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The increasing demands for metasurfaces have led researchers to seek effective inverse
design methods, which are counting on the developments in the optimization theory
and deep learning techniques. Early approaches of the inverse design based on deep
learning established a uniquemapping between the device’s geometry parameters and its
designated EM characteristics. However, the generated solution based on the traditional
inverse design method may not be applicable due to practical fabrication conditions.
The designers sometimes want to choose the most practical one from multiple schemes
which can all meet the requirements of the given EM indicators. A fuzzy inverse design
method is quite in demand. In this study, we proposed a fuzzy inverse design method
for metamaterial absorbers based on the generative adversarial network (GAN). As a
data-driven method, self-built data sets are constructed and trained by the GAN, which
contain the absorber’s design parameters and their corresponding spectral response.
After the training process is finished, it can generate multiple possible schemes which can
satisfy the customized absorptivity and frequency bands for absorbers. The parameters
generated by this model include structure sizes and impedance values, which indicates
that it has the ability to learn a variety of features. The effectiveness and robustness of
the proposed method have been verified by several examples for the design of both
narrowband and broadband metamaterial absorbers. Our work proves the feasibility of
using deep learning methods to break the limits of one-to-one mapping for the traditional
inverse design method. This method may have profound usage for more complex EM
device design problems in the future.

Keywords: inverse design, deep learning, metamaterial absorbers, data-driven method, generative adversarial
network

1 INTRODUCTION

Metamaterials are artificial materials that have the robust ability to manipulate the intrinsic
properties of EM waves, including frequency, polarization, and wavefront. The EM characteristics
of metamaterials rely on the pattern and order of the meta-atom (Cui, 2017). In the past few
decades,metamaterial-inspired devices, such as the frequency selective filter (Khan andEibert, 2018;
Zhang et al., 2021a), perfect absorber (Peng et al., 2019; Zhang et al., 2021b), holographic imaging
(Tsai et al., 2013;Wan et al., 2017), andmeta-lens (Pendry, 2000), have found variety of applications
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in academia and industries (Zhang et al., 2021c;Dong et al., 2022;
Wang et al., 2022). Among these applications, metamaterial
absorbers (MMA) have been realized in the spectrum ranging
from microwave to optics. According to its performance, the
MMAs can be classified as narrowband (Landy et al., 2008),
multi-band (Yahiaoui et al., 2013; Cheng et al., 2017), and
broadband types (Zhao and Cheng, 2016; Yahiaoui and
Ouslimani, 2017; Beeharry et al., 2018). Different unit cell
designs must guarantee perfect impedance matching at
the interface between air and the metamaterial. In other
words, the absorption property of the MMA counts on
the geometric shape and material composition of the
meta-atom.

With the help of commercial EM simulation software,
researchers are able to design the meta-atom using brute
force trial and error method (Arbabi et al., 2015; Jahani and
Jacob, 2016) or intelligent algorithm. It is quite obvious that the
brute force method is time consuming and inefficient. Thus,
intelligent algorithms have beenwidely utilized in the customized
design of metamaterials. Approaches to this problem can be
divided into two categories: the first is to directly optimize the
design parameters of the device with the optimization algorithm.
The second is to use deep learning (DL) as an alternative
to generate Maxwell’s equation solution (Khatib et al., 2021). A
machine learning-based model can be used to guide the design
progress. These optimization algorithms can be roughly divided
into gradient-based algorithms (Molesky et al., 2018) and non-
gradient-based algorithms.

Thegradient-based optimizationmethods, such as the steepest
gradient descent method and the quasi-Newtonian method, are
very convenient when the optimization goal can be represented
by specific mathematical analytic formula. Non–gradient-based
methods, such as genetic algorithms (Chen et al., 2008) and
particle swarm optimization algorithms (Liu et al., 2017), can
find local optimal solutions quickly in a large search space.
However, there are two drawbacks for these optimization
algorithms. First, the global optimal solution may not exist
for some optimization problems. Second, the generalization
performance of the optimization procedure is weak. It is still a
challenge to identify the optimal scheme under given objectives
and constraints.

