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Amagnetic fluid seal is often used in complex working conditions with harsh environmental
requirements. Timely and accurate identification of the seal status can help avoid the major
economic losses and even casualties caused by the seal failure. However, research on the
recognition of magnetic fluid seal status is still at the exploratory stage internationally.
Aiming at the problem of inclusion of other components and Gaussian noise when using
acoustic emission nondestructive testing technology to detect the magnetic fluid seal
status, a new recognition method based on the combination of high-order cumulant image
and VGG16 convolutional neural network is proposed to identify the magnetic fluid seal
status in this paper. In this method, high-order cumulant images are used for the denoising
and feature selecting of detected signals, and the VGG16 convolutional neural network is
trained to automatically learn image features to classify and recognize high-order cumulant
images representing different sealing states. Experiments show that the accuracy of image
recognition using VGG16 is significantly higher than that of other methods. The
VGG16 method can identify the magnetic fluid seal state accurately and effectively,
with strong robustness and Gaussian noise suppression ability.

Keywords: magnetic fluid seal, high-order cumulant image, state recognition, convolution neural network (CNN),
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1 INTRODUCTION

Amagnetic fluid seal is a new sealing method that is often applied to important parts that have strict
requirements on sealing performance (Hasegawa et al., 2016; Mitamura and Durst, 2017), such as
movable parts of spacesuits, X-ray diffractometer, radar waveguide components, and the main pump
shaft of a sodium cooled fast reactor, etc. The operating conditions of these components are
complicated. Seal failure can not only cause significant economic losses but also serious
environmental pollution and even casualties. It is therefore necessary to accurately identify the
seal status when using magnetic fluid to seal components so that timely preventive measures can be
taken to ensure the safe operation of seals.

To date, there is no mature identification method of magnetic fluid seal status, and relevant
research is mainly focused on the exploration of magnetic fluid seal performance and failure
mechanisms. For example, Chen et al. (Chen et al., 2020) used pressure sensors to measure magnetic
fluid seal signals and simulated the seal status. Parmar et al. (Parmar et al., 2020) tested the
performance of a two-stage magnetic fluid seal under variable speed and radial clearance. Gao, (2014)
used X-ray and CT image brightness to detect the existence of magnetic liquid in sealing clearance.
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Wang, (2018) achieved real-time monitoring of magnetic fluid
leakage by using a pressure detection device. The above research
provides a good beginning for monitoring the status of the
magnetic fluid seal, but the detection technology has certain
limitations and is destructive to the seal. In this paper,
acoustic emission nondestructive testing technology is used to
detect the seal status without destroying the original structure of
the seal.

In recent years many recognition methods for acoustic signals
have been developed, mainly including K-means clustering
(Glowacz, 2019), fully integrated empirical mode
decomposition (Delgado-Arredondo et al., 2017), support
vector machine (Shi et al., 2018), and convolutional neural
network (CNN) (Zhang D. et al., 2020), etc. In this research
field, a recognition method based on CNN that automatically
extracts signal features is one of the present research hotspots.
Han et al. (Han et al., 2020) used CNN to effectively identify the
two-dimensional time-domain waveform image features of
signals. Chen et al. (2015) used CNN to identify frequency
spectrum images of timing signals and achieved high accuracy.
In addition, studies have shown that the convolutional neural
network model of VGG16 has better performance in the practical
application of abstract image recognition (Qassim et al., 2018;
Theckedath and Sedamkar, 2020). Therefore, the recognition
process can be more efficient by converting one-dimensional
signals into images and inputting them into the VGG16 model.
Among the many methods of transforming one-dimensional
signals into two-dimensional images, high-order cumulant
image processing has the characteristics of suppressing
Gaussian colored noise and depicting signal phase information
and has more advantages than traditional images such as time-
spectrum graphs (Shao et al., 2008).

