boundary condition on the
particle boundary is implemented by Lagrange multipliers
(Kang et al., 2008). Kang and Suh proposed the one-stage
smoothed profile method for simulation of flows with
suspended paramagnetic particles, in which the sigmoid
function was used to construct body force by ensuring the
rigidity of particles (Kang and Suh, 2011a). Kim and Park
presented a level-set method for the analysis of magnetic
particle dynamics on a fixed mesh (Kim and Park, 2010). Ke
et al. introduced an IBM to simulate the behavior of magnetic
particles in a fluid with an external magnetic field (Ke et al., 2017).
These works show the effectiveness of fixed mesh methods in
handling the fluid–particle interaction under a magnetic field.

In terms of calculation of magnetic force, the calculation models
can also be divided into the point–dipole model and the force
integration model. For example, Sand et al. developed a
point–dipole model to simulate the magnetic particle suspension
flow inwhich the single particle attraction force towards themagnetic
pole was computed by a simple Kelvin force formula, and the
interaction force between two nearby particles was computed by a
magnetic dipole model (Sand et al., 2016). Like the point source
model for fluid–particle interaction, the point–dipole model for
particle–magnetic field interaction also suffers from inaccurate
force estimation in nondilute flow or particle shape-dependent
conditions. To this end, some work based on the force integration
model has been done. In these models, the governing equation of the
magnetic field in the multimedia zone was solved firstly. Then, the
magnetic force acting on the particle can be obtained by integrating
the force density. The magnetic force density can be calculated by the
Helmholtz force density (Kang et al., 2008) or the virtual air gap
scheme (Kang and Suh, 2011b). It should be pointed out that the
fluid–particle interface is smeared out over several mesh cells in these
above-the-force integration models. However, the magnetic stress
force at the interface is treated as the continuous smoothed form,
which will cause the loss of numerical accuracy.

In this paper, we develop a fully resolved simulation method for
the fluid–particle interaction under a magnetic field. The LBM,
which is a simple and efficient flow field solver, is adopted. The
fluid–particle interaction is handled by the momentum-exchange-
based IBM. More importantly, we give a Maxwell stress integration
method to calculate themagnetic force based on the IIMwith a finite
difference scheme. According to the normal and tangential jump
conditions of magnetic scalar potential along the medium interface,

the discretized difference scheme is modified to ensure second-order
accuracy. Then, the Maxwell stress tensor at the interface can be
calculated accurately. The magnetic force acting on the particle can
be obtained by integrating the magnetic stress force along the
interface. Several numerical examples are simulated to validate
the present IIM–IBM–LBM coupling model. The numerical
results indicate that the present calculated stress force values
agree well with the numerical results obtained by the body-fitted
mesh. The circular particle sedimentation and motion of elliptical
particles in shear flow under the magnetic field are also studied.

MATHEMATICAL MODEL AND
NUMERICAL METHOD

In this study, LBM is used to simulate fluid flow, IBM is used to
simulate the interaction between fluid and particles, and IIM is
used to calculate magnetic field. In this section, we introduce the
numerical implementation procedures of LBM, IBM, and IIM.

Lattice Boltzmann Model for
Incompressible Fluid Flow
Using a standard uniform Cartesian grid with lattice space h, the
single relaxation time LB evolution equation with external force
term is as follows (Chen and Doolen, 1998):

fα(x + eαΔt, t + Δt) − fα(x, t) � −1
τ
[fα(x, t) − feq

α (x, t)] + FαΔt ,

(1)
where fα is the density distribution function. The dimensionless
relaxation time reads

τ � μ

Δtc2s
+ 0.5 , (2)

where μ is the coefficient of kinetic viscosity, feq
α is the

equilibrium distribution function, and Fα is the external force
term in discrete velocity space. Then, feq

α and Fα could be
separately written as

feq
α � ωαρf[1 + eα · u

c2s
+ (eα · u)2

2c2s
− u2

2c2s
] , (3a)

Fα � (1 − 1
2τ

)ωα[eα − u
c2s

+ eα · u
c4s

eα] · f , (3b)

where cs � c�
3

√ � h
Δt

�
3

√ is the lattice sound speed and f is the body
force. In the D2Q9 model, the discrete velocity eα and weight
coefficients separately reads

eα �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0), α � 0

c(cos[(α − 1) π
2
], sin[(α − 1) π

2
]), α � 1, 2, 3, 4

�
2

√
c(cos[(2α − 1) π

4
], sin[(2α − 1) π

4
]), α � 5, 6, 7, 8

,

(4a)
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ω0 � 4/9,ω1 � ω2 � ω3 � ω4 � 1/9,ω5 � ω6 � ω7 � ω8 � 1/36 .

