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Advanced structural materials with superior mechanical properties are of technological
importance for industrial applications. Multicomponent precipitation provides a potential
approach for designing high-performance alloys and has been receiving increasing
attention from both academia and industry. In this Perspective, we highlight the recent
advances and future perspectives in multicomponent-precipitation-strengthened alloys,
including multicomponent steels, superalloys, and high-entropy alloys. The emphasis is
placed on the unique microstructural features and challenges of multicomponent
precipitation as well as their impacts on the strengthening behavior. Finally, future
research areas for this class of materials are critically discussed.
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INTRODUCTION

Metallic materials with excellent mechanical properties are highly desirable for a wide range of
engineering applications, such as aerospace, transportation, construction, marine, and energy
industries (Reed, 2008; Fine et al., 2010; Yen et al., 2011; Kapoor et al., 2014; Miracle and
Senkov, 2017; George et al., 2019). It is commonly understood that the mechanical properties of
crystalline materials are determined by the microstructure and dislocation interactions. Basically,
strengthening crystalline materials involves the controlled creation of internal defects to impede the
motion of dislocations. Intermetallic precipitation strengthening has been extensively used in many
metallic systems, such as steels and superalloys (Raabe et al., 2009; Mulholland and Seidman, 2011;
He et al., 2016; Bleck et al., 2017; Sun et al., 2017; Liang et al., 2018; Yang et al., 2018). The degree of
precipitation strengthening is highly dependent on the microstructure and micro-mechanical
properties of precipitates as well as the nature of the dislocation-precipitate interaction. Recent
studies reveal that intermetallic precipitates in multicomponent metallic systems are often of
multicomponent type, the formation of which involves complicated elemental partitioning and
sublattice occupancies. The complex compositions and lattice structures can significantly influence
their nucleation, growth, and coarsening behaviors, thereby affecting the precipitate microstructure
and strengthening behavior (Jiang et al., 2015; Trotter et al., 2016; Song et al., 2017; Zhao et al., 2018).
For example, B2-ordered Ni(Al,Mn)-type precipitates can form in Fe-Ni-Al-Mn multicomponent
alloys, in which Mn partitions to the precipitates and occupies the Al sublattice (Zhang et al., 2013).
TheMn partitioning significantly reduces the critical energy for nucleation and increases the number
density of precipitates by more than one order of magnitude, leading to a doubled strengthening
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effect. In fact, the beneficial effects of multicomponent
precipitates on the thermal, physical, and mechanical
properties of materials are frequently observed in many
precipitation-strengthened systems. As a result, the
development of multicomponent-precipitation-strengthened
alloys has attracted extensive and increasing interest from both
academia and industry. In this Perspective, we highlight the
recent development of multicomponent-precipitation-
strengthened alloys and critically discuss their unique features,
challenges, and future visions, as schematically illustrated in
Figure 1. In particular, we focus on the complicated elemental
partitioning and sublattice occupancies inmulticomponent steels,
superalloys, and high-entropy alloys. The unique microstructural
features bring new challenges for understanding and control of
the precipitation and strengthening behaviors. To further
accelerate the advancement of the multicomponent-
precipitation-strengthened alloys, fundamental and
technological areas should be further explored in future
studies, such as computation-aided alloy design, atomic
structure, intrinsic characteristics, and overall properties of
these materials.

MULTICOMPONENT PRECIPITATES IN
INTERMETALLIC-STRENGTHENED
ALLOYS
Multicomponent Precipitates in Steels
Fe-based steels undergo a phase transformation from a face-
centered cubic (fcc) austenite phase at high temperatures to a
body-centered cubic (bcc) structure at low temperatures. Some
fcc elements, such as Ni, Al, and Cu, can be dissolved to a
considerable extent in the fcc austenite phase but have a low
solubility in the bcc structure, which results in the precipitation of
fcc elements at low temperatures. For example, B2-ordered NiAl
particles can precipitate coherently from the ferritic/martensitic