In this paper, a state recognition method based on a high-
order cumulant image and VGG16 convolutional neural network
is proposed, which provides a new approach to effectively
identifying the magnetic fluid seal state. In this method, the
acoustic signal of the magnetic fluid seal is collected by an
acoustic emission experiment, and the magnetic fluid seal
states can be detected without damage. The high-order
cumulant image processing method for detecting acoustic
signals is introduced theoretically, and the generated image
samples are input into the VGG16 convolution neural
network. Finally, by comparing the NIN, GooLeNet, and
ResNet models, we found that the VGG16 model can
effectively identify the magnetic fluid seal state and that the
network performance is significantly better than other models.

2 RELATED THEORY

2.1 Higher Order Cumulant Image
High-order cumulant is a new signal processing technology,
which has the advantages of suppressing Gaussian colored
noise and extracting phase information (Shao et al., 2008;
Wang et al., 2014). It is gradually being applied to signal
filtering, signal detection, and target classification and
recognition. High-order cumulant image is a grayscale image

transformed from a sealed acoustic signal through high-order
cumulant calculation and data mapping, which is used as the
input sample data of VGG16 and other convolutional network
models, and it can contain richer feature information while
suppressing various noises. Figure 1 shows a schematic
diagram of the high-order cumulant image transformation
process.

As shown in Figure 1, the key Cto generating high-order
cumulant images lies in high-order cumulant calculation and data
mapping processing. The calculation formula of high-order
cumulant is as follows:

ckx(τ1, τ2,/, τk−1) � cum{x(t), x(t + τ1),/, x(t + τk−1)} (1)
Where x(t) is the random signal, k is the order, τ1, τ2,/, τk−1 is
the delay.

In a Gaussian stochastic process with zero mean, the third-
order and higher-order cumulants are equal to zero, that is, the
third-order and higher-order cumulants can suppress the
influence of additive Gaussian noise in the signal theoretically.
Therefore, the third-order cumulant with less computation is
used in this paper, and the calculation formula is as follows:

c3x(τ1, τ2) � cum{x(t), x(t + τ1), x(t + τ2)}
� E{x(t)x(t + τ1)x(t + τ2)} (2)

Where τ1 and τ2 are the delay quantities. E is the expected value.
The one-dimensional acoustic signal is calculated by the third-

order cumulant and the two-dimensional matrix is obtained. The
delay τ1 and τ2 are the independent variables in the calculation
process. The initial values of matrix elements are normalized and
rounded after being multiplied by the gray value of the maximum
level. The calculated result P is the gray value at the
corresponding pixel position (m, n), and the calculation
formula is as follows:

p(m, n) � round( x − xmin

xmax − xmin
× 255) (3)

Where, x represents the initial value of matrix elements, and
round represents the rounding. After the above calculation, high-
order cumulant images of acoustic signals can be obtained.
Different images represent different magnetic fluid seal states,
which can be identified as input of the VGG16 convolutional
neural network.

2.2 VGG16 Convolutional Neural Network
2.2.1 Convolutional Neural Network
Convolutional Neural Networks (CNN), a feedforward Neural
network, are widely used in image recognition, text recognition,
and speech recognition. Typical CNN is mainly composed of an
input layer, convolution layer, activation function, pooling layer,
full connection layer, and output layer, among which, the
convolution layer, pooling layer, and full connection layer are
relatively key components. The convolutional layer is mainly used
to extract the features of the input image, the pooling layer is
mainly used to reduce the size of the feature image, and the full
connection layer is mainly used to classify the feature vectors
obtained.
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Many excellent CNNmodels have evolved based on the classic
network structure of CNN, such as VGGNet, NIN, GoogLeNet,
and ResNet (Alzubaidi et al., 2021). VGGNet is mainly divided
into VGG16 and VGG19 according to different network layers.
All the convolution layers of VGGNet use the same small
convolution kernel (3 × 3), such connection mode makes the
number of network parameters smaller, and the use of a multi-
layer activation functionmakes the learning ability of the network
stronger. In the NIN model, multi-layer perceptron is used for
filtering operation, and global average pooling is introduced to
replace the last full connection layer, which effectively improves
the parameter inflation problem and nonlinear mapping ability of
the network model. The core of GoogLeNet is the Inception
structure. Inception Module uses multiple parallel and small
dense convolution and pooled connections. In addition, the
auxiliary classifier adopted by GoogLeNet solves the problem
of gradient disappearance. Resnet-50 was one of the first
networks to adopt batch regularization by designing deeper
network layers to improve network generation. These CNN
models gradually reduce the error rate of image classification
while improving the universality and robustness of the model. In
particular, VGG16, with its simplicity and practicability, has been
widely used in image classification. VGG16 model is used to
identify the seal states with the high-order cumulant images of
acoustic signals in this paper.

