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In computational materials research, uncertainty analysis (more specifically,

uncertainty propagation, UP) in the outcomes of model predictions is essential

in order to establish confidence in the models as well as to validate

them against the ground truth (experiments or higher fidelity simulations).

Unfortunately, conventional UP models relying on exhaustive sampling from

the distributions of input parameters may be impractical, particularly when

the models are computationally expensive. In these cases, investigators must

sacrifice accuracy in the propagated uncertainty by down-sampling the

input distribution. Recently, a method was developed to correct for these

inaccuracies by re-weighing the input distributions to create more statistically

representative samples. In this work, the method is applied to computational

models for the response of materials under high strain rates. The method is

shown to effectively approximate converged output distributions at a lower

cost than using conventional sampling approaches.

KEYWORDS

uncertainty quantification, uncertainty propagation, optimization, taylor anvil simulation,

importance weights, change of measure

1 Introduction

1.1 Uncertainty quantification and material performance

The central paradigm in materials science rests on the existence of process-
structure-property-performance (PSPP) relationships, which constitute the foundation to
materials design Smith (1982). Although PSPP linkages depend mainly on experimental
observations, simulation-based approaches to design and analysis can be used when
experiments are too costly to run, mediated by data analytics techniques to provide a
statistically-valid surrogate to costly experiments Shi et al. (2015); DeCost et al. (2017).

Even in simulation-focused approaches, a limited number of experiments are
necessary in order to properly parameterize the (hopefully predictive) models. In the
case of materials behavior under quasi-static loading conditions, uncertainty tends to
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arise from the stochastic nature of materials microstructure.
This uncertainty is somewhat controllable and bounded by the
stochastic nature of the microstructure of the material being
investigated. In the case of polycrystalline metals, the spread in
themechanical response when comparing separate experimental
runs is not significant, provided the materials are nominally the
same–i.e. they have a very similar distribution in chemical and
microstructural attributes.

Under high-strain rate conditions, however, extreme
sensitivity of experimental conditions can lead to dramatic
variance in the observed materials response. Such uncertainties
can be quite significant, even when comparing the response of
nominally identical materials under virtually indistinguishable
experimental conditions. This makes prediction of properties
and performance of metals subject to high strain rate
deformation difficult. Thus, constitutive equations designed
to predict the state of stress under dynamic loading
conditions are less reliable for prediction of the mechanical
response of a material Johnson and Cook (1985); Zerilli and
Armstrong (1987); Allison (2011). To account for uncertainties
in experiments, techniques such as Markov Chain Monte Carlo
(MCMC) can be used to sample the parameter space in the
constitutive equations based on a small set of experimental data
Robert and Casella (2013).

In the context of materials design, uncertainty quantification
(UQ) and uncertainty propagation (UP) play important
roles Panchal et al. (2013); McDowell and Kalidindi (2016);
Arroyave et al. (2018). Under nearly every experimental
condition, uncertainty in the measured value can stem from
slight variations in material microstructure (aleatory) and/or
the physics associated with a ground truth realization that are
not accounted for in a model (epistemic). Such uncertainties are
difficult or impossible to account for directly Chen et al. (2004);
Chernatynskiy et al. (2013); Ghoreishi and Allaire (2017);
Allaire and Willcox (2014), and are the subject of UQ. We
note that these sources of uncertainty exist not only in physical
experimentation, but also in computational experiments. In
either case, it is important to account for these variations in
measured results so that they can be propagated accurately and
proper calibration and validation and verification (V&V) of the
models is carried out.

Once this information is gathered, it can be used to define
distributions of probable parameters of a model that predicts
a quantity of interest (QoI). Subsequently, the model can be
run multiple times with different parameter values taken from
these distributions. This creates a distribution on the output
which can serve as an estimate of material performance, which
is the outcome of uncertainty propagation Lee and Chen (2009);
Li and Allaire (2016); Amaral et al. (2014). Ultimately, data on
performance ranges for a material’s behavior can determine an
intended application and also provide a factor of safety for a
minimum or maximum performance expectation. Furthermore,

when high fidelity simulations are available, this information can
be determined before a part is ever manufactured.

More often than not, UP is carried out using Markov
Chain Monte Carlo integration or the MCMC approach Robert
and Casella (2013), which can generate parameter values for
models based on any experimental realizations available to
the investigator. Other approaches include local expansion,
functional expansion, and numerical integration-based methods
Sanghvi et al. (2019). These techniques often require hundreds
of thousands (or more) of samples from the input space in
order to achieve proper convergence in the predicted propagated
uncertainties.

Returning to the general problem of simulating the response
of a material under high strain rates, each parameter set can be
used to inform a unique simulation to predict how a material
will perform in certain loading conditions and what properties
it is expected to have. Such loading configurations include
the Taylor-Anvil and spall plate impact configurations, which
can be modeled with a suitable hydrocode. The present work
investigates the Taylor-Anvil configuration as a validation of
the constitutive models fit to intermediate strain rate (∼103 s−1)
tensile tests.

1.2 The cost of sampling high fidelity
simulations

High-fidelity hydrocode simulations accounting for material
response may be computationally expensive. In such situations,
one can only probe a limited number of samples from the
input space. This makes the propagation of parameters obtained
by MCMC-based approaches impractical. Rather than carrying
out an extensive parameter sampling, a solution would be
instead to extract sub-samples out of the total number of
observations that can be drawn from the parameter distribution
space. While propagating this sub-sampled distribution does
reduce computation time, it can consequently misrepresent the
output distribution depending on whether the sub-sample is
weighted and the sampling method used. If the sub-sampled
data does not accurately reflect the ground truth parameter
distribution, there cannot be proper propagation of uncertainty.
Differentmethods of sampling exist, such as k-medoidsKaufman
and Rousseeuw (1987), Latin-HypercubeMcKay et al. (2000), or
simply random selection–we note that such misrepresentation
will occur with any sampling method that does not properly
account for the importance of a given sample relative to the full,
ground truth distribution.