matrix, and their compositions often deviate from the
stoichiometric composition of binary NiAl, especially at an
early stage of precipitation (Teng et al., 2012; Kim et al., 2015;
Jiang et al., 2017; Song et al., 2017). Depending on the alloy
composition and processing conditions, Fe can partition to the
B2-ordered precipitates by occupying the Ni or Al sublattice,
leading to the formation of (Ni,Fe)Al or Ni(Al,Fe) precipitates. In
addition, Mn can also partition to NiAl-type precipitates by
replacing parts of Al, resulting in the formation of Ni(Al,Mn)
precipitates (Jiao et al., 2015). In terms of mechanical properties,
the Ni(Al,Mn) precipitates increase the yield strength of a
Fe–5Ni–1Al–3Mn (wt%) steel from 685 MPa in the as-
quenched condition to 1225 MPa in the peak-aged condition,
which is almost a double increase; meanwhile, the ductility
decreases slightly from 16% in the as-quenched condition to
14% in the peak-aged condition (Jiao et al., 2015). Another
example is the Ni3Ti-type precipitation in maraging steels. In
the initial stages of precipitation, Mo partitions to the Ni3Ti-type
precipitates by occupying the Ti sublattice, which leads to the
formation of high densities of Ni3(Ti,Mo) precipitates (Niu et al.,
2021). These multicomponent precipitates provide effective
strengthening responses, leading to the development of
advanced ultrahigh-strength steels with 2 GPa strength and
>10% ductility.

Multicomponent Precipitates in Superalloys
Ni-based superalloys are known to have a complex composition,
with more than ten alloying elements in most alloys. They are key
structural materials for high-temperature applications in
aerospace, particularly the turbine blades of jet engines (Pope
and Ezz, 1984; Pollock and Tin, 2006; Reed, 2008). Precipitation-
strengthened superalloys have a unique γ/γ′ microstructure, in
which ordered γ′ precipitates are distributed in the γmatrix. The
γ phase is an fcc solid solution with randomly distributed
different species of atoms, whereas the γ′ phase is a L12-
ordered Ni3Al-type intermetallic compound. Generally, the Ni

FIGURE 1 | Schematic summarizing the unique features, challenges, and future work of multicomponent-precipitation-strengthened alloys.
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sublattice is comprised of mostly electronegative elements, such
as Ni and Co., whereas the Al sublattice constitutes more
electropositive elements, such as Al, Ti, Nb, and Ta (Reed,
2008). Generally, dislocations move into the L12-ordered γ′
phase by forming antiphase boundaries, whereas dislocations
travel across the γ matrix by forming stacking faults. The
antiphase boundary energy of the γ′ phase is higher than the
intrinsic stacking fault energy of the γ phase, which thus hinders
the motion of dislocations in the γ phase. The high volume
fractions of coherent γ′ precipitates with high strength and
thermal stability enable the γ/γ′ superalloys to achieve
superior mechanical properties at high temperatures (up to
0.9 Tm) (Reed, 2008). Similar precipitation behaviors are also
observed in Co-based γ/γ′ superalloys, in which the γ′ phase is the
L12-ordered Co3Al-type intermetallic compound. The binary
Co3Al phase is known to be metastable at high temperatures,
but which can be stabilized by alloying elements, such as Cr, V,
Nb, Ta, and W. In the recent decades, a series of novel Co-based
superalloys strengthened by stable γ′ precipitates, such as
Co3(Al,W), Co3(Al,Cr,Ta), and Co3(Al,Ti,V,Nb), have been
developed (Sato et al., 2006; Oohashi et al., 2008; Xue et al.,
2013; Suzuki et al., 2015). These materials show promising
mechanical properties as potential candidates for high-
temperature applications.