(4b)
The density and macrovelocity are written as

ρf � ∑
α

fα , (5a)

u � ⎛⎝∑
α

eαfα + 1
2
fΔt⎞⎠/ρ . (5b)

Immersed Boundary Method for the
Fluid–Particle Interaction
The momentum exchange-based IBM proposed by Niu et al.
(2006) is used to calculate the interaction force between fluid and
solid particles. In Figure 1, the flow domain is covered with a
uniform Cartesian grid, and the fluid–solid interface is divided
into a series of Lagrange points Xl with the arc length ΔSl. The
relation between the body force f on the Eulerian nodes xi �
(xi, yi) and the force density f on the Lagrange points Xl �
(Xl, Yl) is expressed as

f (xi, t) � ∑
i

F(Xl, t)D(xi − X l)ΔSl , (6)

whereD (xi − Xl) is the two-dimensional discrete Dirac function.
In this study, the expression of D(xi − Xl) proposed by Peskin
(Peskin, 2002) is adopted:

D(xi − X l) � 1

h2
δ(xi −Xl

h
)δ(yi − Yl

h
) , (7)

where

δ(r) �
⎧⎪⎪⎨⎪⎪⎩

1
4
(1 + cos(πr

2
)) |r|≤ 2

0 |r|> 2

. (8)

The calculation of the force density F(Xl, t) is the key problem
in IBM, and it is usually determined by the no-slip condition on
the boundary of the rigid particle. For the present momentum
exchange-based IBM, the no-slip condition is implemented by the
bounce-back rule. Firstly, the density distribution function
fα(Xl, t) at Lagrange points is obtained by an interpolation
method, i.e.,

fα(X l, t) � ∑
i,j

D(xi − X l)fα(xi, t)h2 . (9)

Then, the new distribution function fnew
α (Xl, t) could be

solved according to the bounce-back rule:

fnew
α (X l, t) � f−α(X l, t) − 2ω−αρ

e−α · Ud
B(X l, t)
c2s

, (10)

where Ud
B(Xl, t) is the velocity at Lagrange point and −α is the

opposite direction of α. Next, the force density F(Xl, t) of the flow
field acting on the boundary point is calculated as

F(Xl, t) � ∑
α

eα[fnew
α (X l, t) − fα(Xl, t)] h

Δt . (11)

Furthermore, we define

⎧⎪⎪⎨⎪⎪⎩
Fpf

′ � −∑
l

F(X l, t)ΔSl
Tpf

′ � −∑
l

(Xl − Xp) × F(Xl, t)ΔSl . (12)

The hydrodynamic force Fpf and moment Tpf acting on the
solid particle can be obtained by removing the effect of internal
mass

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Fpf � Fpf
′ + ρf

ρp
Mp

dUp

dt

Tpf � Tpf
′ + ρf

ρp
Ip
dωp

dt

, (13)

where Xp is the centroid of the solid particle, ρp is the particle
density,Mp is themass of particle, Ip is the moment of inertia,Up

is the translational velocity, and ωp is the rotational velocity,
respectively.