Overall, the sheer volume of possible input values to try
can pose a problem if the subsequent simulations are expensive
to run. In such situations, an investigator must down-select
values from the UQ-generated pool to input into a simulation,
and therefore risk missing the “true” output distribution since
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FIGURE 1
Process used to analyze the effect of the PLOW method on the high fidelity Taylor-Anvil simulation and at scale using the Zerilli-Armstrong
model. In step 1, a distribution of possible parameter values is generated and down-selected. In step 2, PLOW is applied to one copy of outputs
obtained by propagating the down-selected inputs. The term f(x) in step 2 represents the output from the simulation or model evaluations. In
step 3 the full output distribution, non-weighted, down-selected distribution, and the PLOW weighted, down-selected distribution are
compared. Here, f(x) is the random variable on the axis of abscissas. The D-value, or distance value, is the metric used to determine how similar
two empirical distributions are. In step 4, the D-values are plotted as a function of the number of down-selected inputs in step 1.

all possible inputs to the models were not propagated. Noting
the challenge in appropriately down-selecting UQ-generated
input values, the present effort investigates the effect of applying
the Probability Law Optimized importance Weights (PLOW)
method to the output distribution generated by the propagation
of a sub-sample of input values across a simulation chain1.

In the current work, the output distribution obtained from
the down-selected inputs will be referred to as the proposal
distribution. This distribution with probability law optimized
weights applied will be referred to as the weighted proposal
distribution and the output distribution that comes from running
all of the available inputs will be referred to as the true
distribution or target distribution. Depending on the number
of down-selected inputs, the proposal distribution can deviate
substantially from the true distribution. The data used in the
study is based on predicting the high-strain-rate response of
a low alloy, high performance steel, AF9628 Neel et al. (2020);
Gibbons et al. (2018); Abrahams (2017b), which shows a similar
mechanical response to a related armament steel–Eglin Steel
Dilmore (2003).

In general, the PLOW method can be used to improve
the fidelity of input samples for uncertainty quantification with
respect to a desired, target input distribution. This capability

1 The name is partially inspired by the soil-themed Earth Mover’s Distance
metric analogy, which is a measure of distance between two distributions
Rubner et al. (2000).

has many uses, including allowing for the offline evaluation of
expensive model chains prior to having complete information
about the input distributions that should be propagated through
the chain. In this case, the PLOW method is used to weight the
output distribution so as to simulate appropriately the desired
target distributionwithout any additionmodel chain evaluations.
Another capability of the PLOW method, explored here for the
first time, is the use of the method to weight samples from
an MCMC estimation of model parameters. In this scenario,
MCMC is used to produce a large set of samples representative of
a desired target distribution, albeit in empirical form. It is usually
not possible to execute all of the MCMC samples in forward
model chain runs. Thus, a sub-sample of the MCMC run (this
can be done randomly or intelligently, e.g., using k-medoids) is
usually used for forward evaluations (a brief explanation of the
k-medoids algorithm is provided in Section 3). Using PLOW, we
can ensure that this sub-sample accurately reflects the MCMC
target distribution by weighting the sub-samples so as to match
the empirical MCMC distribution.

The PLOW procedure has been shown to work well in
models of up to 10 dimensions Sanghvi et al. (2019). However,
it has not yet been applied across a high-fidelity simulation that
is often used for material property estimation. The shape of
the distributions of the sub-samples and the full data set will
be compared using the Kolmogorov-Smirnov (KS) statistic, or
distance-value (D-value) Jr. (1951). Specifically, the predicted
density of amaterial after a simulated Taylor-Anvil test is studied.
Additionally, a constitutive model will be used to compare
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the effects of the PLOW weighting method on a larger data
set than can be captured in the hydrocode simulations, given
the resource allotment for this work. It is expected that the
D-value between the weighted proposal distribution and the
target distribution will be smaller than the D-value between the
proposal distribution and the target distribution.

Figure 1 shows an overview of the steps taken in the present
work to perform the analysis. In the remainder of the paper,
we first discuss the methodology behind the PLOW approach.
We then carry out an MCMC-based calibration, or UQ, of the
Zerilli-Armstrong (ZA) constitutive model based on limited
experimental data. This is followed by a demonstration of the
PLOW method on propagated uncertainty distributions across
the ZA model, due to its inexpensive nature. We then apply
PLOW on the outputs obtained from uncertainty propagation
across high fidelity Taylor-Anvil (TA) simulations. Lastly, a
discussion of the results is presented, followed by conclusions on
the work overall.

