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Physical vapor deposition (PVD) is one of the most important techniques for coating
fabrication. With the traditional trial-and-error approach, it is labor-intensive and
challenging to determine the optimal process parameters for PVD coatings with best
properties. A combination of three-dimensional (3-D) quantitative phase–field simulation
and a hierarchical multi-objective optimization strategy was, therefore, developed to
perform high-throughput screening of the optimal process parameters for PVD
coatings and successfully applied to technically important TiN coatings. Large amounts
of 3-D phase-field simulations of TiN coating growth during the PVD process were first
carried out to acquire the parametric relation among the model parameters,
microstructures, and various coating properties. Experimental data were then used to
validate the numerical simulation results and reveal the correlation between model
parameters and process parameters. After that, a hierarchical multi-objective method
was proposed for the design of multiple coating properties based on the quantitative
phase–field simulations and key experimental data. Marginal utility was subsequently
examined based on the identification of the Pareto fronts in terms of various combinations
of objectives. The windows for the best TiN coating properties were, therefore, filtered with
respect to the model/process parameters in a hierarchical manner. Finally, the consistent
optimal design result was found against the experimental results.
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1 INTRODUCTION

Due to its low process temperature and environmental
friendliness, the physical vapor deposition (PVD) technique
has been widely used to fabricate various industrial coatings in
terms of controllable composition and structure, promising
compressive strength, and desired surface performance (Deng
et al., 2020). For the past decades, different PVD techniques have
been developed, such as the cathodic arc evaporation (CAE)
(Zhou et al., 2019) or arc ion plating (AIP) (Zhang et al., 2018),
direct current magnetron sputtering (DCMS) (Barshilia et al.,
2004), and high-power impulse magnetron sputtering (HiPIMS)
(Alami et al., 2014; Kuo et al., 2019) and even their hybrid
techniques (Bobzin et al., 2019). For the PVD coatings, the
concerned properties in the industry include hardness,
corrosion resistance, wear resistance, and adhesion strength.
Until now, substantial experimental investigations have been
conducted to improve the PVD coating properties, majorly
focusing on the modification of process parameters, that is,
target power (Tai et al., 1990; Bhaduri et al., 2010), N2 partial
pressure (Lousa et al., 2007; Mayrhofer et al., 2009), bias voltage
(Hernández et al., 2011; Ma et al., 2017), magnetic field strength
(Mayrhofer et al., 2002; Wu et al., 2017), substrate temperature
(Mayrhofer et al., 2009), etc. However, the process parameters are
not directly related to the properties of PVD coatings, and it is,
thus, very challenging to determine the optimal process
parameters for PVD coatings with best properties through the
traditional time-/labor-consuming trial-and-error approach.

In fact, the microstructure forming during the preparation
process directly determines the properties of PVD coatings.
Hence, the quantitative description of the microstructure
evolution during preparation can help establish the
quantitative relation “process-microstructure” of PVD
coatings. Nowadays, the phase-field method has become a
powerful approach for quantitative simulation of
microstructure evolution in PVD coatings. Starting from the
continuum model by Lichter and Chen (Lichter and Chen
1986), Keblinski et al. (Keblinski et al., 1996) developed a
phase–field model for the growth of interfaces and applied the
model to simulate solid-film growth during PVD with different
incident vapor fluxes. Coupling the interface growth phase–field
model by Keblinski et al. (Keblinski et al., 1996) with the
phase–field model for solidification of polycrystalline materials
by Warren et al. (Warren et al., 2003), Stewart and Spearot
(Stewart and Spearot 2016; Stewart and Spearot 2017) further
developed a phase–field model for the evolution of single-phase
polycrystalline thin films and utilized the model to investigate the
influence of model parameters on grain size and porosity and
grain orientation. Very recently, Yang et al. (Yang et al., 2019)
conducted a parametric study on the PVD process of metal thin
films based on the phase–fieldmodel by Keblinski et al. (Keblinski
et al., 1996). Based on more than 200 three-dimensional (3-D)
phase–field simulations, the quantitative relation between the
deposition rate and model parameters was established, and the
effect of the deposition rate on the surface roughness and
microstructure of the PVD metal thin film was investigated.
However, the correlation between processing parameters and

model parameters and deposition rate, which was essential for
establishing a quantitative relation “process-microstructure” of
PVD coatings, was not completely examined by Yang et al. (Yang
et al., 2019).

