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Dissolution of silicate-basedmaterials is important to many natural processes and engineering
applications, including cement and concrete production. Here, we present a data-driven study
to predict the dissolution rates of crystalline silica (i.e., quartz) in near-neutral and alkaline
environments.We present a quartz dissolution database containing both dissolution rates and
five major dissolution conditions (i.e., temperature, pressure, pH at the experimental
temperature T (pHT), and the sodium and alumina content in the solution) via data mining
from the literature. We supplement the database with experimental data of quartz dissolution
rate in sodium hydroxide solutions (0–5M) at different target temperatures (25–90°C), which
are significantly less covered by the existing literature. We build two data-driven models
(i.e., random forest (RF) and artificial neural network (ANN)) to predict the dissolution rate of
quartz (i.e., output target) as a function of dissolution conditions (i.e., input features). The results
show that both RF and ANN models exhibit high predictive capability, with R2 values of
0.97–0.98, MAPEs of 2.95–4.24% and RMSEs of ~0.31–0.44 log (mole/m2/s) for the test set.
These prediction errors are much smaller than linear regression models (RMSE of ~1.25 log)
also presented here and comparable with those achieved in previous studies using reaction
models based on a smaller and less complex dataset (RMSE of ~0.35–0.44 log). We further
evaluate the interpretability and performance of the data-driven models, and the results show
that the model predictions are generally consistent with literature observations, including the
different impacts of input features on dissolution rate. In particular, the ANNmodel appears to
exhibit a certain level of ability to extrapolate, i.e., making predictions in feature space not
covered in the database.

Keywords: quartz dissolution, machine learning - ML, data mining, batch dissolution experiments, ANN - artificial
neural networks, radom forest

1 INTRODUCTION

As the most abundant free oxide on earth, silica and its polymorphs (e.g., crystalline quartz and
amorphous silica) have been extensively used or studied in many different fields, including
geochemistry, earth science, and concrete materials. The thermodynamically stable polymorph
quartz is estimated to account for ~20% of the continental crust (Nesbitt and Young, 1984), and this
abundance renders the dissolution of quartz and the subsequent precipitation significant
components of the global geochemical circle. Hence, the dissolution kinetics of quartz have been
studied over a wide range of pH (~0–12), temperature (~25–300°C), and solution chemistry (Dove,
1994; Bickmore et al., 2006; Bickmore et al., 2008).
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Furthermore, quartz is a major mineral phase in siliceous
aggregates (sand in particular), which have been extensively used
in construction, with an estimated global usage of 3.2 Gt/year in
2020 and 4.5 Gt/year by 2060 (Zhong et al., 2022). Despite this
large quantity of usage, there are few studies on the quantitative
dissolution kinetics of quartz (and other forms of silica) in
concrete environments, where the pH is generally higher than
~13. Although quartz is often considered as an inert filler in
concrete, the dissolution of sand aggregate and its impact on
concrete chemistry and properties could be nonnegligible in the
long term (Diamond, 1976). This is especially the case for
concrete based on alkali-activated materials (AAM), where
concentrated alkaline activating solutions (with pH often
above ~14) and elevated temperature curing can significantly
accelerate the dissolution of quartz (and sand aggregate). As
postulated in an early study on alkali-activated slag (AAS)
mortars, this accelerated dissolution of quartz in a NaOH
solution (~3 M) increases the surface roughness of quartz and
the formation of products at the quartz-paste interface, leading to
no apparent weak interfacial transition zone (ITZ)) (Shi and Xie,
1998). Subsequent studies confirmed that the AAS-based mortar
and concrete exhibited denser ITZ or no apparent ITZ compared
with Portland cement (PC)-based systems (Shi and Xie, 1998; Lee
and van Deventer, 2004; San Nicolas and Provis, 2015; Fang and
Zhang, 2020), which is expected to improve the mechanical and
transport properties of the resulting AAS-based concretes (San
Nicolas and Provis, 2015).

On the other hand, the dissolution of siliceous aggregate in
high alkalinity environments could lead to alkali-silica reaction
(ASR) (Diamond, 1976; Broekmans, 2004), a major durability
issue causing deleterious expansion and cracking of concrete
materials and structure. The risk of ASR increases when the
aggregate used contains reactive siliceous phases, which include
amorphous silica, cristobalite, and microcrystalline or
cryptocrystalline quartz (e.g., flint and chalcedony) (Diamond,
1976; Alaejos and Lanza, 2012; Du and Tan, 2014; Rajabipour
et al., 2015). These reactive phases exhibit faster dissolution in
concrete than the more thermodynamically stable quartz,
accelerating the provision of dissolved silica species for
deleterious ASR (Diamond, 1976). Studies have shown that
radiation-induced transformation of crystalline quartz to
distorted amorphous silica significantly accelerates its
dissolution rate (Ichikawa and Koizumi, 2002; Pignatelli et al.,
2016), and this increased aggregate reactivity promotes ASR,
contributing to the deleterious expansion of concrete materials
surrounding nuclear facilities (Rosseel et al., 2016). Fine
amorphous silica fume (~0.1–0.3 µm) is highly reactive in
concrete and has been widely used as a supplementary
cementitious material (SCM) to make high strength concrete;
interestingly, well-dispersed amorphous silica fume was shown to
suppress ASR (Hooton, 1993), whereas agglomerated silica fume
can lead to severe ASR depending on the agglomerate size (Maas
et al., 2007).

This presence of a “pessimum” size effect (i.e., maximum ASR
at some intermediate particle size) has been observed for many
reactive aggregates, where different hypotheses or models have
been proposed to explain this effect (Rajabipour et al., 2015). It is

interesting that the “pessimum” size with maximum ASR
potential was found to vary considerably depending on the
type of aggregate (from 0.18 to 0.6 mm for siliceous
magnesian limestone (Stanton, 2008) to 4–8 mm for mixed-
mineralogy alpine aggregate (Dunant and Scrivener, 2012))
(Rajabipour et al., 2015). There is also a “pessimum” effect on
the content of reactive phases for some aggregates, which has
been attributed to a specific ratio of reactive silica/available alkalis
(e.g., ~6) (Rajabipour et al., 2015). These “pessimum” effects may
be partially related to the dissolution kinetics of different
aggregates (e.g., dissolved Si in molar per second) or the
amount of dissolved silica species after a specific period of
time, which are influenced by particle size (area of reactive
surface), mineralogy, and amount of reactive sites (Rajabipour
et al., 2015).