Immersed Interface Method for Magnetic
Field Calculation
The magnetic field in the multimedia zone can be solved by the
Maxwell equations with the interface conditions. As shown in
Figure 2, we consider two types of methods to impose the
magnetic field: one is the given external uniform magnetic
field, and the other is the permanent magnetic field. The
Maxwell equations without current are expressed as follows:

FIGURE 1 | Configuration of the grids used in the IBM. Euler points
(circles) represent the flow field and Lagrange points (crosses) represent the
fluid–solid interface.
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{ ∇ · B � 0
∇× H � 0

, (14)

where B is magnetic induction and H is magnetic field intensity.
To solve the two Maxwell’s equations, the constitutive
relationships between magnetic flux density and magnetic field
(Eq. 15) are needed

{ B � μH
B � μ0(H +M) (for permanentmagnet) , (15)

where μ0 is permeability of vacuum, μ is relative permeability, and
M is the remanence of permanent magnet. At a current-free
interface between two media, the following two continuity
conditions are satisfied:

{ B1n � B2n

H1τ � H2τ
, (16)

where n and τ are the normal and tangential directions,
respectively. At the interface between permanent magnet and
other media, the normal component of B is still continuous across
the interface. However, the tangential component of H has a
jump discontinuity.

{ B1n � B2n

H1τ −H2τ � M2τ
. (17)

Due to the irrotationality condition of H field, the scalar
magnetic potential V is introduced:

H � −∇V . (18)
The equations for solving the magnetic potential V can be

obtained:

{∇ · μ(−∇V) � 0
−∇ · μ0(∇V −M) � 0 (for permanentmagnet) . (19)

The interface conditions for V could be obtained from
Formula 19 as follows:

{[[μ∇V · n]] � 0
[[∇V · τ]] � 0

(nonpermanent magnet) , (20)

{ [[∇V · n]] � M · n
[[∇V · τ]] � M · τ (permanent magnet) . (21)

In order to solve the magnetic field and compute magnetic
force accurately, the IIM is used. The basic idea of IIM is to adopt
the interface jump conditions to modify the finite difference
scheme near the interface. As a result, second-order solutions
can be achieved in the whole domain. A finite difference scheme
for Poisson equation (Eq. 19) can be written as

∑
k

γkVi+ik,j+jk � Cij , (22)

for use at the point (xi, yj). To sum over k involves points (not
more than six points selected near the interface) neighboring
point (xi, yj), so the value of each ik, jk is set to (−1, 0, 1). The
coefficients γk and indices ik, jk depend on (i, j). The
correction term Cij is nonzero only if the grid point is
irregular. For more details, please refer to LeVeque et al.
(1994).

The following formula is used to solve the magnetic field force.

Fm � ∮ n · σmdS . (23)

The Maxwell stress tensor is

σm � −1
2
μ0H

2I + BH , (24)

where I is the identity operator. Moreover, the magnetic field
force Fm is solved by the following formula (Blūms et al., 1997):

Fm � ∮( − 1
2
μ0n ·H2 + (n · B)H)dS,

≈ ∑
l

( − 1
2
μ0n(Xl) ·H(Xl)2 + (n(Xl) · B(Xl))H(Xl))ΔSl ,

(25)

FIGURE 2 | Interface problems of permanent magnetic field (A) and uniform magnetic field (B).
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where n is the normal vector. So, the magnetic field intensity at
the interface needs to be determined.

Here, we introduce a six-point interpolation method to
calculate from the correct side of the interface. In Figure 3,
for the point P on the interface, we find the nearest point (xi, yj)
in the Cartesian grid. So, the stencil for six points is
(xi−1, yj), (xi, yj), (xi+1, yj), (xi, yj−1), (xi, yj+1), (xi+i0, yj+j0) ,
and they transform them into interface coordinates as
follows. (ξ1, η1), (ξ2, η2), (ξ3, η3), (ξ4, η4), (ξ5, η5), (ξ6, η6).

Applying the Taylor expansion method for each point, we have

u(ξk, ηk) � u± + ξku
±
ξ + ηku

±
η +

1
2
ξ2ku

±
ξξ + ξkηku

±
ξη +

1
2
η2ku

±
ηη + O(h3) .

(26)
Ignoring the high order term O(h3), we can obtain a six-

variable linear equation for.

u±, u±ξ , u
±
η , u

±
ξξ , u

±
ξη, u

±
ηη. Once u±, u±ξ , u

±
η are obtained, we can

get V±, H±
ξ , H

±
η at point P on the interface.