In addition to the quantitative relation “process-
microstructure” from the quantitative phase–field simulations,
the qualitative or quantitative relation “microstructure-
properties” is also needed to determine the optimal process
parameters for PVD coatings with best properties. That is, the
properties of PVD coatings are dominantly determined by the
microstructures, for example, porosity, surface roughness, and
average grain size. For many industrial applications, the coatings,
that are nonporous and with finer grain and smoother surface, are
usually desirable. Despite the properties, the coating production
efficiency is yet another major concern. A higher deposition rate
may generally increase the production efficiency but probably
result in porosity and a surface of severe roughness.
Consequently, decision-making toward the design of
processing parameters and coating properties is a complex
multi-objective optimization problem, and a hierarchical
multi-objective decision-making strategy is, thus, on demand.

Consequently, the major objectives of the present work are as
follows: 1) to pave the way for a parametric relation between the
process parameters and coating properties by utilizing a large
number of phase–field simulations of PVD coatings together with
limited experimental results available in the literature; 2) to
develop a multi-objective decision-making strategy suitable for
PVD coatings, considering metrics including both the deposition
rate for production efficiency and essential microstructure
properties (i.e., grain size, porosity, and surface roughness) for
coating properties/performance; 3) to design the optimal process
parameters for PVD coatings with best comprehensive properties
by combining the 3D quantitative phase–field simulations and a
hierarchical multi-objective optimization approach and compare
with the experimental results. Here, the PVD TiN coatings of
technical importance were chosen as the target of the present
work because Wang et al. (Wang et al., 2015) performed an
intensive experimental investigation on the effect of bias voltage
on the microstructures and properties of PVD TiN coatings,
which can serve as the experimental validation of the present
phase–field simulation and coating design strategy.

2 METHODOLOGY

2.1 Phase-Field Model for the Physical
Vapor Deposition Process
The phase–field model for the growth of interfaces proposed by
Keblinski et al. (Keblinski et al., 1996) allows for a description of
the dynamics of depositing vapor and nonlinear morphology of a
growing solid film during PVD. This model can capture crucial
physical processes during PVD such as 1) arbitrary surface
morphology formation, 2) surface tension and vapor diffusion,
and 3) non-local shadowing effects. To model PVD processing
within the phase-field framework, two field variables are
introduced: ϕ(r, t) and g (r, t). The field variable ϕ(r, t)
describes the evolution of a growing thin film solid, where ϕ(r,
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t) ≈ 1 defines a solid region, ϕ(r, t) ≈ −1 defines a vacuum region,
and ϕ(r, t) ≈ 0 defines the solid–vapor interface. The field variable
g (r, t) describes the local density of the incident vapor; therefore,
g (r, t) is always larger than or equal to 0 (i.e., g (r, t) ≥ 0), where g
(r, t) ≈ 0 describes a region of no vapor. Considering that the field
variable g (r, t) does not contribute to the free energy of the
system, the free energy functional is constructed based on the
field variable ϕ(r, t) and its gradient,

F � ∫
Ω
{ − 1

2
ϕ(r, t)2 + 1

4
ϕ(r, t)4 + α(∇ϕ(r, t))2}, (1)

The first two terms in Eq. 1 provide a double-well energy
barrier between the bulk solid and vapor phases. The third term
accounts for energy contribution according to the presence of the
solid–vapor interface, where α is the interfacial gradient
coefficient.