Since the overall rate of ASR is largely dependent on the rate of
silica dissolution in pore solution (Rajabipour et al., 2015), there
is a strong need to study the dissolution kinetics of different silica
polymorphs in alkaline environments relevant to concrete
materials. However, as stated in this recent review article
(Rajabipour et al., 2015), “literature on this subject is limited
and significant knowledge gaps exist with respect to quantifying
the dissolution rate as a function of aggregate composition,
mineralogy, and surface properties, pore solution composition,
temperature, and pressure”. Most existing studies on the
dissolution kinetics of silica polymorph (e.g., quartz and
amorphous silica) come from the fields of geochemistry and
earth science (Dove, 1994), with only a few exceptions from the
cement and concrete field (Snellings, 2013; Pignatelli et al., 2016;
Bagheri et al., 2022). For example, as mentioned earlier, most of
these studies (Dove, 1994) focus on pH < 12, and there are
significantly fewer dissolution rate data for quartz (and its
polymorph) at pH > ~13, which is more relevant to concrete,
especially for AAM-based concrete.

Given the importance of silica dissolution kinetics and the
research gap mentioned above for the cement and concrete
community, this article builds data-driven machine learning
(ML) models that allow us to predict the dissolution rates of
quartz in near-neutral and alkaline environments. We build a
quartz dissolution rate database containing 597 measurements
across a wide range of dissolution conditions via data mining
from the literature. We supplement the mined database by
collecting quartz dissolution rate data in NaOH solutions
(0–5 M) at different temperatures (~26–85°C). We build
random forest (RF) and single-layer artificial neural network
(ANN) models to predict quartz dissolution rate (i.e., output
target), in comparison with linear regression (LR) models, as a
function of five dissolution conditions (i.e., input features):
temperature, pressure, pHT (i.e., pH at the measurement
temperature T), and the content of alkali (i.e., Na+) and
alumina species in the dissolving solution.

Finally, we evaluated the interpretability and reliability of these
data-driven models (e.g., impact of different input features on
quartz dissolution rate and apparent activation energies) using a
SHapley Additive exPlanations (SHAP) technique and feature
exploration. The high prediction accuracy of these ML models,
along with their ability to improve once more data in unexplored
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feature space is collected and fed into the models, illustrate the
value of using a data-driven approach for the prediction of
mineral and glass dissolution.

2 DATA AND METHODS

2.1 Data Curation
We extracted 597 dissolution rate measurements for quartz in the
near-neutral or alkaline environments from ~30 literature studies
(Schwartzentruber et al., 1987; Dove and Elston, 1992; Berger
et al., 1994; Dove, 1994; Knauss and Copenhaver, 1995; Worley
et al., 1996; Dove and Nix, 1997; Dove, 1999; Bickmore et al.,
2006; Mitra, 2008; Davis et al., 2011; Choi et al., 2013; Choi et al.,
2015; Zhang et al., 2015), where part of the data has been
compiled and analyzed previously in refs. (Dove and Elston,
1992; Dove, 1994; Bickmore et al., 2008; Rimstidt, 2015;
Heřmanská et al., 2022). This database, as given in
Supplementary Material A, represents the largest compilation
of quartz dissolution rates, to the best of our knowledge. The
histograms and statistics of the dissolution rate data, along with
five dissolution conditions (i.e., temperature, pressure, pHT, and
Na and Al content), are shown in Supplementary Figure S1 and
Table S1, respectively. These five dissolution conditions are
included in the database mainly because of three
considerations, i.e., 1) their respective impact on quartz
dissolution has been well documented (Worley, 1994), 2) they
are relevant to quartz dissolution in concrete materials, and 3)
their relative abundancy in data availability. Other factors that
have been shown to also impact quartz dissolution kinetics
include 1) the type of reactor (e.g., batch vs. mixed flow
reactor) (Dove and Crerar, 1990), 2) the type of cations and
anions in the solution (Bennett, 1991; Dove and Nix, 1997), 3)
flow rates in the case of flow reactor (Worley et al., 1996), 4) the
extent of undersaturation (Dove et al., 2008), and 5) particle size
(Diedrich et al., 2012). These factors are not considered in the
current database mainly due to insufficient and missing data
(i.e., not reported in the original studies) and/or their relatively
mild influence on quartz dissolution rate. Although particle size
was not used as an input feature, its impact on quartz dissolution
rate has been taken into account by normalizing the rate data
using the surface area of the quartz particle (rate in the unit of
mole/m2/s), which is a common practice in the literature. In this
study, the Brunauer–Emmett–Teller (BET) surface areas from N2

sorption experiments have been used. We note that pHT

represents the pH at the temperature T at which the
dissolution experiments were performed. This pHT at a high
temperature can be very different from pH measured at room
temperature, especially in alkaline solutions (Dove, 1994).
Furthermore, the addition of fluoride in the dissolution
solution has been shown to significantly impact quartz
dissolution (Liang and Readey, 1987; Mitra, 2008); however, it
is not relevant to cementitious materials and hence not included
in the current database as well.

Next, we plot the quartz dissolution rate as a function of the
five dissolution conditions in Figure 1 to illustrate their
relationship in the database. Figure 1, along with

Supplementary Figure S1 and Table S1, show that the
database covers a wide range of dissolution rates (~10−4 to
~10−14 mol/m2/s), temperature (~20–450°C) and pHT (~4–13),
and to a lesser extent, sodium content (~0–4 M). For the other
two factors (i.e., dissolved alumina content (~0–10 mM) and
pressure (~0.1–200 MPa)), there is significantly fewer data in
the database (i.e., most of the measurements were performed at
atmospheric pressure (0.1 MPa) and in solutions without any
dissolved alumina additives). It is clear from Figure 1 that
temperature has the most obvious impact on quartz
dissolution, with a higher temperature generally leading to a
higher dissolution rate, which is expected. In contrast, the
correlations between the dissolution rate and the other four
variables (i.e., pressure, pHT, and alumina and sodium
content) are not evident in Figure 1. Nevertheless, the fact
that the measured dissolution rate varies by ~3-8 orders of
magnitude at a given temperature (Figure 1C) illustrates that
the other four variables also have large impacts on quartz
dissolution. It is also clear from Figure 1 that there is
significantly less quartz dissolution rate data at pHT >
~12–13 in the literature, yet they are highly relevant to
modern cement and concrete, especially those based on
AAMs. Hence, in this study, we have collected experimental
quartz dissolution data in pHT > ~12 alkaline solutions to
complement the mined database.