2.2.2 VGG16 Model
VGG16 is a CNN model capable of image recognition with high
accuracy. Proposed by the Visual Geometry Group of Oxford
University in 2014, VGG16 is an ideal choice for image
recognition problems of high-order cumulants with abstract
characteristics. The structure of the VGG16 model is very
regular, and the main components are the repeatedly stacked
convolutional layers and pooling layers, as well as the full
connection layer and output layer at the bottom of the model
(Simonyan and Zisserman, 2008). The convolution layer achieves
the purpose of extracting image features by convolution
operation in two ways: “local perception” and “parameter
sharing”. The convolution kernel size Fw,h of the convolution
operation is 3 × 3, the step size S is 1, and the effective filling size
P is 1. Then the size of the feature image output after l

convolution operation is Ml
w,h, and the calculation formula is

as follows:

Ml
w,h �

Ml−1
w,h − Fw,h − 2P

S
(4)

It can be found from the above formula that although the
convolution operation of this model increases the number of
channels, it does not change the size of the image. Therefore,
pooling is required after several convolutional operations. After
pooling, the size of feature images is reduced to half of the
original, which can greatly reduce the computing
requirements. The pooling method of this model is maximum
pooling. The size of the pooling box is 2 × 2 and the step size is 1.
ali,j represents the pixel value at position (i, j) on the feature map
of layer l, al′

i′,j′ represents the new eigenvalue at the corresponding
position, and Max pool(·) represents the maximum pooling
function. The calculation formula of the new eigenvalue is as
follows:

al′i′,j′ � Max pool(ali,j) (5)
The full connection layer and output layer at the bottom of the

model are responsible for sample classification (Liu et al., 2018).
Figure 2 shows the schematic diagram of the
VGG16 convolutional neural network. The input size of the
224 × 224×3 image enters the convolution layer, after two
convolution operations and the ReLU function, the size
becomes 224 × 224×64, and then a Max pooling layer is
connected. In this way, after repeatedly stacking convolutional
layers and pooling layers, three fully connected layers are
connected, and the probability distribution of sample
recognition is obtained by the softmax activation function.

3 EXPERIMENT RESEARCH

3.1 Signal Acquisition of Magnetic Fluid Seal
In this study, the signal acquisition experiment was carried out in
the State Key Laboratory of Tribology, Tsinghua University.
Taking the magnetic fluid seal as the research object, acoustic
emission nondestructive testing technology was used to collect

FIGURE 1 | Schematic diagram of high-order cumulant image transformation process in the magnetic fluid seal state.
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signals during the failure process of the magnetic fluid seal under
static conditions. Magnetic fluid seal mainly uses the response
characteristics of the magnetic fluid to the magnetic field. Under
the action of the magnetic field, the magnetic fluid filled the
magnetic loop, forming several liquid ring seals. These magnetic
fluid ring seals will remain well sealed under the action of the
magnetic field. However, when the external instability worsens,
the liquid film of some annular sealing rings will appear multiple
times of rupture and self-recovery, until each magnetic fluid
annular sealing ring flows at the same time, and the sealing ring
generates an air gap resulting in seal failure. Based on the failure
principle of the magnetic liquid seal, combined with the
application of acoustic emission in liquid film seal monitoring
and two-phase flow pattern identification (Zhang Y. et al., 2020),
this paper adopts acoustic emission nondestructive testing
technology to monitor magnetic liquid seal status. Figure 3 is
the schematic diagram of the magnetic fluid seal signal
acquisition experiment.