2 Probability law optimized
importance weights approach

The Probability Law Optimized importance Weighting
(PLOW) approach, first proposed by Sanghvi et al.
Sanghvi et al. (2019), employs a least squares formulation to
determine a set of empirical importance weights to achieve a
change of probability measure. The notion of using importance
weights to simulate the moving of a probability distribution
has its roots in optimal transport and the concept of the Earth
mover’s orWassersteinmetric Villani (2009).The objective of the
PLOWapproach is to estimate statistics froma target distribution
of interest, by using random samples generated from a different
proposal distribution for which samples are more easily attained.
The approach taken here works directly with the probability
law of the proposal and target random variables (which may be
vector-valued), from which only samples from each are needed.
For completeness, we note that the probability law of a random
variable x is a mapping, P :𝔹→ [0,1], where 𝔹 is the Borel
σ-algebra over the domain of the random variable x ∈ ℝ. The
probability law allows us to consider the probabilities of different
sets over the domain of a random variable (or vector) rather than
on cumulative probability up to a point as done in previous work
(see, e.g., Ref. Amaral et al. (2017b)). The result is an approach
more capable of achieving high dimensional probability measure
change than current state-of-the-artmethods. Such amethod can
enable efficient and accurate propagation of uncertainty through
model chains of unknown input and output regularity, such as
those often encountered in PSPP linkages in materials science.

The PLOW approach described here enables weighting
to be applied to the output distribution of model
chains Amaral et al. (2014); Ghoreishi and Allaire (2017);

Amaral et al. (2012); Amaral et al. (2017a). Model chains refer
to frameworks that employ multiple models sequentially, where
the outputs of one model become the inputs of the next model.
PLOW utilizes decomposition-based approaches to calculate
weights, which allows it to be used across model chains without
losing accuracy in the target distribution prediction. Because
of this, investigators can use UP more reliably. The approach is
based on the change of probability measure. The general idea
is that for the propagation of uncertainty, there is a desired
input distribution we wish to propagate through a model. We
refer to this distribution as the target distribution Robert and
Casella (2013). In many cases however, the target distribution
of an upstream model is not known, or was sampled without
knowing the underlying distribution of the model’s parameters,
which can negatively affect the following model. PLOW can be
used to estimate the target distribution of such upstreammodels,
given an already existing set of function evaluations composing
a proposal distribution.

To obtain the target distribution, it is common to use
traditional importance weighting methods such as density ratio
estimation (e.g., importance sampling), typically determined
using kernel density estimation Billingsley (2008) or in
approximate form using approaches based on minimizing
an L2-norm between the proposal and target distributions.
Amaral et al. (2017b). With PLOW, the importance weights are
calculated using only the samples of the proposal distribution
or (if available) target distribution information. This approach
enables the user to determine the regions in the input space over
which to calculate importance weights. This leads to excellent
scalability of the PLOW method in comparison to current
weightingmethods that are subject to numerical ill-conditioning
at high dimensions.

Similar to the procedure described by Sanghvi et al., the first
step is to build a probability space (Ω,F ,ℙ) where Ω is a sample
space, F is a σ-field, and ℙ represents a probability measure
associated with a σ-field on the probability space Ω, i.e. (Ω,F).
Define Y as a random variable such that it can potentially be any
value within the set of real numbersℝd, where d is the number of
dimensions of the space. In this framework, the target measure,
v(A) = ℙ(Y−1(A)) for A ⊂ ℝd. In other words, v is a probability
that is dependent on the set of values, A, contained within ℝd.
Similarly, define X as a random variable that can also be any
value within the set of real numbers in multiple dimensions,
ℝd. The random variable X will be associated with the proposal
measure, μ, where μ(A) = ℙ(X−1(A)) for A ⊂ ℝd. Next, define
S = {S1,S2,…,Sm}, where S as a collection of subsets within ℝd.
Here, each S within the set can be represented as a hyper-sphere
with dimension ℝd. We can then say that the target probability
measure v, of random variable Y, is defined such that it’s value
will be between 0 and 1, i.e. v : S→ [0,1]. Likewise, the proposal
probability μ of randomvariableX can be defined as μ : S→ [0,1].
Let {x1,x2,…,xn} represent random samples of X, where n equals
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FIGURE 2
Illustration of the process to construct a measure matrix, like A in Eq. 3. In (A), a bivariate distribution space is displayed corresponding to a
model with two parameters for simplicity. In the case of inputs, the dots on the surface represent the co-variance of points the investigator is
able to run. The borders show each parameter’s individual distribution. In (B), circles Sj (hyper-spheres in higher dimensions) are drawn over the
space to populate the measure matrix.

the total number of samples taken. Here we aim to determine
the target distribution using target measures, v, obtained via
model chain evaluations, and the random samples {x1,x2,…,xn}
obtained from the proposal distribution μ. In the present work,
the proposal samples are generated using MCMC.

To determine the weights needed to adjust the proposal
distribution, we first calculate the empirical measure of each
hyper-sphere using

μ = 1
n

n

∑
j=1
𝕀Si (x

j) . (1)

Here 𝕀Si(x
j) is an indicator function and is defined as

𝕀Si (x
j) = {

1 if xj ∈ Si,
0 if xj ∉ Si

The objective is to determine the weights that would adjust
the proposal distribution such that the proposal measures
approach the target measures as shown in Eq. 2

μ = 1
n

n

∑
j=1

w j𝕀Si (x
j) → vi. (2)

Computing the importance weights, w = {w1,w2,…,wn}, is
an optimization between the proposal and target measures in the
L2-norm sense. The weights are calculated via the solution to a
linear system of equations that can be written as

Aw = b. (3)

The construction of the A, w, and b is described in the following
paragraphs. Once constructed, the solution of Eq. 3 can be
calculated via least squares using the normal equations noted
below.