Given the vapor dynamics and shadowing effects, the
evolution equations of the solid phase field, that is, ϕ(r, t), and
vapor phase field, that is, g (r, t), can be determined to incorporate
the underlying physics of PVD. The interface growth mechanism
for PVD processing is based on the assumption that the growth of
the solid phase, that is, ϕ(r, t) occurs at the expense of the
incoming vapor phase, that is, g (r, t), as mathematically
expressed in the following equations,

_ϕ � ∇2δF

δϕ
+ B(∇ϕ)2g + C

�������(∇ϕ)2g√
η, (2)

_g � ∇[D∇g − Ag] − B(∇ϕ)2g, (3)
Eq. 2 describes the evolution of the growing thin film solid. In

Eq. 2, the first term is the Cahn–Hilliard dynamics expression,
which allows for arbitrary surface formation and surface diffusion
effects. The second term serves as a source term that couples Eq. 2
with Eq. 3 and captures aspects relevant to the growth of the solid
phase at the expense of the incident vapor phase. The last term
provides surface fluctuations through a Gaussian noise
distribution, η(r, t). Eq. 3 describes the transport of the
incident vapor. In Eq. 3, the first term is the diffusion
equation modified by the presence of an external force, A. The
second term is the coupling term that is the negative of the second
term in Eq. 2 and acts as a sink for the diffusive vapor phase due
to its transition into a solid phase. The parameter B controls the
rate of conversion from the vapor phase to solid phase, C controls
the overall noise strength, D is the diffusion coefficient, and A
provides the strength and direction to the incoming vapor flux.

2.2 Material and Numerical Parameters for
Phase-Field Simulation
The parametric study was conducted to overcome the drawbacks
of using nondimensional parameters in our previous work (Yang
et al., 2019). The interfacial gradient coefficient, α (J m−1), allows
for the contribution of surface energy from the solid–vapor
interface. The parameter B (m2 s−1) controls the conversion of
the g field into the ϕ field in the interfacial region and thus can be
quantified as the generated interface area per unit time, named

the vapor–solid transition velocity. The noise amplitude
coefficient, C (J m−1), provides sufficient noise at the thin film
surface to allow the formation of surface variations and features.
The parameter D (m2 s−1) is the diffusion coefficient controlling
vapor diffusion in the near-surface region. The parameter A is the
incident vapor vector including the incident vapor rate A (m s−1)
and angle (i.e., A = Ar). The direction of the incident vapor in the
present simulation is perpendicular to the substrate (i.e., A =A ẑ).
The parameters that are constant during the entire simulations in
the present work are summarized in Table 1, while the
parameters that are varied to investigate include the
vapor–solid transition velocity B and diffusion coefficient D.

In order to perform the 3D phase-field simulation of the PVD
process, an initially flat substrate is constructed in the present
work along the entire x-y plane in the z direction, with a thickness
less than 1/10 of the grid points of the z axis, where ϕ(r, 0) = 1 and
g (r, 0) = 0. The region above the substrate is placed in vacuum,
where ϕ (r, 0) = -1 and g (r, 0) = g0. The equations of motion
described in Eqs (2), (3) are discretized and solved on a uniform
three-dimensional mesh. For these equations, the periodic
condition is applied in the direction parallel to the substrate
(i.e., x and y axes), while the no-flux and fixed conditions are
applied at the lower and upper boundaries of the direction
perpendicular to the substrate, respectively (i.e., z axis).
During the simulation, the g = g0 condition is maintained at
the upper boundary of the z direction providing a constant
downward flux Ag during PVD.

3 RESULTS AND DISCUSSIONS

3.1 Parametric Relation Between Model
Parameters and Processing Parameters
A series of phase-field simulations are performed to reproduce
the growth of TiN coatings during the PVD process and
investigate the effect of deposition time and rate on the
resulting microstructure. The microstructure evolution of TiN
coatings deposited with different deposition rates corresponding
to different vapor–solid transition velocities and diffusion
coefficients due to 3-D phase-field simulations is shown in
Figure 1. In the early growth stage, the coatings exhibit
featureless topography, which is mainly formed by small
islands tending to display a denser structure with a smoother
surface. As the deposition time increases, the columnar structure
starts to form, and the pores are induced in the growing coatings.
The observed growth mechanism of thin films prepared by the

TABLE 1 | List of numerical/material parameters used in the present phase-field
simulations.