In this experiment, the magnetic fluid seal selected is a two-
stage pole shoe seal structure, each stage of the pole shoe is
distributed under 30 pole teeth, the distance between the pole
teeth is 0.1mm, and the distance between the magnetic liquid film
and the shell is about 25 mm. The acoustic signal acquisition
equipment is THE PICO acoustic emission sensor of PAC. Two

acoustic emission sensors are respectively glued to the ends of the
two pole boots of the seal, and the coupling agent is applied on the
contact surface to avoid acoustic signal loss between the sensor
plane and the rotating shaft surface. The acoustic emission sensor
transmits the collected acoustic signal through the preamplifier to
the AE-WIN software provided by PAC. The software records a
short acoustic emission wave with a specified sampling rate and
number of sampling points at specific time intervals, and the data
contained in each short acoustic wave are saved as a sample. In
this experiment, the short-time wave recording period is T_w =
1.3 m s, the sampling rate is F_S = 2MHz, and the sampling
number of each sample is N = 1,024. A total of 401,185 acoustic
signal samples were collected in the whole seal failure experiment.
The pressure signal was used as a reference for analysis, and
500 acoustic signal samples of no leakage, micro leakage, and
complete leakage in the magnetic fluid seal state were selected.

3.2 High-Order Cumulant Image of the
Magnetic Fluid Seal Signal
The collected one-dimensional acoustic signal samples are
processed by high-order cumulant image processing on
Matlab, and the third-order cumulants of the three kinds of
acoustic signal samples are calculated respectively. The maximum

FIGURE 2 | Schematic diagram of VGG16 convolutional neural network.

FIGURE 3 | Schematic diagram of magnetic fluid seal signal acquisition experiment. (A) Device of magnetic fluid seal signal acquisition experiment, (B) Principle of
magnetic fluid seal signal acquisition experiment.
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delay is 25 (−25≤ τ1, τ2 ≤ 25), and the delay is dimensionless.
After calculation, the third-order cumulant matrix was obtained,
which was normalized and mapped to obtain 500 grayscale
images of high-order cumulant representing the three sealing
states of no leak, micro leak, and complete leak. Figure 4 shows
the grayscale images of high-order cumulants in different
magnetic fluid seal states.

3.3 Recognition Based on VGG16 for
Magnetic Fluid Seal
In this section, the model was built based on python and the deep
learning framework Tensorflow2.6.0, and the software

environment was Pycharm. To verify the superiority of the
VGG16 convolutional neural network in the recognition of
magnetic fluid seal, other convolutional network models,
including NIN, GooLeNet, and ResNet50, are also used for
comparative experiments.

The experimental samples were high-order cumulant
grayscale images, including 500 samples in each of the three
sealed states: no leakage (NL), micro leakage (ML), and complete
leakage (CL). The three types of samples were randomly divided
into training and testing in a ratio of 4:1, i.e., 400 training samples
and 100 testing samples were included respectively. Among them,
the validation set is divided into the training set of each category
according to the ratio of 1: 9, which is used to evaluate the

FIGURE 4 | High-order cumulant grayscale images in different magnetic fluid seal states. (A) No Leakage, (B) Micro Leakage, (C) Complete Leakage.

FIGURE 5 | Confusion matrix charts of the seal state identification results obtained by different CNN models. (A) VGG16, (B) NIN, (C) GooLeNet, (D) ResNet50.
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accuracy of the current model after the completion of each epoch,
while the testing set is used for the final model evaluation.

After the samples were divided, they were input into four
convolutional neural network models (VGG16, NIN, GooLeNet,
and ResNet50) for training and testing. The gray image is
processed by multi-channel to adapt to the original image
input format of the model. The cross-entropy loss function
was adopted in the training process, the optimization
algorithm was Adam (Adaptive Moment), the learning rate
was set as 0.0001, and the confusion matrix was introduced to
visualize the testing results. Figure 5 is the comparison diagram
of the confusion matrix of the testing recognition results of
different CNN models.