The matrix A and the vector b of Eq. 3 are determined using
specified regions within the domain of the random variables
whose measure we seek to change. Here, A represents the
presence, or absence, of each measured input sample point with
respect to each hypersphere. The vector b represents the joint
probability of points contained within a specific hypersphere. A
graphical depiction of this region selection procedure is shown
in Figure 2. A distribution space that represents the input values
(black dots) available for each parameter of themodel in question
is shown in the left portion of the figure. In this case, the
model would have two input parameters, represented by the
two axes making up the base of the graph. Here, the points
are normally distributed for both parameters, although this is
generally not known or necessary prior to applying PLOW.
This illustration can also represent the distribution of points
that make up the proposal distribution, or model output space.
The difference being that there would be less points on the
proposal distribution space due to the experimenter’s inability to
run all input conditions through their model. For simplicity of
describing the generation of the matrices only four points and
four regions are considered.

The regions, S1,S2,S3,S4 shown on the right side of Figure 2
are deterministically-generated to capture every point in the
space. In the present case, the regions are in the shape of circles.
However, in higher dimensions, they would be hyperspheres.
Their size and location are determined based on the samples in
the space alone. The process of generating these regions involves
growing a hypersphere around each proposal point so that all
points are within at least one region.This ensures that the process
is scalable with respect to problem dimensionality, which is
essential for higher dimensional problems where hyper-spheres
do a poor job of space filling. We note that because each point
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has a hyper-sphere associated with it, we ensure each point is
represented in the matrix A. In very high dimensional problems
(e.g., O(100) dimensions), the use of hyper-spheres will lead to
large regions of the input space not being represented in A. It is
a topic of future work to explore the use of region shapes better
suited to the concentrations of measure that occur in these high
dimensional cases.

In our approach, we grow the regions until the union of the
regions covers the entire space. In practice, this typically yields
a matrix A with dependent columns, leading to a non-unique
solution to the least squares problem. To recover dependent
columns, we identify non-unique rows in the matrix A, which
identify those points that are currently indistinguishable from
one another. For these rows, we reduce the radius of the
respective hyper-spheres until the rows are unique. We then add
a region that covers the entire space to ensure the weights are
associated with a probability measures (that is, the probability
of the entire input space is still unity). This approach leads to
independent columns and the matrix A has more rows than
columns.Thus, the normal equations of Eq. 3 shown below, have
a unique solution. It is a topic of future work to explore that
non-unique solution case that can occur when sample points
are nearby one-another. It is expected that this could lead to
a capability to delete input samples and potentially lead to
enhanced computational efficiency.

In the example of Figure 2, for clarity, there are five proposal
points shown as Xi, where i ∈ {1,2,…,5}. The hypersphere, S1,
contains only X1 among the proposal samples. This region, S1,
and its proposal sample contents are captured as a row vector
within a matrix Aij by populating a 1 in entry [j, i] if proposal
sample i is in hypersphere j (in this case, j ∈ {1,2,…,4}.Therefore,
we have entry A11 = 1, since sample 1 is in region 1. The
remaining random sample points, X2, X3, X4, and X5 are equal
to 0 for S1. This gives A1 = [1,0,0,0] for the first row of the A
matrix.

Filling in data according to the example in Figure 2 for the
remaining points and hyper-spheres, the following matrix would
be generated:

A =
[[[[

[

1 0 0 0
0 1 0 1
0 0 1 0
0 1 1 1

]]]]

]

The b vector is created to contain the probability of a random
sample landing in region Sj under the target distribution as the
jth element of the vector.This can be computed via target samples
or via a known target distribution with traditional integration.
For the example, the b vector is b = [ℙ(S1),ℙ(S2),ℙ(S3),ℙ(S4)]

T,
where ℙ(Sj) is the probability of a target sample being in the
region Sj. The vector b is constructed in the same way as matrix
A, but with an added step of summing the row elements and
dividing the value by the number of samples. Once A and b
are created, the weights, w, can be determined from the normal

equations of Eq. 3, which can be used to find the weights that
produce the least squares solution. Specifically, we compute the
weights as (A⊤A)−1A⊤b = w, which can be solved via least squares
approaches. Further details on this process can be found in Ref.
Sanghvi et al. (2019).

3 Methodology

3.1 Generating inputs and down
selection

To obtain the intermediate rate stress-strain response
for AF9628, five Split-Hopkinson Pressure Bar (SHPB)
Kolsky (1949) experiments were performed using an indirect
tension configuration Brar et al. (2009) at a temperature of
300°C, performed with identical input conditions targeting
a strain rate of 1500 s−1. The AF9628 material was heat
treated from the as-received condition using the patented
heat treatment schedule Abrahams (2017a); Sinha et al. (2017);
Sinha et al. (2020). Five subscale E8 tension specimens of
AF9628 were carefully machined with tight tolerances, and a
low stress grinding (LSG) process was used to reduce the sample
geometry and surface finish variability across all specimens.
The five tests were controlled, as much as possible, for all
input variables including material composition, microstructure,
geometry, and impact bar velocity, among others. This was to
ensure that any variability in the stress-strain response came
from aleatoric sources in the experimental apparatus and not
from neglecting known effects. The resulting measured strain
rates for the 5 experiments were 1440, 1400, 1430, 1350, and 1440
s−1. The stress-strain data were fit to a Zerilli-Armstrong (ZA)
constitutive model using a minimization routine that combined
sequential quadratic programming and MCMC, assuming an
average strain rate of 1412 s−1 for the parameterization.