Recently, deep learning has accomplished remarkable
achievements in computer vision, natural language processing,
drug synthesis, and robot control (Deng and Yu, 2014; Hatcher
and Yu, 2018). Merging AI (artificial intelligence) with the
automatic design of metamaterial appeals to researchers
(Qiu et al., 2019). The main models of deep learning are neural
networks and various other variants (Chen and Lin, 2014).
Because neural networks can approximate the nonlinear
relationship between metamaterial geometry parameters and
electromagnetic response, researchers anticipate that the
deep neural network can learn the complex electromagnetic
characteristics of metamaterial from trained data sets generated
by numerical simulations (Liu et al., 2018; An et al., 2019b). In
Itzik et al. (2018), researchers built a cascading neural network
which accepts horizontal polarized spectrum, vertical polarized
spectrum, and material properties as input for the design of

plasmonic metamaterial. It shows that neural networks can solve
the problem of multiple design indicators when performing
inverse design. In An et al. (2019a), researchers constructed two
deep neural networks that implement predictive and inverse
design functions separately. The predictive model accepts the
physical parameters as input and accurately predicts the real and
imaginary parts of the structure’s S parameters.The inversemodel
accepts both the amplitude and phase as inputs and produces the
meta-atoms’ parameters. Since the electromagnetic S parameters
have complex form, neural networks can process both real and
imaginary parts. In Sajedian et al. (2019), researchers utilized an
interactive learning approach where an agent made up of two
neural networks is trained to guide the model’s optimization at
each step. This agent is continuously learning and approaching
the goal.This method adopts a cumulative method of experience,
which greatly reduces the search space. The aforementioned
examples achieve the inverse design of metamaterials. Under a
given design goal, these deep learning models can quickly obtain
its solution. However, considering actual manufacturing, the AI-
generated schemes may not be applicable or practical. In this
case, the methods based on deep learning should provide the
researchers with multiple choices. Researchers may select the
appropriate design scheme, according to actual manufacturing
criteria. Therefore, inverse design should be a process that can
generate multiple design solutions on the basis of specific design
indicators.

In this study, a fuzzy inverse design method based on
the GAN (generative adversarial network) has been proposed
for a metamaterial absorber design. This model accepts the
starting frequency and bandwidth of the absorption band as
input (in this study, we defined the absorption band with an
absorptivity greater than 90%) and generates multiple schemes.
Then, the designers can select the most suitable one among all
the given solutions, according to practical needs. The numerical
experimental results show that all the generated schemes are not
in the training data set. They are also highly consistent with the
design indicators.This method provides a feasible way to achieve
multi-solutions in the inverse design ofmetamaterials.We believe
that this method is more suitable for practical engineering
applications. The arrangement of this study is as follows: the
second part introduces the parameter definition of MMA and
the pre-processing of the data set; the third part introduces
our GAN model; and the fourth part analyzes the experimental
results.

2 SCHEMATIC REPRESENTATION OF THE
MMA

In this study, we considered the inverse design process of a
resistive-film based absorber as an example to illustrate the
effectiveness of the proposed fussy design manner. Figure 1
exhibits the schematic representation of the proposed Jerusalem
cross absorber. This MMA contains five layers. The middle
substrate is composed of polymethacrylimide (PMI) foam, the
top and bottom of which are covered with two layers of
polyethylene terephthalate (PET) sheets. The relative dielectric
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FIGURE 1 | Schematic diagram of the Jerusalem cross absorber.

constant of PET is 3.2, and the tangent of the loss angle is 0.003.
The resistive film is deposited on the two outermost layers. The
period p is set as a constant at 12mm. The thickness of the
PET layer is confirmed at 0.175 mm. A complete set of design
parameters includes five geometric parameters and one material
parameter: the cross length L1, the width W1, the length L2, the
width W2, the thickness of the substrate Td,, and the surface
impedance R of the resistive film on the top surface. The bottom
layer is fixed at 10Ω/sq, which also performed parameter as the
ground of the absorber.

We used full wave simulators to build the dataset
with prior knowledge of the GAN model. The dataset
is composed of spectrum response between 4 ∼20 GHz.
The simulated S parameters are sampled at an interval of
0.5 GHz. The range of each design parameters is shown in
Table 1.