2.2 Dissolution Experiments
Here, dissolution experiments were performed on fine quartz
particles in sodium hydroxide (NaOH) solutions using a batch
reactor. The quartz sample used is Quartz-Chalcedony purchased
from Ward’s Science, with their chemical composition
(determined using scanning electron microscopy with energy
dispersive X-ray analysis (SEM-EDX)) and mineralogical
composition (determined using X-ray diffraction (XRD))
shown in Supplementary Figures S2 and S3, respectively. The
XRD data in Supplementary Figures S2 were collected using
high-speed Bragg-Brentano optics on a PANalytical X’Pert Pro
MPD operated at 45 kV and 40 mA. HighScore Plus software was
used for quantitative XRD using Rietveld analysis. For SEM-EDX,
quartz powders were packed onto carbon tape and imaged on a
Zeiss Merlin equipped with an EDAX detector and energy-
dispersive X-ray spectrometer. Both the SEM-EDX and XRD
data show that the samples used here are predominantly
crystalline quartz.

The quartz samples were first ground and then sieved through
mesh sizes of 45–150 μm in diameter. To remove fine residues on
particle surface, the powdered quartz samples have been placed
into a beaker with isopropyl alcohol and ultrasonically cleaned for
7–8 min. The samples were dried in a furnace at 80–90°C for
>12 h and cooled to room temperature before incorporating them
into batch reactors for dissolution experiments. The resulting
powder has a BET surface area of 1.722 m2/g, as measured using
N2 sorption with a Micromeritics ASAP202 instrument. The
particle size distribution of the quartz sample has been
determined using a Beckman Coulter LS I3 320 Laser
Diffraction Particle Size Analyzer, with the result presented in
Supplementary Figure S4.
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The dissolution experiments were performed in batch systems
using 400 ml of NaOH solutions (in 500 ml plastic bottle) of
varying concentrations (0–5 M (mole Na+/L)). The NaOH
solutions were prepared by dissolved NaOH pellets in
deionized water. For each batch experiment, 0.04–0.4 g of

quartz powders were added to each bottle of solution to begin
dissolution. This gives a liquid-to-solid ratio of 1,000–10,000,
which is sufficiently high to ensure that all dissolution
experiments are carried out at far-from-equilibrium
conditions. To study the effects of temperature on quartz
dissolution rates, separate batch systems were conducted at
targeted temperature of 25°C, 50°C, and 90°C—where samples
were stored in the open lab environment and inside furnaces fixed
at 50 and 90°C, respectively. To study the effects of additional
sodium ions (Na+) on dissolution rates, varying amounts of
sodium chloride (NaCl, ≥99.0% ACS, VWR Chemicals BDH)
were added to 1 MNaOH solutions for dissolution experiments at
a targeted 50°C, resulting in solvents with Na+ concentrations of
1.0, 1.5, 2.0, and 2.5 M. The constituent information for all the
dissolution experiments is summarized in Table 1.

At designated time intervals, a 15 ml sample was taken out per
solution using syringes capped with filters (0.2 µm) to prevent any
further dissolution of powders once samples were removed from
the batch system. The drawn sample was then distributed equally
(5 ml) to three separate test tubes for three independent
measurements, which allows measurement uncertainty to be
estimated. Each solution was then immediately replenished
with 15 ml of the original solution to keep the solid to liquid
ratio constant throughout the experiment. No stirring or mixing
of the solutions in the batch systems was conducted. After a
plateau was reached with the silicon concentration, the collection
of solutions was stopped.

The Si concentration in each sampled solution was determined
using an Agilent 5,100 Vertical Dual View ICP-OES with an
autosampler. Standards for calibration were prepared by diluting
the standard solution –1,000 mg/L Si in H2O (Elemental
Scientific, Omaha, NE). Solution pHs were measured using a

FIGURE 1 | The relationship between the log dissolution rate of quartz (in mole/m2/s, based on Brunauer–Emmett–Teller (BET) surface area of quartz particles) and
the five dissolution conditions (A) Na + content (in mole/L (M)), (B) pHT, (C) temperature T (in °C), (D) Al content (in mM), and (E) pressure (in MPa) in the mined database
(as given in Supplementary Material A).

TABLE 1 | Summary of the constituent information for all the batch dissolution
experiments that have been performed here. The quartz powder used has a
BET surface area of 1.722 m2/g. Note that the target temperature is slightly
different from the actual experimental temperatures which have been measured
and given in Table 2.

Sample
#

Quartz
Powder

(g)

NaOH
(g)

NaCl
(g)

Target
Temperature

(°C)

Solution
Volume
(ml)

1 0.04 0 0 25 400
2 0.04 1.6 0 25 400
3 0.04 8 0 25 400
4 0.04 16 0 25 400
5 0.04 0 0 50 400
6 0.04 1.6 0 50 400
7 0.04 8 0 50 400
8 0.04 16 0 50 400
9 0.04 0 0 90 400
10 0.04 1.6 0 90 400
11 0.04 8 0 90 400
12 0.04 16 0 90 400
13 0.04 16 11.69 50 400
14 0.04 16 23.38 50 400
15 0.04 16 35.06 50 400
16 0.4 0 0 25 400
17 0.4 0.16 0 25 400
18 0.4 1.6 0 25 400
19 0.4 16 0 25 400
20 0.4 80 0 25 400
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Thermo Orion Ag/AgCl combination triode with an Automatic
Thermal Correction probe stored in KCl solution. Based on the
evolution of Si concentration in the dissolving solutions, we then
determined the early-stage steady-state and far-from-equilibrium
dissolution rate of quartz using Eq. 1:

Rsi (mol
m2

s
) � ΔCSi

Δt
Vsoln

ABETmfsi
(1)

where Rsi (mol/m2/s) is the dissolution rate based on silicon
concentration, ΔCSi (mol/L) is the change in silicon
concentration over a time interval Δt (s), Vsoln (L) is the
volume of the solution, ABET (m2/g) is the BET specific
surface area of the samples, m ( g) is the mass of the sample
used, and fsi is the stoichiometry of silicon in the sample which is
accepted as one.

The maximum and minimum rates of dissolution was
calculated from the mean difference between the maximum
silicon concentrations and the minimum silicon
concentrations of each time point. The error is higher for the
samples with a slower dissolution rate due to the proximity of the
dissolved silicon concentration during the experiments to the
measurement limit of the ICP-OES used.

2.3 Data-Driven Modeling
Empirical rate equations based on reaction models have been
used previously to model the dissolution rates of quartz as a
function of temperature, pHT and Na content (Bickmore et al.,
2008; Rimstidt, 2015). Here, we have built two data-driven ML
models (i.e., RF and single layer ANN) based on the database
presented in Section 2.1 and additional data collected here for
predicting the dissolution rate of quartz (i.e., output target) as a
function of the five dissolution conditions (i.e., input features)
shown in Figure 1. Compared with conventional reaction
models, data-driven ML models have the advantage of
capturing complex relationships or hidden trends between
many input features and output targets, which are often not
visually evident, as illustrated in Figure 1. However, due to the
relatively small dataset used here, care is needed to build robust
ML models. Next, we briefly describe the theoretical background
of the RF and ANN models and the procedures used here to
construct the models, with more details given in Supplementary
Material B.