The Body Centered Cubic (BCC) ZA constitutive model
shown in Eq. 4 is used for predicting the plastic stress-strain
response of AF9628 at high strain rates:

σ = C0 +C1e
−C3T+C4T ln ϵ̇p +C5ϵnp (4)

Here, C1, C3, C4, C5, and n are material constants determined
by calibrating the model to experimental data. T, ϵp, and ̇ϵp
are the experiment temperature, equivalent plastic strain, and
plastic strain rate, respectively. The C0 constant accounts for the
stress contribution due to grain size. If grain size information
is unavailable, this term can be set to the yield strength of the
material. This is the case for the current work, so it is used in
the starting set of parameter values for the MCMC process. A
gradient basedminimization algorithm on the experimental data
was used to obtain the remainingZAparameter values.This set of
parameter values are in turn used as the starting point forMCMC
sampling.
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TABLE 1 Mean and standard deviations of 259,035 Zerilli-Armstrongmodel constants after calibrating to experimental data usingMCMC.

C0 [MPa] C1 [MPa] C3 [K
−1] C4 [K

−1] C5 [MPa] n

Mean 977.2 3825.0 0.5326 0.0357 1251.6 0.2822
Standard Deviation 10.0 2022.8 0.1784 0.0240 7.1 0.0060

For the MCMC run, a uniform prior distribution was set for
each of the parameter values. Also, the likelihood distribution
was assumed to be normally distributed and a Metropolis-
Hastings selection criteria was used for the selection of new
points. (MCMC was implemented via the MCMC toolbox for
Matlab package Laine (2022)). The process was carried out for
the ZA parameter fitting for one million iterations, enough to
assume adequate convergence. The result of the MCMC fitting
is a matrix of values with one million rows and six columns.
Each row is an estimated value for the six parameters in the ZA
model shown in Eq. 4. In the current work, the word “points”
is used to describe a single six column row in the matrix. Each
one of these points is a potential input to the TA simulation via
the ZAmodel. Afterwards, an inferred burn-in region of 200,000
points was removed from this data set, leaving 800,000 possible
parameters for each constant.

Of the 800,000 value sets, however, a large amount of them
were identical. To obtain a target data set of unique values, the
replicate data was removed, leaving nearly 260,000 parameter
sets. The means and standard deviations of each parameter
are shown in Table 1. Furthermore, after applying the PLOW
method on an increasing number of sub-sample distributions,
there came a point where increasing the number of values in the
sub-sample resulted in a negligible change in shape compared
to the target distribution. At this point, the sub-sample and the
target distribution shapeswere essentially the same.The threshold
sub-sample size of 15,000 points was therefore selected for the
target distribution size. This set of parameter values would serve
as the “bank” of input values that could be propagated into a ZA
model or a CTH simulation of a Taylor Anvil test.

The down-selection method, k-medoids, is used throughout
the work to reduce the input data sets generated by the MCMC
process. Essentially, the k-medoids algorithm first partitions the
data set into k different groups. A single value from each partition
is then selected to represent the group of points in that partition.
Furthermore, the algorithm ensures that the selected value is
within the original data set. K-medoids works even if each data
point is represented by a set of values i.e. multi-dimensional.

3.2 Constitutive model

For the large scale test that would utilize the entire data set
of 15,000 points, a less computationally expensive model than a
full Taylor-Anvil simulation inCTHwasneeded.The constitutive

model was selected to be the Zerilli-Armstrong stress-strain
function itself σ = σ(ϵp, ̇ϵp,T). The stress at an equivalent plastic
strain of 0.02 was chosen as the output.

To obtain the output stress distribution first one set, of
the possible 15,000 parameterizations, were substituted into ZA
model,Eq. 4. Next, a value of 0.02was input as the strain level and
the corresponding stresswas obtained and saved.Theprocesswas
repeated until all of the input parameter values were propagated
into the model.

The distribution of 15,000 output points would serve as the
known, true distribution because it includes all of the input data
points. Once this distribution was obtained, its shape would
be compared to that of varying subset sizes of this data set.
Consequently, in order to show the effectiveness of the PLOW
method, the method would need to be applied to incrementally
sized sub-sampled distributions of the full 15,000 points up to
15,000.

3.3 Taylor-Anvil simulation

The Taylor Anvil test was simulated in the multi-material
Eulerian hydrocode CTH (Version 12.0, Sandia National
Laboratory) McGlaun et al. (1990). The Taylor Anvil impact
simulation models an AF9628 rod impacting a Vascomax 250
anvil, as shown in Figure 3 where the pressure was output at
the final frame of the simulation. Relevant time-histories of
thermodynamic and mechanical field variables (e.g. Pressure,
stress, temperature, density, etc.) can be obtained from each
CTH simulation over the length of the AF9628 Taylor rod
impacting a Vascomax 250 anvil. The center point at the
impact face of the rod was selected for monitoring all field
variable data. The AF9628 Taylor rod was modeled with
a Mie-Grüneisen equation of state (EOS) with parameters
obtained from Neel et al. Neel et al. (2020), and the anvil was
modeled with a Mie-Grr ̈uneisen EOS with parameters obtained
from the Los Alamos Shock Compendium Marsh (1980). The
simulations were conducted at an impact velocity of 200 m/s
and ran for 20 μ s. An automatic mesh refinement (AMR)
algorithm was employed with a final mesh size of 100 μ m at
the smallest element. Fracture was not modeled in the present
work.

Simulations were run on a 48 core high performance
computing system with Intel Xeon Platinum 8168 cores. Exact
wall time was not recorded per simulation, however the
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FIGURE 3
Representative Taylor Anvil simulation of an AF9628 rod
impacting a Vascomax 250 anvil. Pressure contours are
superimposed onto the model geometries. The simulation is
one of 499 total, in alignment with the number of ZA parameter
sets obtained via MCMC. Each simulation is informed by the ZA
model with a different set of parameter values. The red star
shows the location on the rod where the density data was
obtained.

estimated run time for a single simulation was 15 min. Even with
run time scaling linearly with total number of simulations, the
run time can quickly become impractical for larger numbers of
runs. For instance, at just 500 simulations, the total wall time can
exceed 125 h.