In the confusion matrix, the row corresponds to the prediction
class, the column corresponds to the real class, the diagonal unit
corresponds to correct classification, and the non-diagonal unit
corresponds to wrong classification. The number is displayed in
each cell. It can be seen from the confusion matrix in Figure 5
that the four convolutional neural network models, VGG16, NIN,
GooLeNet, and ResNet50, all have good recognition effects on the
grayscale image samples in this experiment. To verify the
superiority of the VGG16 model in the recognition of
magnetic fluid seal status, evaluation indexes such as
Accuracy, which are commonly used in image recognition
tasks, are introduced for comparison, and the calculation
formula is as follows:

Accuracy � TP + TN
Total

(6)

Where, TP is True Positive, indicating the number of Positive
predictions. TN is True Negatives, which is the amount of
Negatives needed to predict correctly, and Total is the total
number of predicted samples. Accuracy can be used to
evaluate the classification results of the model, but it is not
always effective in some cases, such as the imbalance between
positive and negative samples. Therefore, it is necessary to
introduce Precision 、 Recall and F1 − Score.

Precision� TP
TP + FP

(7)

Recall � TP
TP + FN

(8)

F1 − Score� 2TP
2TP + FP + FN

(9)

Where, FP is Flase Positive, indicating the number of Positive
errors; FN is Flase Negatives to represent the number of Negatives
for misprediction. Precision refers to the ratio of true samples and
Recall refers to the ratio of true samples. F1 − Score can be used to
weigh the values of Precision and Recall. The larger F1 − Score is,
the more convincing the recognition effect of this model is. Table 1
shows the comparison table of the comprehensive evaluation of
experimental results of different CNN models.

It can be seen from the experimental results that the
VGG16 model has a recognition rate of 98.67%, which is
significantly higher than the NIN, GooLeNet, and
ResNet50 convolutional network models. In addition, the
comprehensive evaluation index of the VGG16 model for all
kinds of samples is above 97%, indicating that the model is
stable for the identification of samples with different magnetic
fluid seal states.

CONCLUSION

In this paper, a method based on a high-order cumulant image
and VGG16 convolution neural network is proposed to identify
the magnetic fluid seal state. The main innovations of this study
are as follows:

1) The signal acquisition experiment of magnetic fluid seal status
adopts the acoustic emission technology, which minimizes the
damage to the seals to the greatest extent and realizes the
nondestructive testing of the magnetic fluid seal components.

2) High-order cumulant image processing is carried out on the
acoustic signals collected in the experiment. One-dimensional
acoustic signals are transformed into two-dimensional high-
order cumulant images, which retain the original signal
characteristics to the maximum extent and suppress
Gaussian-colored noise.

3) The comparison experiment proves that the VGG16 model
can effectively recognize the high-order cumulant image of the
magnetic fluid seal state, providing a new method for the
recognition of the magnetic fluid seal state.

TABLE 1 | Comparison table of the comprehensive evaluation of experimental results of different CNN models.

Model State Precision (%) Recall (%) F1-score (%) Accuracy

VGG16 No Leakage 100 100 100 98.00% (294/300)
Micro Leakage 97 97 97
Complete Leakage 97 97 97

NIN No Leakage 100 100 100 94.67% (284/300)
Micro Leakage 100 83 91
Complete Leakage 87 100 93

GooLeNet No Leakage 100 99 100 87.00% (261/300)
Micro Leakage 70 100 83
Complete Leakage 100 64 78

ResNet50 No Leakage 100 99 100 86.67% (260/300)
Micro Leakage 97 95 96
Complete Leakage 95 98 97
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In the next step, based on the characteristics of magnetic fluid
seal status, the VGG16 convolutional neural network model will
be improved to further enhance the recognition accuracy of seal
status and the generalization of the model. In addition, the
universality of the identification method of magnetic fluid seal
status in this study can be explored and improved through
repeated experiments on seals with different structures and
working conditions.
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