2.3.1 Random Forest Regression
RF, developed by Breiman (Breiman, 2001), is a widely used ML
technique based on an ensemble of decision trees, which can be
used for both classification and regression problems. A decision
tree is a “rule-based” model which works by splitting the source
data (root node) into a series of partitions (leaf node) based on a
set of splitting rules (usually selected to minimize error). Different
from a single decision tree method, the RF method uses a
bootstrap aggregating (or bagging) technique to generate an
ensemble of trees (creating a forest), with each tree
constituting a randomly sampled subset of the training data
(as opposed to all the training data). Another distinction is

that the RF method randomly selects a subset of input features
(as opposed to all the input features) at each node of the tree,
which reduces the correlation between the trees in the forest. The
output predictions (i.e., the dissolution rate of quartz in this case)
produced by all the trees are then averaged to generate the final
prediction of the RF model. The RF method has been shown to
both reduce over-fitting and generalization error and improve the
accuracy of prediction compared with other “rule-based” models
(Bryll et al., 2003; John Lu, 2010; Altman and Krzywinski, 2017).

We started the model construction by performing a shuffled
and stratified split (as opposed to a random training-testing split)
of the combined database (i.e., data is sorted and binned into ten
equally spaced ranges based on its dissolution rate values) into a
training and a testing set, accounting for 85 and 15% of the data,
respectively. Compared with a random training-testing split, a
stratified training-testing split ensures the distribution of the
sampled training data is representative of the whole dataset,
which has been shown to be important for small dataset (Song
et al., 2021). We then used the training set (with 521
measurements) to train the RF model to learn the correlations
between the prediction target (i.e., dissolution rate) and the five
input features.

Due to the importance of hyperparameters to the performance
of MLmodeling, we performed a grid search with a stratified five-
fold cross-validation on the training set to optimize the
hyperparameters. Specifically, the training set has been
partitioned into five equally sized folds, where we used four
folds of the data for training while the remaining fold for
validation at each training-validation iteration. Based on the
average score values of validation, the optimal combination of
hyperparameters was determined (i.e., with the highest average
score). For the RF model, we have optimized three important
hyperparameters, i.e., 1) the number of features to consider at
each split (max_features), 2) the minimum number of samples at
a leaf node (min_samples_leaf), and 3) the number of trees
(n_estimators). For all other hyperparameters, we used default
values in scikit-learn (Pedregosa et al., 2011), unless specified
otherwise. We then evaluated the ability of the RF model (based
on the optimized hyperparameters) to make predictions on the
testing set (92 measurements), which has not been exposed to the
training-validation process. To evaluate the performance of the
RF models, we have calculated three different error metrics,
namely, 1) coefficient of the determinant (R2), 2) root mean
square error (RMSE), and 3) mean absolute percentage error
(MAPE). Details on the calculation of these error metrics are
given in Supplementary Material B. To improve the robustness
of the model prediction, we repeated the whole process twenty
times, each using a different random state during the initial
training-testing split of data. This generates twenty
independently trained models, enabling the prediction
uncertainties to be estimated.

2.3.2 Artificial Neural Network
ANN is a mathematic model that is capable of predicting complex
input-output relationships based on a collection of connected
nodes called artificial neurons. These artificial neurons are
arranged in hierarchical layers, with each neuron serving as a
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computational unit that takes input information from the
previous layer and passes the processed information to the
neurons in the subsequent layer. As a result, raw information
from the input layer propagates through the neurons in the
hidden layer in between all the way to the final output layer,
where a prediction is made. Mathematically, each artificial
neuron can be described using Eq. 2 below:

y(k) � F⎛⎝∑m

i�0wi(k) . xi(k) + b⎞⎠ (2)

where, y(k) is output value from each neuron at a discrete
time k, xi(k) is the ith input value at the discrete time k from the
neurons in the previous layer, wi(k) and b are the weight value
and bias, respectively, applied to the input values, and F is a
transfer function (also known as the activation function) that
transforms the weighted sum of the inputs features to the output
target.

The transfer function is critical to the performance of ANN,
and here we adopt the rectified linear activation unit (ReLU)
(i.e., F(X) � max(0, X)), which is the default recommendation in
modern ANN (Goodfellow et al., 2016). The number of hidden
layers and number of neurons in each hidden layer is also
important because a large number of hidden layers and
neurons lead to overfitting and hence lowers the model’s
ability to generalize. According to Heaton (Heaton, 2008), one
hidden layer is generally sufficient for most problems, and ANN
with more than two hidden layers has no theoretical justification;
hence a single hidden layer is used here. The Limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm has
been used as the optimizer (i.e., the method used to iteratively
update the ANN attributes, i.e., weights and bias, to minimize the
loss function) because of its ability to converge faster and perform
better for small datasets (Malouf, 2002; Pedregosa et al., 2011).

The model construction process for the ANN model is similar to
that of the RF model in Section 2.3.1, including the use of stratified
sampling, k-fold cross-validation and twenty independent production
runs. Three hyperparameters, i.e., 1) the number of neurons in the
hidden layer, 2) the number of training epochs (i.e., the number of
times that the whole training set pass through the ANN model), and
3) L2 regularization parameter (i.e., alpha) used to reduce overfitting
by penalizing model complexity, have been optimized using a grid
search method combined with stratified five-fold cross-validation on
the training data (see Section 2.3.1). The optimized hyperparameters
for all twenty independent production runs for both the RF and ANN
models are summarized in Supplementary Table S3. A similar
process was also adopted to build linear regression (LR) models to
serve as the baseline for the RF and ANN models. All the ML
modeling was implemented in scikit-learn and executed in python
coding (Pedregosa et al., 2011).

3 RESULTS & DISCUSSION

3.1 Dissolution Experiments
To complement the database mined from the existing literature
(see Figure 1 and Supplementary Material A), which has limited

data in high pH environments relevant to modern concrete, we
have performed batch dissolution experiments for quartz
particles in NaOH solutions (as given in Table 1). Figure 2A
shows the evolution of Si concentration (as measured using ICP-
OES) released from quartz particles in 0–5 M NaOH solutions at
room temperature as a function of dissolution time (i.e., samples
# 16–20 in Table 1). Similar Si concentration evolution curves for
samples #1–15 inTable 1 are presented in Supplementary Figure
S6, with the raw ICP data given in Supplementary Material C. It
is clear from Figure 2A and Supplementary Figure S6 that
dissolved Si in the 0 M solution (i.e., distilled water) is almost
negligible (close to the detection limit of the ICP-OES
instrument) even after ~42 days. As a result, the dissolution
rates in deionized water are likely to be inaccurate. As
suggested in the literature (Worley, 1994), long-term
experiments (e.g., >300 days) are often needed to obtain
reliable quartz dissolution rates in deionized water, especially
at room temperature. This, together with the fact that there are
abundant dissolution rate data at neutral pH in the database (see
Figure 1), the four measurements in deionized water are not
included for model construction in the next section.