The absorptivity is calculated using the formula
A = 1− |S11|

2 − |S21|
2. The design parameters and the

corresponding absorption spectrum form a complete set. A
total of 22,500 pairs are in the self-built dataset. When building
the data set, we took full account of the spatial distribution
characteristics of design parameters to ensure that the data set
contains sufficiently diverse features. As a data-driven design
method, it is necessary to eliminate the unreasonable distribution
of data which may influence the experimental results. For design
parameters, the distribution of size parameters and surface
impedance is completely different. We took each parameter as a

TABLE 1 | Parameter distribution of absorbers.

Parameter name Minimum value Maximum value

W1/mm 3 3.5
W2/mm 0.5 1
L1/mm 9 10
L2/mm 4 5
Td/mm 1 10
R/Ω 50 140

unique feature of the MMA. If the numerical difference between
the different features is too large, it will interfere with the training
progress. Therefore, preprocessing the data is mandatory before
training the model. In order to achieve rapid convergence, we
defined a parameter transformation to restrict the parameters’
value within the range -1 to 1. The maximum value of a certain
feature is defined as Fmax; the minimum is defined as Fmin. The
feature before transformation is defined as F, and the new feature
is as f.The design parameters are transformed using the following
formula:

f = (
F − Fmin

Fmax − Fmin
− 0.5)× 2. (1)

The transformed features, regardless of the previous value
range, will be restricted between -1 and 1 without affecting
the probability distribution. The inverse transformation can be
performed as follows:

F =
f + 1
2
× (Fmax − Fmin) + Fmin. (2)

3 METHODS

TheGANconsists of two parts: the generatorG and discriminator
D (Mirza and Osindero, 2014). The whole design flow is shown
in Figure 2, which is divided into two stages: training and
design. In the training stage, the generator learns the physical
characteristics of its potential distribution from the data, and
the discriminator participates in the training of the generator.
First, the spectrum response in the data set is extracted for data
reduction processing. To expand the potential diversity, white
noise is introduced and stitched with the reduced-dimensional
spectrum as the input feature vector. Second, the input features
are fed into the generator, and the generator is trained under
the supervision of the discriminator. Third, the fake design
schemes by the generator are put into the discriminator together
with the real spectrum response in the data set. Finally, the
discriminator learns to judge the authenticity of themetamaterial
design parameters. These steps will be repeated throughout
the model’s training process. The entire training process is
illustrated in the blue area of Figure 2. After the training is
completed, the design stage is performed, following the steps
in the orange area of Figure 2. The inner parameters of the
generator are fixed and remain unchanged. The generator takes
the start/end frequency of the absorption band as input. It can
directly generate several design schemes that meet the design
requirements.

Before training the GAN, it is necessary to process the data
in conjunction with specific design tasks. For MMA design,
researchers generally pay more attention to the frequency bands
where the absorption efficiency is greater than 90%.The response
of the non-absorption band is out of consideration since it
is redundant information for neural network training. In the
data preprocessing phase, the absorptivity greater than 0.9 is
compulsively set to 1, while less than 0.9 is to 0. This step can
effectively remove small features and facilitate the training of
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FIGURE 2 | Schematic representation of the design flow.

our model. In this way, the transformed spectrums are treated
as labels, and the number of labels is greatly reduced. If the
transformed data are leveraged to directly train the generator,
this model cannot be converged. This is because the same label
may map out a variety of physical parameters, which means the
solutions are not unique.Thus, the tail of the input vector consists
of spliced pieces of noise ranging from 0 to 1. Due to the disorder
and diversity of noise, the diversity of input vectors will be greatly
increased.

The generator and discriminator are composed of multi-layer
perceptual neural networks. The generator contains eight layers,
where the number of neurons in each layer is 50, 100, 100,
100, 100, 50, 10, and 6. The total neurons in the middle layers
are activated by the LeakReLU function, as shown in Eq. 3.
This activation function solves the problem of the vanishing

gradient during the training progress compared with the sigmoid
activation function. On the other hand, the LeakReLU function
makes training progress more stable.

LeakReLU (x) = {x if x ≥ 0,
0.2x if x < 0, (3)

The discriminator consists of eight layers, and the neurons in
each layer are 6, 20, 50, 50, 50, 20, 5, and 1. The hidden layers
are also activated by the LeakReLU function, while the output
is activated by the sigmoid function, as shown in Eq. 4. The
sigmoid function forces the output to be compressed between
0 and 1, which represents the authenticity of the discriminator’s
judgment.