Parameters Symbols Values

Grid spacing Δx 1.0 nm
Interfacial gradient coefficient α 0.3 J nm−1 Yang et al. (2019)
Incident vapor rate A 0.136 nm s−1

Noise amplitude C 2.5 J nm−1 Yang et al. (2019)
Gaussian noise factor η 0.5 Yang et al. (2019)
Supplied incident vapor g0 1.0 Yang et al. (2019)
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PVD method coincides with the reported phenomena in the
literature (Fu and Shen 2008; Rosa et al., 2012; Aqil et al., 2017).
Typical temporal surface morphologies of the corresponding
simulated results are also examined as illustrated in Figure 2
by means of heat maps of the surface height, which are
comparable to the atomic force microscopy (AFM) images.

Beyond the microstructure simulation results, related coating
properties can also be extracted in Figure 3 and Supplementary
Figures S1–S3. Currently, coating properties related to the
coating performance and production efficiency are concerned.
Here, the deposition rate which directly determines the
production efficiency is presented in Figure 3, while the

FIGURE 1 |Microstructure evolution of PVD TiN coatings due to 3D phase-field simulations with different deposition rates (i.e., R) corresponding to various sets of
the vapor–solid transition velocity (i.e., B) and diffusion coefficient (i.e., D): (A) B = 0.60 nm2 s−1, D = 2.2 nm2 s−1, R = 0.167 nm s−1. (B) B = 0.43 nm2 s−1, D =
1.8 nm2 s−1, R = 0.139 nm s−1. (C) B = 0.37 nm2 s−1, D = 1.2 nm2 s−1, R = 0.134 nm s−1. Simulation domain: 100 × 100 × 200 nm3.
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porosity, surface roughness, and average grain size that are related
to coating performance are shown in Supplementary Figures
S1–S3. As shown in Figure 3B, a quantitative relation between

model parameters and deposition rate can be established, that is,
by means of regression or fitting, based on the large amount of
phase-field simulation results. Such relations between model

FIGURE 2 | Temporal surface morphologies of TiN coatings with various deposition rates (i.e., R) corresponding to different vapor–solid transition velocities (i.e., B)
and diffusion coefficient (i.e., D) during the 3D phase-field simulation for PVD: (A) B = 0.60 nm2 s−1, D = 2.2 nm2 s−1, R = 0.167 nm s−1. (B) B = 0.43 nm2 s−1, D =
1.8 nm2 s−1, R = 0.139 nm s−1. (C) B = 0.37 nm2 s−1, D = 1.2 nm2 s−1, R = 0.134 nm s−1.

FIGURE 3 | Calculated deposition rate of TiN coatings according to the phase-field simulation results as a function of the vapor–solid transition velocity (i.e., B) and
diffusion coefficient (i.e., D): (A) 3D surface graph and (B) section profiles at the vapor–solid transition velocity (i.e., B) of 0.2, 0.6, and 1.0 nm2 s−1 from the subgraph A.
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parameters and coating properties can also be attained as shown
in Supplementary Figures S1–S3 of Supplementary Materials,
therefore, serve as the supporting information for decision-
making problems about PVD coatings, in case that the
parametric relation between the process parameters and model
parameters is established.

To achieve the correspondence between the model parameters
and process parameters, the experimental observations by Wang
et al. (Wang et al., 2015) are carefully correlated with the
simulated results considering the physical essence of model
parameters according to the practical process parameters of
the PVD process, that is, HiPIMS. On the basis of relating the
deposition rate of simulation and experiment, together with the
comprehensive consideration that other coating properties
(i.e., porosity, surface roughness, and average grain size)
should be consistent with the trends or data reported by
Wang et al. (Wang et al., 2015), the unique relation between
the model parameters and process parameters can be established,
as shown in Figure 4.