FIGURE 2 | The evolution of dissolved Si concentration in mM
(i.e., mmol/L) from quartz powders in five solutions with different NaOH
molarities (0 M, 0.01 M, 0.1 M, 1 M, and 5 M) as a function of time at a
temperature of 25.9°C. (A) shows the results from experiments
performed in air, while (B) compares the data from air and glovebox
experiments for 1 and 5 M NaOH. The values in the figure are the averages of
three ICP-OES measurements, with the error bars indicating the range of the
measured concentrations.
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With the addition of NaOH at 0.01 M, a significantly higher
dissolved Si concentration was observed, and the release of Si is
enhanced as NaOH molarity increases from 0.01 to 1 M.
However, as NaOH molarity further increases from 1 to 5 M,
no obvious enhancement of Si dissolution has been observed in
Figure 2A at the early stage. This might be due to carbonation
during the experiment, as evidenced by the SEM-EDX results for
the quartz samples in the 5 M solution in Supplementary Figure
S7 and Table S6. Hence, we have repeated the experiments in 1
and 5 M NaOH solutions (i.e., #19 and #20 in Table 1) in the
glovebox. The results in Figure 2B shows that the dissolved Si
concentration in the glovebox experiments is noticeably higher at
the early stage than those not performed in the glovebox. A
comparison of the glovebox data at the early stage (within 24 h)
reveals that increasing NaOH molarity from 1 to 5 M enhances
quartz dissolution.

Based on slopes of the early-stage linear proportion of Figure 2,
Eq. 2 and the method outlined in Section 2.2, we have calculated
the dissolution rates of all quartz samples under different
conditions, and the results are shown in Table 2 and Figure 3.
In addition to the dissolution rates, Table 2 also gives the five
dissolution conditions for all experiments, which will be used as
input features in the ML models (see Section 2.3 for details on
model construction) to predict dissolution rate. Given that the pH
meter systematically underestimates the pH values of concentrated
NaOH solutions (the extent of underestimation increases with

increasing NaOH molarity (Traynor et al., 2020)), we have made
corrections to the pHT values of the 0.1–5M NaOH solutions
following ref. (Traynor et al., 2020), as detailed in Supplementary
Material B. It is observed from Table 2 that the measured pHT of
the same NaOH solution decrease with increasing temperature,
which is consistent with literature (Ashton and Geary, 2011). The
dissolution rate of quartz in NaOH solution is also observed as
highly dependent on temperature. For instance, the measured
dissolution rates in the 0.1–1M solutions at 85.4°C are over two
orders of magnitude greater than those measured at room
temperature. This strong enhancing effect of temperature on
quartz dissolution is consistent with literature (Dove, 1994;
Worley, 1994), as illustrated in Figure 3.

Our room temperature data at pH 12 (Figure 3) generally agree
with those reported by Brady &Walther (Brady and Walther, 1990)
andWollast & Chou (Wollast et al., 1988; Dove and Elston, 1992) at
similar pHs, and we also see our room temperature data generally
align well with the overall trend of increasing rate with increasing pH,
as illustrated by the dotted line in Figure 3. The slope of this dotted
line (for pHT in ~7–14) gives the partial reaction order of quartz
dissolution with respect to OH− (~0.41), which is within the range of
values reported by other studies for quartz dissolution (~0.27–0.52)
(Worley, 1994; Bandstra and Brantley, 2008; Crundwell, 2017).
Finally, comparison of #13–15 in Table 2 reveals that addition of
Na+ (in the form of NaCl) into the 1MNaOH solution does not lead
to obvious change of dissolution rate.

TABLE 2 | Summary of the calculated log dissolution rates (in mole/m2/s), along with the five dissolution conditions (i.e., the input features that are used for constructing ML
models as detailed in Section 2.3) for all batch experiments conducted here. For each experiment, an average dissolution rate, along with the maximum and minimum
rates, are given in the table based on three ICP-OES measurements. The temperature values are measured using a pH meter, which are slightly different from the target
temperatures (i.e., 25, 50, and 90°C).

Sample # Na (M) pHT Measured Temperature
(°C)

Al (mM) Pressure (MPa) Measured Log Dissolution Rate (mole/
M2/s)

Average Max Min

1 0.0 7.90 25.9 0 0.1 –10.767 –10.558 –11.185
2 0.1 12.83a 25.9 0 0.1 –9.184 –9.119 –9.261
3 0.5 13.46a 25.9 0 0.1 –9.142 –9.082 –9.212
4 1.0 13.73a 25.9 0 0.1 –9.023 –8.979 –9.073
5 0.0 7.56 47.8 0 0.1 –11.662 –10.635 NAb

6 0.1 11.70a 47.8 0 0.1 –8.780 –8.768 –8.792
7 0.5 12.25a 47.8 0 0.1 –8.412 –8.403 –8.421
8 1.0 12.41a 47.8 0 0.1 –8.388 –8.378 –8.399
9 0.0 7.22 85.4 0 0.1 –10.111 –9.633 NAb

10 0.1 11.27a 85.4 0 0.1 –7.129 –7.126 –7.133
11 0.5 11.57a 85.4 0 0.1 –7.033 –7.028 –7.039
12 1.0 11.76a 85.4 0 0.1 –7.127 –7.122 –7.132
13 1.5 12.41a 47.8 0 0.1 –8.789 –8.777 –8.802
14 2.0 12.41a 47.8 0 0.1 –8.796 –8.781 –8.811
15 2.5 12.41a 47.8 0 0.1 –8.808 –8.794 –8.822
16 0.0 8.27 25.9 0 0.1 –11.999 –11.816 –12.320
17 0.01 11.91a 25.9 0 0.1 –9.653 –9.640 –9.667
18 0.1 12.83a 25.9 0 0.1 –9.324 –9.305 –9.344
19 1.0 13.73a 25.9 0 0.1 –9.089c –9.020 –9.173
20 5.0 14.39a 25.9 0 0.1 –8.884c –8.820 –8.960

aCorrections have been made to these pHT values to account for the underestimation of pH for NaOH solutions by pH meter. Details on the correction are given in Supplementary
Material B.
bNot available as the values are below the detection limit.
cDissolution rate values are obtained from experiments performed in the glovebox to reduce carbonation, as we observe some level of carbonation for #19 and #20 (the average dissolution
rates are –9.239 and –9.184 mol/m2/g, respectively, when experiments were not performed in the glovebox).
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3.2 Dissolution Rate Modeling
Combining the new data collected here (all the rate data in
Table 2, except for #1, 5, 9 16 performed in distilled water)
with data mined from the existing literature (as given in
Supplementary Material A), we build three types of data-
driven models (i.e., RF, ANN, and LR) for predicting quartz
dissolution rate, as outlined in Section 2.2 and Supplementary
Material B. The typical predictive performance of these models is
illustrated in Figure 4, which shows that both RF and ANN
models give excellent predictions of quartz dissolution rates
across a wide range of reaction rates. Both models exhibit
much better performance (i.e., significantly smaller prediction
errors for both training and testing, as seen in Figures 4A,B) than
simple LR model (Figure 4C). In particular, the RF model in
Figure 4A has the best overall predictive performance, with an R2

value, RMSE and MAPE of ~0.982, ~0.318 mol/m2/s and
~2.903% for the 15% testing set (not exposed during the
training of the model), respectively.