Sigmoid (x) = 1
1+ e−x
. (4)

FIGURE 3 | Schematic diagram of the entire training process. (A) indicates the pre-training progress. (B) represents the entire training progress.
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FIGURE 4 | Schematic diagram of a narrowband customized design. (A) The simulated results of the designed absorber under 5∼9 GHz. (B) The simulated results
of the designed absorber under 6∼14 GHz. (C) The simulated results of the designed absorber under 5.5∼12 GHz. (D) The simulated results of the designed
absorber under 9∼12 GHz.

FIGURE 5 | Schematic diagram of partial results at 5.5 ∼12 GHz. The horizontal axis represents the design scheme number, and the vertical axis is the specific
parameters of each design scheme. (A) The designed results of W1. (B) The designed results of L1. (C) The designed results of W2. (D) The designed results of L2.
(E) The designed results of R. (F) The designed results of Td.
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FIGURE 6 | Schematic diagram of partial results under the 8 ∼20 GHz customized design. (A) The designed results of W1. (B) The designed results of L1. (C) The
designed results of W2. (D) The designed results of L2. (E) The designed results of R. (F) The designed results of Td.

FIGURE 7 | Schematic diagram of the absorption rate at 1 ∼29 GHz. (A) is under TE polarization at incident angles from 0 to 40. (B) is under TM polarization at
incident angles from 0 to 40.

m is the batch size, which means the amount of data that
are simultaneously fed into the model. Each hidden layer of
the generator and discriminator is also connected to the batch
normalization layer. As can be seen from Eq. 5, for the loss
function of the discriminator, the discriminatorwill try to expand
the positive judgment of the realsamples in the data set and
improve the negative judgment of the fake schemes generated
by the generator. From Eq. 6, the generator tries to make its
generated numerical distribution close to the discriminatory
boundary under the constraints of the discriminator. In the
process of continuously optimizing the twomodels, the loss value
of the discriminator will enter a dynamic equilibrium.

Loss (Dis) = 1
m

m

∑
i=1
[log(Dis(xi ∣ yi)) + log(1−Dis(Gen(zi ∣ yi)))] ,

(5)

Loss (Gen) = 1
m

m

∑
i=1

log(1−Dis(Gen(zi ∣ yi))) . (6)

In order to prevent direct divergence during GAN training,
before training the generator, the discriminator needs to be
trained first. A certain number of iterations of positive sample
training for the discriminator are performed. This makes it
possible for the discriminator to give a preliminary judgment
on the generated data by the generator during the alternate
training stage. In this manner, the whole training process is
more stable. Once the model is built, the process of training
the model transforms into an optimization process aimed at
minimizing the loss function. The total problem becomes an
optimization problem. With the help of optimization tools,
adjusting the model parameters causes the values of loss function
to drop in the direction of gradient decline, and finally the

Frontiers in Materials | www.frontiersin.org 6 July 2022 | Volume 9 | Article 926094

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Lin et al. Inverse Design of Metamaterial Absorbers

FIGURE 8 | Schematic diagram of the electric field distribution on the surface under TE polarization. (A) Frequency at 23 GHz. (B) Frequency at 10 GHz.

model parameters converge to the global optimal solution. SGD
(stochastic gradient descent) is selected as the optimizedmethod,
and the learning rate is set to 0.00005. Excessive learning
rates may cause models to diverge directly and crash. In the
training process, after the generator is trained every five times,
the generator is trained again. The entire flow is showed in
Figure 3.

4 RESULTS AND DISCUSSION

After the model is trained completely, all the parameters in the
GAN model are decided. First, we used this model to fulfill the
design of narrowband absorbers. We separately chose 5 ∼9 GHz,
6 ∼14 GHz, 5.5 ∼12 GHz, and 9 ∼12 GHz as targets, which
are fed into the generator along with different noise signals.
For each target, the generator can generate several solutions,
which do not appear in the training set. Some of these results
do not differ much. Then we utilized full wave simulation to
validate whether these solutions can meet the design targets.
The simulated results are shown in Figure 4. Obviously, the
absorption spectra generally satisfy the requirements.The design
result is not unique under the same design indicator. In Figure 5,
we tried to illustrate the difference between the solutions, which
has an absorption band of 5.5 ∼12 GHz. None of the design
schemes appeared in the training data set, which indicates that
the GAN has learned to design absorbers from the data set. From
the results, although the absorption spectrum in 5.5 ∼12 GHz is
similar, some of the design parameters vary greatly, especially for
surface impedance R and thickness Td. This is reasonable since R
depends on film impedance andTd represents the thickness of the
MMA, which are precisely the two most important parameters
in metamaterial design. However, the width W1 seems to make
little difference. It is speculated that W1 may have little effect on
the absorption performance of the absorber. As a fuzzy design
method, the purpose of designing a variety of design schemes

according to the design indicators has been achieved, and these
results prove the effectiveness of this design method.