Multicomponent Precipitates in
High-Entropy Alloys
High-entropy alloys, also known as multiple-principal-element
alloys, have emerged as a new class of metallic materials because
of their unique microstructure and excellent mechanical
properties at cryogenic temperatures (Gludovatz et al., 2014).
Among these alloys, the face-centered cubic (FCC) alloys, such as
CoCrFeMnNi and CoCrNi, have received considerable attention
because of their exceptional ductility and toughness, even down
to the liquid nitrogen temperature. The yield strength of these
FCC high-entropy alloys are generally in the range of
200–500 MPa (Wu et al., 2014). Recent studies reveal that
intermetallic precipitation is effective in improving the
mechanical strength of high-entropy alloys without causing a
significant reduction in ductility (Zhang et al., 2014; Wang et al.,
2018). Relating to the multicomponent nature of high-entropy
alloys, the intermetallic precipitates are also complex in
composition and sublattice occupancy. For instance, L12-
ordered (Ni,Co)3(Al,Ti) precipitates can coherently form in
the Fe-Co-Ni-Cr-Al-Ti system, which leads to the
development of precipitation-strengthened high-entropy alloys
with gigapascal strengths (Daoud et al., 2015; He et al., 2016; Liu
et al., 2018; Zhao et al., 2018). Recently, even more complicated
L12-ordered precipitates with a composition of 43.3Ni-23.7Co-
10.0Fe-14.4Ti-8.6Al (at%) are formed in Fe-Co-Ni-Al-Ti alloys
(Yang et al., 2018). The sublattice occupancy in the
multicomponent precipitates was investigated by atomistic
modelling, and the results indicate that these L12-type
multicomponent precipitates can be regarded as the
(Ni43.3Co23.7Fe8)3(Ti14.4Al8.6Fe2) phase (Yang et al., 2018). In
addition, multicomponent B2-(Ni,Co)(Al,Cr,Fe) precipitates

strengthened high-entropy alloys are developed, which exhibit
outstanding fatigue resistance (Feng et al., 2021). This research
area is still immature and may lead to new exciting developments.

DISCUSSION ON THE MULTICOMPONENT
PRECIPITATION AND STRENGTHENING
BEHAVIORS
Precipitation Behavior
As the formation of multicomponent precipitates involves the
atomic interaction and cooperative diffusion of various species of
elements, their precipitation behavior can be significantly
different from that of compositionally simple precipitates,
especially in the nucleation stage. According to the classical
nucleation theory, the critical energy for nucleation depends
on the interplay among the chemical driving force, interfacial
energy, and strain energy. Any factors affecting the chemical
driving force, interfacial energy, and/or strain energy can have an
impact on the nucleation behavior. An accelerated or decelerated
nucleation behavior is often observed in multicomponent-
precipitation-strengthened alloys. For example, Fe partitions to
B2 precipitates in maraging steels, leading to the formation of
Ni(Al,Fe)-type precipitates. The lattice misfit between Ni(Al,Fe)
and bcc-Fe is much smaller than that between NiAl and bcc-Fe,
which results in an extremely small strain energy between the
precipitates and matrix, thereby substantially accelerating the
NiAl nucleation (Jiang et al., 2017). When Cu is added to NiAl-
strengthened steels, Cu partitions to NiAl precipitates in the early
state of precipitation, which leads to the formation of B2-
Ni(Al,Cu) precipitates. The incorporation of Cu into NiAl
precipitates enhances the attractive interaction between Ni and
Al, which substantially increases the chemical driving force for
nucleation, thereby promoting the NiAl precipitation (Shen et al.,
2017; Zhou et al., 2021). In addition, the coarsening behavior of
multicomponent precipitates is also influenced by the precipitate
composition and lattice structures. In high-entropy alloys, for
example, the long-range diffusion is found to be sluggish because
of the necessity for cooperative diffusion of solute atoms to
maintain a proper elemental partitioning and sublattice
occupancy. Resulting from sluggish diffusion, the precipitate
coarsening rate in L12-(Ni,Co)3(Al,Ti)-strengthened high-
entropy alloys is one to two orders of magnitude lower than
that in traditional Ni-based superalloys (Zhao et al., 2018).
Therefore, the compositional complexity of multicomponent
precipitates can result in a considerable variation in the
thermodynamic, structural, and physical properties, which
provides a useful approach to tailoring the precipitate
microstructure. Meanwhile, it brings new challenges for
understanding and control of the precipitation behavior.