To increase the robustness of the analysis, we have trained an
ensemble of models based on different training-testing splits for each
type of ML algorithm. The average error metrics for each type of
algorithm, along with the standard deviations, are summarized in
Table 3, where the main observations are consistent with Figure 4:
1) both RF and ANN models exhibit much better predictive
performance than the LR models, and 2) RF has the best overall
performance. The relatively small standard deviations for the three
types of error metrics (i.e., generally less than 10% of the
corresponding average values) suggest that the analysis is robust
and is independent of the training-testing split. The average
prediction errors for the RF and ANN models (e.g., RMSE of
~0.310 and ~0.435 mol/m2/g, respectively) are comparable with
those achieved in previous studies using rate equations based on
different reaction models (e.g., RMSE of ~0.35–0.44mol/m2/g)
(Dove, 1994; Bickmore et al., 2008). Given that the rate equations
in refs. (Dove, 1994; Bickmore et al., 2008) are obtained by fitting a

smaller dataset of 285 measurements and with less complexity (e.g.,
the impact of pressure and Al content were not included), the
comparable performance achieved with the RF and AANmodels on
a larger and more complex dataset compiled here demonstrate that
these data-driven models are promising tools for predicting quartz
dissolution (and potentially other types of mineral and glass
dissolution, where sufficient experimental data are available).

FIGURE 3 | The dissolution rate data (mole/m2/s) as a function of pHT

and different temperatures. Literature data from House & Orr (House and Orr,
1992), Brady & Walther (Brady and Walther, 1990), and Wollast & Chou
(Wollast et al., 1988; Dove and Elston, 1992) (empty square, star, and
pentagon, respectively) are compared with the results of this study (filled
circles). The dotted line is given to describe the overall trend of the room
temperature data at pHT ~7–14.

FIGURE 4 | Comparison of the measured quartz dissolution rates in log
scale (mole/m2/s) with the predicted values from the (A) RF, (B) ANN, amd (C)
LR models, based on five input features (i.e., temperature, pHT, pressure, and
Na+ and Al3+ content). In each case, the error metrics for the training set
comprises 85% of the entire data set (including both the training and validation
folds used during the five-fold cross-validation process), while the remaining
15% of the data that have not been exposed during model training is used as
the test set. Selected error metrics (i.e., MAPE, R2 and RMSE) for both the
training and testing sets are shown in the figures. The solid grey lines represent
the line of equality between the measured and predicted rates.
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FIGURE 5 | Summary of the SHAP analysis for the (A) RF and (B) ANN and (C) LR models, showing the influence of input features (i.e., five dissolution conditions)
on quartz dissolution rates (i.e., prediction target). The SHAP values shown are based on the 15% testing set, where themean absolute SHAP value for each input feature
is also given on the right panel of the figure. The error bars for the mean absolute SHAP value are standard deviations based on twenty independently trained models.
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3.3 Model Interpretation
While the more complex MLmodels like RF and ANN are able to
capture complex hidden intercorrelations between input features
and output targets and generates accurate predictions, their
interpretability is often lower than simpler linear regression,
especially the ANN model. Here, for the purpose of
interpreting the trained models in Section 3.2, we employed a
SHapley Additive exPlanations (SHAP) technique, developed by
Lundberg and Lee based on corporative game theory (Lundberg
and Lee, 2017), to evaluate how individual input feature influence
the prediction target (i.e., quartz dissolution rate). The left panel
of Figures 5A–C provides a summary of the distribution of the
SHAP values (evaluated using the 15% testing set) for each input
feature ranked with decreasing importance from top to bottom
for the RF, ANN and LR models, respectively. If a feature with a
higher value (toward the red color) leads to a more positive SHAP
value, this feature has a positive impact on (or promotes) quartz
dissolution. In contrast, if a higher feature value is associated with
a more negative SHAP value, it means that this feature negatively

FIGURE 6 | Predicted quartz dissolution rate (in mole/m2/s) at 25°C and 0.1 MPa as a function of pHT and Na content from the (A) RF and (B) ANN models. The
error bars represent one standard deviation for the predictions from twenty independently trained models.

FIGURE 7 | Predicted quartz dissolution rate (in mole/m2/s) at pHT = 13 as a function of temperature (i.e., 298, 318, 338, 358 and 373 (K) and pressure from the (A)
RF and (B) ANN models. All the predictions are based on a Na+ content of 0.1 M and an Al content of zero. The error bars represent one standard deviation for the
predictions from twenty independently trained models.

TABLE 3 | Summary of the error metrics for the RF, ANN and LR models on the
prediction of quartz dissolution rates. The values are averaged based on
twenty independently trained models (each with a different training-testing split by
using a different random state) with one standard deviation (Stdev) also given in the
table. The error metrics for training are calculated based on all the 85% of the
data used for training the model, i.e., including the training and validation folds
used during the five-fold cross-validation process. Details on the calculation of
the error metrics are given in Supplementary Material B.

Model Type Type of Error Metric Model Performance

Training Testing

Average Stdev Average Stdev

RF MAPE (%) 1.425 0.083 2.951 0.292
RMSE (mole/m2/s) 0.162 0.010 0.310 0.034
R2 value 0.995 0.001 0.983 0.004

ANN MAPE (%) 3.266 0.300 4.239 0.424
RMSE (mole/m2/s) 0.348 0.030 0.435 0.046
R2 value 0.978 0.004 0.966 0.007

LR MAPE (%) 13.483 0.175 13.843 0.785
RMSE (mole/m2/s) 1.221 0.014 1.249 0.080
R2 value 0.734 0.006 0.721 0.035
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impacts (or hinders) quartz dissolution. The right panel of
Figures 5A–C provides the mean absolute SHAP value for
each feature, with a higher value indicating a larger overall
impact on predicted quartz dissolution rate.