Particle Dynamics
In this study, the dynamics of particle adopts Newton’s equation
of motion, and the equations controlling particle translation and
rotation are as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝1 − ρf
ρp

⎞⎠Mp
dUp

dt
� Fpf

′ + Fm + Fg

⎛⎝1 − ρf
ρp

⎞⎠Ip
dωp

dt
� Tpf

′ + Tm

, (27)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dXp

dt
� Up

dθp
dt

� ωp

, (28)

where θp is the rotation angle, Fg is the gravity force, and Fpf
′ and

Fm are the hydrodynamics force and magnetic force acting on the
particle. To avoid the numerical instability due to the low-density
ratio, the following time-stepping scheme for Eq. 29 is utilized:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Up(tn+1) � ⎡⎣bUp(tn) + cUp(tn−1) +
Δt(Fpf

′ + Fm + Fg)
Mp

⎤⎦/a

ωp(tn+1) � ⎡⎢⎣bωp(tn) + cωp(tn−1) +
Δt(Tpf

′ + Tm)
Ip

⎤⎥⎦/a

,

(29)
where a � 3(ρp/ρf − 1), b � 2a − (ρp/ρf − 1), and c �
(ρp/ρf − 1) − a (Hu et al., 2015). We could easily obtain the
center of mass Xp(tn+1), the rotation angle θp(tn+1), the

FIGURE 3 | Selection of six points in the modified six-point method.
Select the Euler point 1 closest to the Lagrange point (P), and the sixth point is
the Euler point closest to the Lagrange point (P) except points 1 to 5.

FIGURE 4 | Model of free settlement of a single particle (A). Model of permanent magnet attracting magnetic conducting cylinder (B).
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translational velocity Up(tn+1), and the rotational velocity
ωp(tn+1) of particle at time tn+1 � tn + Δt.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Xp(tn+1) � Xp(tn) + 1

2
[Up(tn+1) + Up(tn)]Δt

θp(tn+1) � θp(tn) + 1
2
[ωp(tn+1) + ωp(tn)]Δt

. (30)

Then, the velocity Ud
B(Xl) at the boundary point can be

written as

Ud
B(Xl) � Up + ωp × (Xl − Xp) . (31)

NUMERICAL RESULTS AND DISCUSSION

In this section, the present IIM–IBM–LBM model is used to
simulate several problems with fluid–particle–magnetic
interaction.

Numerical Method Validation
Particle Dynamics Verification of IB–LBM
In order to examine the accuracy of the present IB–LBM, the free
settlement of a single particle is simulated, which has been used by
some scholars as a benchmark problem (Glowinski et al., 2001;
Hu et al., 2015). In Figure 4A, we use a fluid domain with a width
of 2 cm and a height of 6 cm, where the fluid density is
ρf � 1.0g/cm2. A circular particle with a diameter of 0.25 cm falls
freely from the position of 1 cm and 4 cm under the effect of gravity.
The particle density is set as ρp � 1.25g/cm2 and 1.5g/cm2, and the

corresponding kinematic viscosity is ] � 0.1cm2/s and 0.01cm2/s,
respectively.

A 200 × 600 grid is used for the numerical simulation. Figures
5A,B show the variations in vertical position and velocity of the
particle center with time when ρp � 1.25g/cm2 and ] � 0.1cm2/s,

FIGURE 5 | The position of the center of the particle for ρp � 1.25g/cm2, ] � 0.1cm2/s (A); ρp � 1.5g/cm2, ] � 0.01cm2/s (C), and the velocity of that for
ρp � 1.25g/cm2, ] � 0.1cm2/s (B); ρp � 1.5g/cm2, ] � 0.01cm2/s (D).

FIGURE 6 | The magnetic potential V of the permanent magnet
attracting the particle model is obtained by the IIM method.
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respectively. Obviously, the particle quickly reaches the terminal
velocity, and the velocity becomes small when the particle is close
to the bottom wall at about t � 0.8s. The results are in good
agreement with those of Hu et al. (Hu et al., 2015) and Glowinski
et al. (Glowinski et al., 2001). Similarly, we simulate the case with
ρp � 1.5g/cm2 and ] � 0.01cm2/s. As shown in Figures 5C,D, the
desired results are obtained.