The processing method also has an important impact on the
precipitation behavior of multicomponent alloys. Traditionally,
metallic parts are manufactured by casting and forging processes,
and the precipitate microstructure can be controlled through
heat-treatments. There is now a growing interest in processing
multicomponent alloys using new technologies for better material
utilization, higher degree of design freedom, and/or better
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physical and mechanical properties. For example, the electron
beam melting of CoCrFeNiMn-xTi results in the formation of
multicomponent σ, γ, and η precipitates, the growth of which is
limited at the boundaries of FCC columnar grains due to the rapid
solidification nature of the process (Cagirici et al., 2021). The
selective laser melting of a (FeCoNi)86Ti7Al7 alloy produces a
heterogeneous precipitate microstructure consisting of L12
precipitates inside cellular structures and B2 precipitates along
the cellular boundaries, which is quite different from the
traditionally heat-treated microstructure with a uniform
distribution of L12 nanoparticles (Huang et al., 2022). The
sputtered Inconel 718 films generally show the precipitation of
multicomponent δ-Ni3Nb precipitates, whereas in bulk 718 alloys
metastable γ′′-Ni3Nb precipitates form first and transform to the
stable δ-Ni3Nb phase after prolonged aging times (Burns et al.,
2014). These observations suggest that different processing
methods can result in different microstructures in terms of
precipitate types, sizes, volume fractions, morphologies, and
distributions. The new processing technologies provide new
opportunities for tailoring the precipitate microstructure for
improved properties. However, a clear understanding of the
underlying precipitation mechanism and processing-
microstructure correlation of these alloys remains elusive and
needs further investigation.

Strengthening Behavior
The precipitation strengthening is basedmainly on the interaction of
dislocations with precipitates (Gladman, 1999). There are two types
of dislocation-precipitate interaction depending on the precipitate
size (inter-precipitate spacing). When the precipitate size is larger
than a critical size, the Orowan bypassing mechanism is operative;
when the precipitate size is smaller than the critical one, the
dislocations cut through or shear the precipitates. In the
precipitate shearing mechanism, three factors contribute to the
strength increase, i.e., coherency strengthening, modulus
strengthening, and order strengthening. From the strengthening
models, the precipitation strengthening effect depends on not only
the precipitate microstructure (precipitate size, volume fraction, and
morphology) but also the intrinsic properties of the precipitates, such
as lattice constant, shear modulus, Young’s modulus, and antiphase-
boundary energy (Embury et al., 1971; Ardell, 1985). When
modelling the strengthening of multicomponent precipitates, the
values of shear modulus, Young’s modulus, and antiphase boundary
energy are often borrowed from compositionally simple
intermetallic compounds, such as binary Ni3Al and NiAl.
However, it is known that a small change in composition and
lattice occupancy can have a great impact on the intrinsic properties
of intermetallic compounds. For example, Vittori et al. found that the
antiphase-boundary energy of Ni3(Al,Ti) can be two times higher
than that of binary Ni3Al (Vittori and Mignone, 1985). Kim et al.,
(2010) reported that the partial substitution of Ni by Cr can
significantly reduce the shear modulus of Ni3Al. Thus, the
intrinsic mechanical properties of multicomponent precipitates
can be significantly different from those of stoichiometric
precipitates, and the use of parameters of stoichiometric
precipitates for strengthening modelling may produce large
inaccuracies and even wrong conclusions. Therefore, for a better

understanding of the strengthening mechanism of multicomponent
precipitates, a quantitative study of the intrinsic mechanical
properties of multicomponent precipitates is essential.

OUTLOOK

Although multicomponent-precipitation-strengthened alloys are
promising in terms of physical and mechanical properties, several
fundamental and technological areas should be further explored
in future studies.