Due to limits on computational time, only a subset of the
original 15,000 points generated could be run, since a separate,
computationally expensive simulation would need to be run
for each parameter set 500 points was chosen as a reasonable
number of simulations that could fitwithin the high performance
computing time allotment constraints for this work. To reduce
the data set to 500 parameter sets either random selection or
k-medoids, the previously discussed method for sub-sampling
data, was used. This set of 500 data points was used to inform
500 different Taylor Anvil simulations. In each simulation, only
the ZA constants changed while all other input conditions were
held constant. Notably, one simulation did not finish, leaving
499 simulations to analyze. Although it is unclear what precisely
caused the run not to finish, the most likely reason could be that
the simulation simply didn’t finish within theHPC hours allotted
to this project.

Properties that can be extracted from this simulation include
density, particle (material) velocity, final specimen length, and
final specimen width, among many others. With the 499 tests,
a distribution of the predictions for a given property could be
plotted. For this work, the density of the material at a tracer
particle located at the center of the impact surface was chosen
as the single property of interest to be analyzed (cf. Figure 3).

Densitywas selected due to its relatively low sensitivity to changes
in constitutive parameters.This would permit a good assessment
of the down-selection methodology employed in the present
work.

3.4 Application of PLOW

Once the outputs from the sub-sampled inputs are calculated,
one copy of the data set is created. For the original outputs,
there are no weights applied to the data points. For the copy,
the probability law optimized weights are applied to the outputs.
In addition to the original and the copy, the output data set
calculated by running all of the available inputs is obtained.
In Figure 1, the original output distribution is illustrated by
the orange ECDF labeled “Proposal”, the weighted output
distribution is illustrated by the blue ECDF labeled “Weighted
Proposal”, and the full output distribution is illustrated by the
black ECDF labeled “True”.

The original output serves as a baseline distribution to
compare with the performance of the distribution obtained after
theweights have been applied.Theperformance of a sub-sampled
distribution, weighted or not, is measured by how close that
distribution is to the true distribution. Each step described here is
applied in the same way, despite the technique used to obtain the
sub-sample (randomor intelligent) or themodel used to calculate
the outputs (low fidelity model or high fidelity simulation).
The only change for a given iteration is the size of the sub-
sample.

3.5 Calculating and plotting the D-Value

The 2-sample Kolmogorov-Smirnov (KS) test statistic was
used to compare the shape of the target data sets to the
smaller subset distributions. This test was used because it
does not require the distributions to have a certain shape
or standard deviation, i.e., it is a non-parametric test. For
this test, the distributions to be compared are first converted
to empirical Cumulative Distribution Functions (ECDFs). The
vertical distance between the two ECDFs are measured across
each point on the horizontal axis and themaximum value among
these is selected. This maximum distance is referred to as the D-
value. An example of this distance value is shown in Figure 4.
Normally, this value serves as the KS-Statistic which is tested
against the null hypothesis that the twomodels are sampled from
the same distribution.

For this work, however, the distance value is used as a
measure of convergence of the weighted proposal distribution to
the target distribution. That is, the smaller the KS-Statistic, the
closer the distribution in question (our proposal distribution or
weighted proposal distribution) is to the distribution being tested
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FIGURE 4
Illustration of the Kolmogorov–Smirnov statistic. The red and
blue lines are the two CDFs being compared, while the black
arrow is a measurement of the largest distance between the two
distributions. It is commonly known as the K-S statistic
Massey (1951), but is also referred to as the D-value (distance
value) in the present work.

against (the target distribution).This follows from the Glivenko-
Cantelli theorem, which demonstrates that the KS-Statistic
converges to zero with probability one when the distributions
are the same and the number of samples tends to infinity. Thus,
as the KS-statistic reduces, the two distributions in question are
closer (in distribution), hence the use of the KS-Statistic as a
convergence measure.

To measure the effect of the PLOW method, the D-values
between the target distribution and four different proposal
distributions were calculated. The four different approaches
to creating the proposal distributions included: 1) random
selection of inputs with no weighting on the outputs, 2) k-
medoid selection of inputs with no weighting on outputs, 3)
random selection of inputs with weighting on the outputs, and
4) k-medoid selection of inputs with weighting on the outputs.
For the large scale case of 15,000 points, only two approaches
were used to create the proposal distributions. These cases
included random selection of inputs with no weighting on the
outputs and random selection of inputs with weighting on the
outputs.

In each case described above, the size of the sub-sample
was increased incrementally to study the effect of sub-sample
size on PLOW’s ability to more accurately weight the proposal
distribution towards the target distribution. For each sub-sample
size, 100 different iterationswere complete. Doing sowould allow
a mean and standard deviation to be calculated. The means and
standard deviations of the D-values are plotted versus the sub-
sample size. An example of a D-value versus sub-sample size plot
is shown in step 4 of Figure 1.

4 Results

4.1 Uncertainty propagation of
constitutive model

For one D-value comparison of the constitutive model,
shown in Figure 5, a random selection method of the sub-
samples was used to generate proposal distributions to compare
with the 15,000 target sample size. For this case, the sub-
sample sizes began at 450 points, and incremented by fractions
of roughly 0.07 of the full target data set. To compare the
performance of PLOW on k-medoids for the constitutive model,
shown in Figure 6, a target data set of 500 was selected from
the full 15,000 points. The sub-sample sizes here started at 50
and incremented by fractions of 0.1 of 500 points up to 450.
From here, the increment was changed to 0.02. This continued
until the sub-sample size reached 500. Overall, the weighted
k-medoid sampled data shows a better convergence than the
random sampled inputs.