Verification of Magnetic Field Calculation of IIM
To test the accuracy of IIM in terms of calculation of magnetic
field, the problem of a permanent magnet attracting a
magnetic conducting cylinder is studied. The results
obtained are compared with those calculated by COMSOL
in which the body-fitted mesh is used. As shown in Figures
4A,B, a circular permanent magnet with remanence M �
(0, 75000A/m) and a circular magnetic conducting object
with μr � 2.0 are centered at (2 cm, 1.5 cm) and (2 cm,
3 cm), respectively. Both circular solids are 0.8 cm in
diameter. The computational domain is a square with a
side length of 4 cm.

This numerical simulation is carried out in a 400 × 400
grid. Figure 6 displays the distribution of magnetic potential
V, and it can be seen clearly that the jump of the magnetic
field is in the normal direction across the interface. Figure 7
shows the magnetic field distribution. It could be observed
that the closer the permanent magnet, the stronger the
magnetic field intensity. Also, the contours of |H| across
magnetic conducting cylinder interface have a jump. We
can see that the present results agree well with those of
COMSOL (Figure 7). The horizontal and vertical
components of magnetic stress fm along the interface are
plotted in Figure 8, and the symmetrical distribution of them
can be found. The numerical results of the total magnetic
force acting on the magnetic conducting cylinder are shown

in Table 1. As expected, compared with the results obtained
by the diffusion interface method, IIM based on the non-
body–fitted grid technology can obtain the calculation
accuracy similar to that of COMSOL based on the body-
fitted grid technology.

Particle Sedimentation Under Permanent
Magnetic Field
The diagram of particle sedimentation under a permanent
magnetic field is shown in Figure 9. The computational
domain for the magnetic field is 8 cm wide and 8 cm high.
The computational domain for the flow field is 2 cm wide and
6 cm high. The circular particle with μrp � 2.0 and diameter of
0.25 cm is located (4 cm, 6 cm), and the circular permanent
magnet with diameter of 0.8 cm is located (4 cm, 1 cm). The
remanence of the permanent magnet is M � (0, 75000A/m). In
this study, the relative permeability μrf of the flow field is set
to 1.0.

FIGURE 7 | The permanent magnet attracts the magnetic field of the magnetic conducting cylinder model, which is calculated by COMSOL (A) and IIM (B).

FIGURE 8 | Magnetic stress fm along the interface of the circular
conducting magnet.
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A 800 × 800 grid is used for the present numerical
simulation. The flow field simulation is carried out on a
200 × 600 grid. Figure 10 shows the variations in vertical
position and velocity of the particle center with time when ρp �

1.25g/cm2 and ] � 0.1cm2/s, respectively. Due to the
coexistence of magnetic force and gravity force, the particle
settling velocity becomes larger compared with that without
the effect of a permanent magnet. The closer the particle is to
the permanent magnet, the greater the magnetic force and the
faster the particle velocity. When t � 0.5s, the acceleration
effect of magnetic force on particles is dominant. Figure 11
displays the variety of magnetic stress at the particle interface
at t � 0.4s, 0.5s, 0.6s. Similarly, we also study the case with
ρp � 1.5g/cm2 and ] � 0.01cm2/s and reached similar
conclusions (as shown in Figure 12).

Shear Viscosity of Suspension Containing
Elliptical Particles Under the Magnetic Field
It should be pointed out that the point–dipole model is suitable
for spherical-like particles. We also consider an ellipsoidal
particle immersed in the two-dimensional shear flows, as
shown in Figure 13. In order to verify the reliability of the
numerical method, we calculate an example of an elliptic
particle rotating in a simple shear flow when Reynolds
number Re � 1 and the ratio of major axis to minor axis of
ellipse α � 2. The curve of angular velocity changing with
angular rotation is obtained in Figure 14 and compared
with the exact solution calculated by Jeffery (Jeffery, 1922).
The simulation results of this paper agree well with Jeffery’s
exact solution.

TABLE 1 | The magnetic force on the magnetic conducting cylinder.