Comparison of the deposition rate of TiN coatings between
the phase-field simulation results and experimental data is shown
in Figure 4. The simulated deposition rate is dominated by the
vapor–solid transition velocity and diffusion coefficient, while the
experimental deposition rate varies with the substrate bias voltage
(Wang et al., 2015). When the vapor–solid transition velocity and
diffusion coefficient increase, the simulated deposition rate of
TiN coatings increases from 0.134 nm s−1 to 0.167 nm s−1, in
quantitative agreement with the experimental deposition rate,
which increases as the substrate bias voltage decreases. Due to the
high sputtering ionization ratio in HiPIMS, the bias voltage plays
an important role in energetic ion bombardment behavior,
leading to a significant influence on the vapor–solid transition
velocity and diffusion coefficient. With an increase in the
substrate bias voltage, the incident ion energy increases and

consequently, the deposited material can be re-sputtered by
heavy ion bombardment. The vapor–solid transition velocity is
supposed to decrease with increasing bias voltage because of the
re-sputtering effect. The diffusion coefficient (i.e., D) in this case
indicates the ion diffusion in plasma, and is given as (Yiğit 2017).

D � 2kT
m]

, (4)
where k is the Boltzmann constant; T is the plasma temperature;
m is the ionmass; and ] is the ion-particle collision frequency. It is
observed that the diffusion coefficient for incident ions is
governed by the collision frequency of the ion to particle in
the plasma atmosphere. Since the energetic ions at a higher bias
voltage favor heavy collision with other particles in the plasma,
the diffusion coefficient is reduced. When the vapor–solid
transition velocity increases, the deposition rate increases as a
larger number of incident ions are captured to form a solid
coating per unit time. However, the increase of the diffusion
coefficient prefers tangential growth to normal growth for
coatings during deposition, leading to the decrease of the
deposition rate measured by the growth rate in a normal
direction. Generally, the deposition rate change with different
bias voltages can be explained by the fact that the deposition rate
is finally determined by the combined effects of the vapor–solid
transition velocity and diffusion coefficient, which are directly
affected by the bias voltage. Moreover, the good agreement of the
deposition rate between the simulation and experiment first
provides a bridge for quantified study.

Figure 5 shows the temporal porosity of PVD TiN coatings
deposited with different deposition rates according to the phase-
field simulations by applying different vapor–solid transition
velocities and diffusion coefficients. There are no specific
experimental data on the porosity of TiN coatings prepared by
HiPIMS available in the literature, but the cross-sectional
scanning electron microscopy (SEM) images of TiN coatings

FIGURE 4 | Comparison of the deposition rate of TiN coatings between
the phase-field simulation results during PVD growth applying different
vapor–solid transition velocities (i.e., B) and diffusion coefficients (i.e., D) and
the experimental data with various bias voltage (Wang et al., 2015).