After applying the PLOW method proved effective in more
accurately representing the target distribution generated by the
cheap constitutive model, it was of high interest to apply the
method to a model of higher fidelity. Doing so could also
demonstrate the method’s effectiveness across a model chain, as
the ZA constitutive equation serves as a direct input into the high
fidelity simulation software. Unlike with the constitutive model,
less parameter sets from the MCMC calibration could be used
and tested because querying the TA simulation is much more
time and computationally intensive than evaluating a constitutive
model.

4.2 Uncertainty propagation of
Taylor-Anvil simulations

The CTH simulations of the Taylor Anvil impact test
provided field variable histories throughout the AF9628 rod.The
equilibrium density was calculated and noted to converge to a
stable value by the end of each simulation. Density distributions
were plotted for the 499 Taylor Anvil simulations as shown in
Figure 7 in the form of a solid, dark blue line. Each of the 499
simulations were informed by a unique set of ZA parameter
values.

From this dataset of density values, we can select subsets of
values and apply the PLOW method to the subset to compare
to other distribution subsets. Figure 7 shows how the subset
distributions of density values begin to match the full set as the
number of values in the sub-set approaches the total dataset size
of 499 values. Although the convergence with increasing sub-
sample size is an intended outcome, it is not easily seen when
viewed as CDF distributions. Additionally, the distributions are

Frontiers in Materials 09 frontiersin.org

https://doi.org/10.3389/fmats.2022.932574
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


James et al. 10.3389/fmats.2022.932574

FIGURE 5
D-value versus sub-sample size trend for constitutive model. A
comparison between a random sub-sample selection with
PLOW applied after the selection (Weighted) and one without
PLOW applied (Unweighted) is shown. At each X-axis interval,
100 2-Sample K-S statistic values (D-values) were calculated
between the target distribution and a proposal distribution
constructed using a different drawing of points from the pool of
15,000 total input points. The average and standard deviation of
100 D-values is plotted at each sub-sample size value.

FIGURE 6
D-value versus sub-sample size trends for the constitutive
model. A comparison of the convergence to the target
distribution between random sub-sample selection with PLOW
applied (Weighted-Random), random sub-sample selection
without PLOW (Unweighted-Random), k-medoids sub-sample
selection with PLOW applied (Weighted - Medoid), and
k-medoids sub-sample selection without PLOW (Unweighted -
Medoid) are shown. The sub-sample size represents the number
of input points used to construct the proposal distribution. At
each X-axis interval, 100 2-Sample K-S statistic values (D-values)
were calculated between the target distribution and a proposal
distribution constructed using a different drawing of points from
the pool of 500 total input points. The average and standard
deviation of the 100 D-values is plotted.

FIGURE 7
Cumulative distribution of material density values predicted by
the Taylor Anvil simulation. Each line, except one, represents a
proposal distribution determined by an input sub-sample size as
indicated in the legend. One line represents the target
distribution. Naturally, as the size of sub-sampled input points
used to construct the proposal distribution approaches 500, the
closer the proposal distribution will be to the target distribution.

FIGURE 8
D-value versus sub-sample size trend for the Taylor-Anvil
simulations. A comparison of the convergence to the target
distribution between random sub-sample selection with PLOW
applied (Weighted-Random), random sub-sample selection
without PLOW (Unweighted-Random), k-medoids sub-sample
selection with PLOW applied (Weighted - Medoid), and
k-medoids sub-sample selection without PLOW (Unweighted -
Medoid) are shown. The sub-sample size represents the number
of input points used to construct the proposal distribution. At
each X-axis interval, 100 2-Sample K-S statistic values (D-values)
were calculated between the target distribution and a proposal
distribution constructed using a different drawing of points from
the pool of 499 total input points. The average and standard
deviation of the 100 D-values is plotted.
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not symmetric across the mean or mode. Therefore, comparing
such distributions to each other would require a non-parametric
testing method. To do this comparison, the testing parameter of
the Komolgorov Smirnov test (KS-Test)Massey (1951) was used,
as mentioned previously.

As shown inFigure 8, sub-samples of the original 499 sample
distribution were taken in sizes of 100, 150, 200, 250, 300,
350, 400, 450, 460, 470, 480, and 490. At each sub-sample size,
the k-medoid distribution either had PLOW applied or was
left unmodified. The two were then compared to the known
499 sample distribution. Figure 8 shows the results of the KS-
Statistic versus sample size calculations. The sub-samples that
did not have the PLOW method applied to them were labeled
Unweighted, while the samples that did were labeledWeighted.

5 Discussion

Overall, the method shows promise in fine-tuning
distributions generated using a sub-selection of inputs and
outputs, even if the model to determine the outputs is complex
with no explicit function to map inputs to outputs. In every
case of the D-value vs. sub-sample size plots, applying the
PLOW method weights the outputs such that the distribution
is closer in shape to the target distribution than without PLOW
applied, on average. Additionally, in both the CTH simulation
and constitutive model cases, the biggest difference between the
twomethods occurs in the smallest sub-sample size.This iswhere
applying the PLOW method has the biggest impact on altering
the distribution shape. The results also show that PLOW works
across the CTH simulation, which is a more complexmodel than
prior applications of the PLOWmethod.