The position
of permanent
magnet center
in the
y direction
(cm)

IIM Comsol Diffuse interface method

Fmx /N Fmy /N Fmx /N Fmy /N Fmx /N Fmy /N

1.5 0.0084 −3.0857 −0.0068 −3.1410 −0.9100 −5.0882
1.25 0.0027 −1.0788 −0.0022 −1.0982 −0.2429 −1.8545
1.0 0.00095 −0.4015 −0.00081 −0.4081 −0.0731 −0.7075
0.75 0.00034 −0.1488 −0.00030 −0.1508 −0.0231 −0.2662

FIGURE 9 | Model of particle sedimentation under the action of
permanent magnet.

FIGURE 10 | Position (A) and velocity (B) of the center of the particle for ρp � 1.25g/cm2 and ] � 0.1cm2/s.
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The relation between angular velocity ω and angle θ of the
elliptic particle in shear flow obtained by Jeffery (Jeffery, 1922) is
as follows:

ω � G

m2 + n2
(m2 cos2 θ + n2 sin2 θ) , (32)

where the fluid shear rate G � 2U0/hf and m, n are the length of
long and short half axle.

Then, we study the shear viscosity of suspension containing
elliptical particles under the magnetic field. The computational
domain is 2 cm long and 1 cm wide, in which the velocities of the
upper and lower planes are U0 � 0.1cm/s and −U0, respectively.
The elliptical particle with length–width ratio AR � 2.0 and
relative permeability μrp � 2.0 is located at the center of the
computational domain. Under an external uniform magnetic

field Hb � (0, H0), the force acting on the paramagnetic
ellipsoid particle is zero, but the torque is not zero.

The shear stress at the fluid node is calculated as

σxy � −(1 − 1
2τ

)∑8

α�0(fα − feq
α )eαxeαy . (33)

To study the simple rheological properties of a suspension
containing elliptical particles under the external magnetic field,
the effective viscosity of the suspension is calculated:

FIGURE 11 | The magnetic stress fm in x-direction (A) and in y-direction (B) on the particle interface at t � 0.4s, 0.5s, 0.6s.

FIGURE 12 | Position (A) and velocity (B) of the center of the particle for ρp � 1.5g/cm2 and ] � 0.01cm2/s.

FIGURE 13 | An ellipsoidal particle in the two-dimensional shear flows
under uniform magnetic field.

FIGURE 14 | Comparison of Jeffery solution (Jeffery, 1922) and the
present simulation result.
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]e � �σxyh0/(ρU0) , (34)
where h0 is the distance between two plates andU0 is the speed of
the top plate. �σxy is the average shear force acting on the moving
plane wall (Huang et al., 2012).

A grid of 200 × 100 is used for the calculation domain, and the
left and right boundaries are subjected to the periodic boundary
conditions. We set the initial deflection angle of the ellipse
particle θe to pi/4. When the flow field becomes steady state,
the effective shear viscosity ]e of the suspension containing the
elliptical particle under the magnetic field can be obtained.
Through the present direct numerical simulation, the effective
shear viscosities under different magnetic field strength H0,
Reynolds number Re, and volume fraction φ of elliptical
particles in suspension are compared, as shown in Figure 15.
Obviously, the effective kinematic viscosity ]e increases with an
increase in Reynolds number Re and decreases with an increase in
volume fraction φ. Moreover, the effective kinematic viscosity ]e
increases with the increase of magnetic field strength H0.

CONCLUSION

The fluid–particle–magnetic interactions are modeled using the
IIM–IBM–LBM coupling method. The fluid flow simulations are
handled by the simple and efficient LBM. The particle motion and
the hydrodynamics interaction between the particle and the flow
field are computed by the momentum exchange-based IBM.
Especially, we use the IIM to solve the magnetic field and
calculate the magnetic force with the aid of the interface jump
conditions. Unlike the point-source model or point dipole model,
the hydrodynamics and magnetic forces acting on the particle are

calculated using an integration method, in which the flow details
and magnetic distribution around the particle are considered.
Two numerical examples are simulated to verify the numerical
accuracy of the present full-scale model. Moreover, particle
sedimentation under a permanent magnetic field and shear
viscosity of suspension containing elliptical particles under the
magnetic field are also studied by the present model. The
obtained results indicate that the present model has the
potential to treat the complex fluid–particle–magnetic
interactions.
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