Second, this model is used for broadband absorber design.
After the model training is finished, broadband design indicators
combined with noises are fed into the generator. Since the
absorption performance is restricted by the fixed pattern of the
meta-atom, the fussy design method can be used to explore
the ultimate capability of a designated pattern. Thus, although
design indicators can be set arbitrarily, the generator does not
necessarily generate a solution that fully meets the requirements.
This also proves that it is not an easy task for broadband
absorber design. However, we still need to find an ultra-
broadband solution. We considered 8 ∼20 GHz as the input
indicators, and the results of the design parameters are exhibited
in Figure 6. From the results, W1 and L1 are not much different.
W1 basically tends to around 3.3mm, and the L1 tends to around
9.6 mm. For broadband absorbers, not every design parameter
varies greatly. L2 and W2 have certain differences. The surface
impedance R and thickness Td still vary greatly. For this type of
absorber, thickness and surface impedance are often important
physical parameters that have a great impact on the function.
This is consistent with the resonance loss mechanism of the
absorber.

From all the inverse design solutions, design parameters
are generally distributed around W1 = 3.3mm, L1 = 9.6mm,
W2 = 0.85mm, L2 = 4.3mm, r = 85Ω, and Td = 4mm. These
parameter sets also never appear in the training data set, which
proves that the GAN can effectively learn various features from
the original data set. The electromagnetic simulation of this
structure is performed again in the range of 1 ∼29 GHz using
microwave studio software. Moreover, Figures 7A,B show the
absorption properties of the designed structure under TE andTM
polarization for different incident angles. Under TE polarization,
the absorptivity decreases with the increase in the incident angle.
When the incident angle is less than 40°, the absorptivity is still
above 85%. Similarly, under TM polarization, the absorption
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bandwidth is small with the increase in the incident angle.
When the incident angle is less than 40°, the absorptivity is still
above 90%. Therefore, the designed absorber has good angular
stability.

According to the absorption curves in Figure 7, it has two
absorption peaks at 10 and 23 GHz. In order to better analyze its
absorptionmechanism,we observed the electric field distribution
of the designed absorber. As shown in Figure 8A, the red
area shows the strongest electric field strength, which indicates
that resonance occurs mainly in the regions at both ends of
the cross structure in the high-frequency range. As shown in
Figure 8B, the red area shows that resonance occurs in the
middle regions of the cross structure in the low-frequency
range.

5 CONCLUSION

In conclusion, a fussy design method is proposed for the
inverse design of a metamaterial absorber based on a generative
adversarial model. This method can be used to design
narrowband and broadband absorbers, according to customized
design indicators. It accepts the absorption bandwidth and
noise signal as inputs and efficiently generates multiple design
schemes as outputs. Researchers can choose a suitable design
scheme based on actual needs. The leverage of noise parameters
can effectively solve the problem of non-unique solutions
in the inverse design progress of metamaterials. Moreover,
the distribution of various design parameters generated by
the GAN can also show the importance of each parameter
on the performance of the device. Compared with ordinary
neural networks that can only achieve one-to-one mapping, the
GAN can achieve one-to-many mapping. Compared with the
traditional optimization method, this model converges easily,
and it is easy to find solutions that meet the requirements. From
the experimental results, the GAN can effectively capture the

characteristics of the absorption spectrum in the data set. In
order to get a broadband design scheme, the GAN seems to
combine different features to form a broadband absorption
solution, which never appears in the data set. In our future
work, we will focus on more polarization-sensitive devices and
more complex structures of the unit cell. No longer limited to a
single function, we will try to explore in the direction of multi-
function–assisted active metasurfaces. We envisioned that this
method can be applied to the design of digital programmable
metasurfaces.
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