Computation-Aided Alloy Design
Because of the complex interaction among various alloying elements,
the classical “trial-and-error” method no longer suffices for the
design of multicomponent-precipitation-strengthened alloys.
Alternatively, computational calculations and genetic algorithms
offer a potentially effective way for rapid alloy screening and
design. For example, ab initio calculations can compute
thermodynamic and structural properties for both stable and
metastable phases, whereas thermodynamic calculations can
provide useful information on phase equilibrium and
transformations (Kresse and Hafner, 1993). For example, Kannan
et al. developed a thermo-kinetic model to predict the precipitation
and austenite reversion kinetics during various post-fabrication heat
treatments in multicomponent steels (Kannan and Nandwana,
2021). In addition, machine learning can capture the highly-
complex non-linear input/output relationships, to help filter or
select the potential good materials rapidly (Zhao et al., 2021).
These computational methods can serve to guide experimental
efforts by effectively narrowing down the search space. Future
work should place an emphasis on the integrated computational-
prediction and experimental-validation approach for designing
novel multicomponent-precipitation-strengthened alloys with
desired properties.

Atomic Structures and Intrinsic
Micro-Mechanical Properties
For a full understanding and control of the multicomponent
precipitation behavior, the knowledge of the structure, chemistry,
and energetics of multicomponent precipitates is necessary. The
multicomponent precipitates are complex in terms of lattice
occupancy, elemental partitioning, and interfacial segregation, and
in some cases, the precipitates undergo phase transformations during
the growth and coarsening processes. Future attention needs to be
paid to the atomic-level characterization of multicomponent
precipitates through advanced nano-analytical tools (such as
aberration-corrected transmission electron microscopy and 3D
atom probe tomography) (Seidman, 2007; Miller, 2012) and
computational calculations (such as ab initio calculations) (Kresse
and Hafner, 1993). In addition, as aforementioned, the strengthening
effect of multicomponent precipitates is related to their micro-
mechanical properties, such as Young’s modulus, shear modulus,
and anti-phase boundary energy. The state-of-the-art peak-force
tapping atomic force microscopy allows simultaneous capture of
topography and maps of nano-mechanical properties, thus
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providing new opportunities to understand the micro-mechanical
properties of multicomponent precipitates. Furthermore, atomistic
modellings can play an important role in the understanding of
intrinsic mechanical properties of multicomponent precipitates,
such as elastic properties and energetics. Therefore, it is of
fundamental importance to obtain detailed insights into the atomic
structure and intrinsic mechanical properties of multicomponent
precipitates through a combination of experimental and
computational approaches.

Overall Properties
While most studies on multicomponent-precipitation-strengthened
alloys focus on the general mechanical properties, such as strength,
ductility, and strain hardening, the understanding of their overall
properties, including processability, toughness, fatigue, creep,
corrosion, and welding properties, remains limited. Particularly,
alloys for industrial applications are generally used in various
forms, such as sheets, plates, bars, tubes, and other structures.
Thus, the processability of these materials is critical for
manufacturing and industrial applications and needs to be
carefully evaluated. In addition, creep resistance is critically
important for applications that require long-term dimensional
stability under load at elevated temperatures, whereas impact
toughness is a key parameter in influencing the performance of
engineering applications at low temperatures. Fatigue resistance is
an essential property in preventing catastrophic failure of engineering
components in service conditions. In order to develop advanced
multicomponent-precipitation-strengthened alloys for industrial
applications, future work needs to evaluate the overall properties of
these materials under different conditions. In addition, it is also
important to understand the fundamental mechanisms and key
factors governing the overall properties of multicomponent-
precipitation-strengthened alloys and to establish the relationship
between the precipitate microstructure/properties and bulk alloys
properties.

CONCLUDING REMARKS

This Perspective highlights the recent advances in the
multicomponent precipitation and strengthening of

intermetallic-strengthened alloys. The formation of
multicomponent precipitates involves complicated elemental
partitioning and sublattice occupancies, which results in a
considerable variation in their structural, physical, and
mechanical properties, thereby influencing the precipitation
and strengthening behaviors. Understanding the
composition–microstructure–property relationship is essential
for both fundamental understanding and technological
applications of multicomponent-precipitation-strengthened
alloys. Future work should place on the computation-aided
alloy design of advanced alloys with superior mechanical
properties and the fundamental understanding of the atomic
structure and micro/macro-mechanical properties of
multicomponent-precipitation-strengthened alloys.
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