In the case of the constitutive model with only the random
sub-sample selection shown (Figure 5), the PLOW method
creates proposal distributions similar in shape to the known,
target distribution, even in small sub-sample sizes. For example,
even when just 3% of the total data set is used as a sub-sample,
the average D-value is roughly 0.017 for the weighted data, which
is much lower than the average D-value of about 0.046 of the
unweighted data set. Keep in mind that the lower the D-value,
the closer the sub-sampled distribution is to the known output.
The standard deviations (vertical lines at each sub-sample size
fraction) are also very narrow compared to the unweighted case,
highlighting the precision of the PLOWmethod.

The plots of the random and k-medoid selection methods
with and without PLOW applied (Figure 8) show that increased
accuracy can be achieved even after intelligently down-selecting
inputs that best represent the population of available inputs.
Furthermore, for nearly every sub-sample size, weighting the
distribution changes its shape towards that of the target
distribution enough that the standard deviations associated with
weighting and not weighting do not overlap. For example, at a

sub-sample size fraction of 0.5, the vertical bars representing
standard deviation for the Weighted - Medoid and Weighted -
Random D-values are between roughly 0.01 and 0.015. On the
other hand, the vertical bars for the Unweighted - Medoid and
Unweighted - Random are between 0.02 and 0.04.

Another takeaway from Figure 8 is that when k-medoids is
used alone, it has the ability to select input points that bring the
output distribution shape closer to the known, target distribution
reasonably well compared to a purely random selection.This can
be observed by comparing the mean D-value of the blue line
(Unweighted-Medoid) to that of the yellow line (Unweighted-
Random) for sub-sample fraction sizes of 0.3 through 0.5, and 0.7
to 0.8. Such gains in accuracy are very small between the random
vs. medoid selection processes when PLOW has been applied.
The average D-values nearly overlap for all sub-sample fraction
sizes between the two lines in Figure 8 (purple vs. orange lines).
The result signifies that PLOW has the ability to find a similar
“optimum” shape regardless of the sub-sampling process used.

For both the constitutive model and CTH cases, the mean
D-value decreases significantly with constant increases in sub-
sample size. Such a trend can be used to define an optimum
amount of sub-samples to run when computational resources
are limited. For example, if a decrease in the average D-value is
less than a pre-determined range with an incremental increase
in sub-sample size, the final sub-sample size would be optimal.
It is unclear whether this same trend remains at smaller sample
sizes. For instance, if a trend turns out to be linear when the
target distribution is less than 499 samples, the optimal fraction
of sub-samples to run would be the most that the investigator
could afford. Figure 5 shows that the exponentially decreasing
behavior holds for target distributions of up to 150,000 points,
given the ZAmodel. Generally, however, the smaller the proposal
distribution size, the greater the difference PLOWmakes on the
distribution.

Additionally, as shown in Figures 5, 6, 8, as the sub-
sample size increases, the shapes of the distributions becoming
more and more similar until they are almost exact. Overall,
the weighted data set consistently performs better than the
unweighted one in essentially every ratio value. The only
exceptions are the few ratios where the standard deviation of
the unweighted plot reaches below the mean of the weighted
plot. Overall, the weighted distribution tends to converge faster
towards the ground truth distribution, thus saving computing
resources.

Each D-value versus sub-sample size trend (Figures 5, 6,
8) also shows a reduction in computational cost on account
of applying PLOW. For example, in Figure 8, the mean D-
value between the target distribution and theWeighted-Random
curve at a sub-sample fraction size of 0.3 is roughly 0.02. The
fraction size equates to about 150 Taylor-Anvil simulations.
To achieve a similar level of accuracy without weighting the
proposal distribution, nearly 80% of the total 499 inputs would
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need to be run; a total of about 400 Taylor-Anvil simulations.
In this example alone, it is shown that if PLOW was used to
weight the proposal distribution, one would save 250 simulation
evaluations. This equates to a times savings of 3,750 min,
given the amount of time it takes to execute one Taylor-
Anvil simulation. The calculation is under the assumption
that the execution time scales linearly with the number of
evaluations.

The results point toward the use of the PLOW method
to obtain the most accurate distribution of a random variable
when the number of possible inputs exceed the computational
resources to sample the entire distribution. Such situations are
prevalent in material design exploration where the possible
input values for parameters like composition and annealing
temperature in heat treatment studies are continuous (i.e.
can take an infinite number of values), which can lead
to very different bulk properties Khatamsaz et al. (2021);
Ranaiefar et al. (2022); Johnson et al. (2019). Finally, although
the PLOW method creates a more identical shape to the target
distribution than without it, this difference is rather small. To
strengthen its credibility, a test of the effectiveness of PLOW
on sub-sample data selected from a more disparate target
distribution would be required.

6 Conclusion

In this work, a method for predicting the true output
distribution of a quantity of interest from only a limited number
of inputs is presented. The PLOW method has been applied
to a simple constitutive function and a more sophisticated
hydrodynamic simulation to demonstrate its flexibility in
different applications. Such a method has the potential to
reduce the number of input samples needed to best represent
the output distribution of interest, especially considering the
cost of high fidelity simulations. Major findings include 1) the
ability of PLOW to better predict a QoI distribution across a
high fidelity simulation and 2) The PLOW method’s ability to
predict the distribution of a QoI with improved accuracy, even
when a selection algorithm is used to obtain a representative
subset of inputs. Additionally, the gains in prediction accuracy
were most prevalent in cases where computational resources
limit calculations to only a small set of inputs. Here, the
effectiveness of the method has been demonstrated on a
problem where material performance is the quantity of interest.
However, the approach is general enough that it can be applied
to problems across essentially any discipline and has been
shown to be effective at propagating uncertainty under resource
constraints.
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