Therefore, the SHAP analysis in Figure 5 shows that temperature,
among the five features studied here, has the largest and positive
impact on quartz dissolution for all three models, as also clearly
evident in Figure 1. For the RF and ANN models in Figures 5A,B,
pressure is seen to be the second most important feature, also
exhibiting a positive impact on quartz dissolution, which is
followed by pHT and alkali content (Na+). These observations are
consistent with existing literature, where the positive impact of
temperature, pHT, and alkali cations (including Na+) (Dove, 1994;
Worley et al., 1996; Dove, 1999; Zhang et al., 2015), and to a lesser
extent pressure (Choi et al., 2012) have been documented. Our quartz
dissolution data in 0.01–5M NaOH solutions (Table 2) also show
that temperature has a more pronounced impact on quartz
dissolution than pHT and Na+ content.

The Al content, however, is seen to have a negative impact on
quartz dissolution according to the RF and ANN models,
especially for the latter, where the mean SHAP value is clearly
more negative. This hindrance effect of Al species on silica
dissolution in alkaline solutions has also been reported in the

literature for both quartz (Bickmore et al., 2006; Bagheri et al.,
2022) and silicate-based glasses (Snellings, 2013; Bagheri et al.,
2022). This hindrance effect has been considered a major reason
for another widely observed phenomenon in the cement and
concrete community: Al additives or supplementary cementitious
materials (e.g., slag, fly ash and metakaolin that contains
dissolvable Al species) suppress ASR in concrete and the
associated deleterious expansion (Chappex and Scrivener,
2012; Leemann et al., 2015; Zhou et al., 2019; Tapas et al.,
2021). A similar hinderance effect of dissolved Al species has
also been observed for other mineral dissolution, e.g., muscovite
(Brantley et al., 2008). For the LR model in Figure 5C, the feature
importance ranking is slightly different from those of the RF and
ANN models. Specifically, the LR models have failed to capture
the generally positive impact of Na content on quartz dissolution.

Next, we evaluate the extent to which the different input
features influence the quartz dissolution rates predicted using
the RF and ANN models. Figure 6 shows that both models
predict a general trend of decreasing quartz dissolution rate with
decreasing pHT, with a plateau region at around 5-7, which is
consistent with literature studies (Worley, 1994; Bandstra and
Brantley, 2008; Crundwell, 2017). The orders of reactions with
respect to OH− (i.e., the slope of the curves in Figure 6 above pHT

7) are around 0.21–0.31 and 0.36–0.44 from the RF and ANN
models, respectively, with the latter being closer to that seen in
Figure 3 (~0.4) and previously reported reaction orders nOH

− of
0.27–0.52 for quartz dissolution (Worley, 1994; Bandstra and
Brantley, 2008; Crundwell, 2017). Both models are seen to
predict that Na+ has the largest rate-enhancing effect on quartz
dissolution at near-neutral pH and Na+ content <0.5 M, which is
consistent with experimental observation (Dove, 1994). However, a
further increase of Na+ content from 0.5 to 1M is seen to slightly
reduce (have almost no impact on) dissolution rate according to
the ANN (RF) model, especially in the near-neutral pH region.

Figures 7, 8 show the predicted quartz dissolution rate (at pHT

= 13 and 1M Na) as a function of temperature at different
pressure and Al content, respectively, where the log
dissolution rates are seen to be linearly and inversely
correlated with 1,000/T in all cases, exhibiting Arrhenius-like
behavior as described by Eq. 3:

FIGURE 8 | Impact of Al additives on the predicted quartz dissolution rate (in mole/m2/s) at pHT = 13 from (A) RF and (B) ANNmodel. All the predictions are based
on a Na+ content of 0.1 M and a pressure of 0.1 MPa. The error bars represent one standard deviation for the predictions from twenty independently trained models.

TABLE 4 | Comparison of the activation energies for quartz dissolution obtained
by fitting predicted quartz dissolution rates by the RF and ANN models with
the Arrhenius equation (Eq. 3).

Pressure
(MPa)

Al Content
(mM)

pHT Na
Content
(1M)

Activation
Energies
(kJ/mol)

RF ANN

0.1 0 13.0 0.1 79 84
1.0 0 13.0 0.1 79 83
2.0 0 13.0 0.1 79 81
0.1 0 7 0.1 58 51
1.0 0 7 0.1 58 52
2.0 0 7 0.1 58 52
0.1 0 13 0.1 79 84
0.1 1 13 0.1 69 89
0.1 10 13 0.1 63 106
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ln(k) � ln(A) − Ea

1000R
.
1000
T

(3)

where k is dissolution rate, A is the pre-exponential factor, Ea

is the activation energy, T is temperature (in K) and R is the gas
constant.

By fitting the log dissolution rate versus 1,000/ T data with Eq.
3, we obtain the apparent activation energies, which are
summarized in Table 4. In terms of the impact of pressure
and Al additive on quartz dissolution rate, the RF and ANN
models show dissimilar behavior. While the ANNmodel predicts
that a pressure of 2.0 MPa can increase quartz dissolution rate by
over six times at all temperatures considered in Figure 7B, the RF
model does not capture any obvious rate-enhancing effect
(Figure 7A). However, enhanced quartz dissolution due to
applied pressure/stress has been reported in the literature at a
similar pH (~12.8–13) at both high (200 MPa) (Choi et al., 2012)
and low pressure (0.08–0.1 MPa) (Choi et al., 2013). Pressure-
enhanced mineral dissolution and reaction kinetics have also
been reported for other minerals (e.g., calcite (Dong et al., 2018),
cements (Scherer et al., 2010) and cement minerals (Li et al.,
2018)). These suggest that the ANN models may have better
captured the impact of mild pressure on quartz dissolution than
the RF models. According to the ANN prediction, a moderate
pressure of 2.0 MPa combined with a temperature of 45°C, which
are relevant to many concrete applications, leads to over 1.5
orders of increase in quartz dissolution rate. This increase is even
larger than the difference in the dissolution rate seen between
amorphous silica and crystalline quartz in similar alkaline
environments (usually, it is about one order’s faster for
amorphous silica compared with quartz (Crundwell, 2017)).
Given the dissolution of quartz and its polymorph (and other
cement minerals) is potentially significant to concrete properties
(including durability-related issues like ASR (Diamond, 1976;
Alaejos and Lanza, 2012; Rajabipour et al., 2015; Zhou et al.,
2019) and creep (Li et al., 2018)), it is important to consider the
combined impact of pressure, temperature and elevated pH on
their dissolution properties.

Furthermore, the ANN model is also seen to capture the
hindrance effect of dissolved Al species on quartz dissolution
at all considered temperatures, whereas the RF model prediction
does not exhibit an obvious hindrance effect at room temperature
(Figure 8A). Given that the significant hindrance effect of Al
species on ASR and reduction in the associated mortar expansion
have been observed for sand aggregate in cement mortar at 38°C
(Chappex and Scrivener, 2012; Zhou et al., 2019), it is reasonable
to expect the dissolve Al species to also exhibit a strong
hinderance effect on quartz dissolution at room temperature,
which has been captured by the ANN models but not the RF
models. Note that most of the data points in Figures 7, 8 are
outside the feature space covered in the database. This means that
most of these predictions are extrapolated by the ML models,
which are generally good at interpolating within the feature space
(as opposed to extrapolating to feature space where there is no
data at all in the database). Hence, the observations that the ANN
models have captured the accelerating effect of mild pressure and
the hindrance effect of Al additives on quartz dissolution while

the RF model generally failed suggest that the ANN models
exhibit a certain level of ability to extrapolate to uncovered
feature space. Nevertheless, given the large standard deviation
seen for the ANN model predictions at a pressure of 2.0 MPa
(Figure 7B) and 10 mM of Al additives (Figure 8B), more data in
these uncovered spaces are needed to prove or disprove
observations in Figures 6–8 and further improve the quality
of these data-driven models.

Finally, Table 4 shows that the apparent activation energies
derived from the predicted dissolution rates (based on Eq. 3)
from the RF and ANN models vary considerably depending on
the dissolution conditions and type of model. Nevertheless, these
values (58–79 and 51–106 kJ/mol for the RF and ANN models,
respectively) are generally consistent with the wide range of
activation energies being reported for quartz dissolution
depending on many factors (including pH, temperature and
alkali content), as summarized in ref. (Tamada et al., 2012)
(46–96 kJ/mol) and ref. (Icenhower and Dove, 2000) (66–90 kJ/
mol). In particular, one observation that has been reported in the
literature (Brady and Walther, 1990; Worley et al., 1996) and
captured here by both the RF and ANN models is that the
apparent activation energies for quartz dissolution are noticeably
higher at a higher pH (e.g., 79–84 kJ/mol at pHT 13 vs. 51–58 kJ/mol
at pHT 7). For instance, Brady and Walther (Brady and Walther,
1990) showed that the activation energies for quartz dissolution
(calculated from experimental data) increase from ~46 kJ/mol at pH
6 to ~96 kJ/mol at pH 11. Furthermore, the RF and ANN models
show that the addition of dissolved Al species has a dissimilar impact
on the apparent activation energies for quartz dissolution, and more
data is needed in the future to prove or disprove this observation.

3.4 Broader Impact & Limitations
Although there are very few silica dissolution rate data from the
cements and concrete community (Snellings, 2013; Bagheri et al.,
2022), data mining reveals abundant quartz dissolution data
across different disciplines. Data-driven ML models are seen
to give accurate prediction of quartz dissolution rates as a
function of different dissolution conditions. The feature
exploration process identifies new and interesting trends and
observations, pointing out areas where new measurements are
needed. As more data in the uncovered space are collected and fed
into the models, these data-driven model can be further
improved. Importantly, this combined data mining,
experiments and ML modeling framework could be extended
to study the dissolution properties of other minerals.

Here we discuss several limitations of this study. First, several
other factors influence quartz dissolution rate, beyond the five
dissolution conditions considered here. This includes 1) the type
of reactor (batch vs. flow reactor) (Dove and Crerar, 1990), 2) the
type of cations and anions in the solution (Bennett, 1991; Dove
and Nix, 1997), 3) flow rates in the case of flow reactors (Worley
et al., 1996), 4) the extent of undersaturation (Dove et al., 2008),
and 5) direction of the crystal plane (Liang and Readey, 1987).
Accounting for all these factors is challenging for conventional
reaction models. Data-driven models can capture the complex
correlations between the prediction target and all possible
dissolutions conditions and the impact of each individual
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dissolution condition on the dissolution rate can be quantified.
However, we are data limited when many of these dissolution
conditions are not reported in the original studies. Furthermore,
although the ANN models presented here have some predictive
ability in the feature space not covered in the database, more data
are needed to confirm the observations (e.g., the extent of rate
increase (decrease) due to application of mild pressure (addition
of Al species)), given the large variation in the predicted rates.

4 CONCLUSION

As the most abundant free oxide on earth and a major phase in
concrete aggregate, dissolution of crystalline quartz (and its
polymorphs) has raised considerable interest across different
fields, including geochemistry, materials science, and, more
recently, the concrete field. Although rate equations based on
different reaction models have been developed and shown to give
accurate predictions of quartz dissolution rates as a function of
temperature, pHT, and Na content for a complied dataset (with
285 measurements), their applications to more complex datasets
remain to be demonstrated. Here, we introduced a data-driven
approach to predict quartz dissolution for a newly complied and
more complex dataset mined from the literature (with 597
measurements). Given the scarcity of quartz dissolution data
in high pH environments relevant to modern concrete
applications, we have collected 16 quartz dissolution rate data
in NaOH solutions (0.01–5 M) at different temperatures
(~26–85°C) to complement the existing database.

Based on this new database, we have developed an ensemble of
random forest (RF) and single-layer artificial neural network (ANN)
models (each trained independently) to predict quartz dissolution
rate as a function of the five dissolution conditions. Both the RF and
ANN models are seen to give accurate predictions across the whole
dataset, with R2 values of ~0.97–0.98, MAPEs of ~2.95–4.24% and
RMSEs of ~0.31–0.44 mol/m2/s (in log scale) for the 15% testing set.
Both RF and ANN models are shown to capture some literature
observations, including the different impact of temperature,
pressure, pHT, Na and Al content on dissolution rate. In
particular, the ANN model appears to exhibit certain level of
ability to extrapolate (i.e., making predictions in feature space not
covered in the database), leading to new and interesting trends and
observations.

One potential direction moving forward is to incorporate
other dissolution conditions into the models to enable them to
predict quartz dissolution rate for more complex and realistic
situations (e.g., those relevant to modern concrete environments).
However, due to missing data for other dissolution conditions
(e.g., the extent of undersaturation and flow rate) in some studies
referred in the database, there is a need to perform missing data
imputation or data augmentation. This also necessitates the
collection of new data in feature space not covered in the

existing database, for which the ML models can help optimize
the experimental design (e.g., reduce the number of experiments
while maintaining a similar level of data quality for model
construction). Another potential direction is to build out the
data infrastructure and ML models for other silica polymorphs
(e.g., amorphous silica, cristobalite, and microcrystalline or
cryptocrystalline quartz) and reactive aggregate. Overall, as a
first step, this study has highlighted the vast potential of using
data-driven models for predicting mineral dissolution rates,
which is important to many fields.
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