FIGURE 5 | Comparison between the temporal porosity of TiN coatings
deposited with different deposition rates (i.e., R) according to the phase-field
simulation for PVD applying different vapor–solid transition velocities (i.e., B)
and diffusion coefficient (i.e., D) and the experimental cross-section
images of TiN coatings for qualitative porosity analysis with various bias
voltages (Wang et al., 2015). (The images of experimental results are
reproduced and presented with premission from Elsevier).
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from the study byWang et al., (2015) enable a qualitative analysis
of porosity or density as a function of the bias voltage. It is
observed in Figure 5 that the simulated porosity of TiN coatings
sharply increases within about 20 min and then slightly increases
as the deposition continues. Pores appear earlier and tend to
increase faster with a higher deposition rate due to a larger
vapor–solid transition velocity and diffusion coefficient. At the
same deposition time as that of the experiment, the simulated
porosity decreases from 8.02 to 1.05%, with the decrease of the
deposition rate intrinsically attributed to the decrease of the
vapor–solid transition velocity and diffusion coefficient.
Experimentally, the TiN coatings exhibit a trend of
densification as the bias voltage increases, that is, as the
deposition rate decreases. Even if there are no quantitative
experimental data for comparison, a consistent evolution of
porosity along the deposition rate between the phase-field
simulations and the experimental data can be observed. Based
on the relationship between bias voltage and the vapor–solid
transition velocity and diffusion coefficient mentioned
previously, the increase of bias voltage leads to the decrease of
the vapor–solid transition velocity and diffusion coefficient. It is
understood that a lower vapor–solid transition velocity
contributes to the decrease of coating porosity, but a lower
diffusion coefficient results in the increase of porosity fraction.
Therefore, the coating porosity variation with different bias
voltage is intrinsically determined by a combination product
of the vapor–solid transition velocity and diffusion coefficient.
Furthermore, a consistent evolution of porosity along the
deposition rate between the phase-field simulations and the
experimental data proves the quantitative phase-field
simulation in the present work.

Figure 6 displays the temporal surface roughness of PVD TiN
coatings deposited with different deposition rates according to
the phase-field simulations, compared with the experimental

data, which was evaluated using a scanning probe microscope
(SPM) by Wang et al. (Wang et al., 2015). It can be seen in the
figure that the simulated surface roughness of TiN coatings
increases rapidly at the early deposition stage and then reaches
a state where the surface roughness fluctuates within a certain
range as the deposition continues. As the deposition rate
increases, the surface roughness increases faster at the early
deposition stage, and the fluctuation range increases. The
simulated surface roughness decreases from 19.41 to 10.98 nm
with a decrease in the deposition rate from 0.167 nm s−1 to
0.134 nm s−1. With the deposition rate serving as an
intermediary, the simulated roughness based on different
vapor–solid transition velocities and diffusion coefficients is
comparable with the experimental roughness as a function of
bias voltage, and a good agreement between the simulation results
and experimental data can be found. Based on the analysis
mentioned previously, the evolution of surface roughness with
bias voltage is related to the variation of the vapor–solid
transition velocity and diffusion coefficient. The increase of
bias voltage results in the decrease of the vapor–solid
transition velocity and diffusion coefficient. However, there is
an opposite effect of the simultaneous decrease of the vapor–solid
transition velocity and diffusion coefficient on the surface
roughness. In detail, the decrease of the vapor–solid transition
velocity leads to the elimination of the shadowing effect and
reduction of surface roughness, while the decrease of the diffusion
coefficient leads to the increase of surface roughness. The surface
roughness is finally attributed to the combined effect of the
vapor–solid transition velocity and diffusion coefficient. Again,
the good agreement between the simulated surface roughness and
the experimental data also substantiates the present quantitative
phase-field simulation. Moreover, the surface roughness is

FIGURE 6 | Comparison between the temporal roughness (i.e., Ra)
according to the phase-field simulation for PVD and the experimental data of
Ra (Wang et al., 2015) for TiN coatings deposited with different deposition
rates (i.e., R).

FIGURE 7 | Comparison of the grain size of TiN coatings between the
phase-field simulation results during PVD growth applying different vapor-
solid transition velocities (i.e., B) and diffusion coefficients (i.e., D) and the
experimental data with various bias voltage (Wang et al., 2015).
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evaluated in an area with 3 μm × 3 μm for experimental results,
while the simulated surface roughness is calculated within
100 nm × 100 nm due to the limitation of computing power,
which might lead to some discrepancies in simulation and
experimental results.

In Figure 7, a comparison between the phase-field-simulated
grain size of PVD TiN coatings and the experimental data (Wang
et al., 2015) is given. The statistical grain size is acquired
according to the phase-field simulations at different
vapor–solid transition velocities and diffusion coefficients. As
the strategy of the moving frame is adopted in the simulation
process, the mean size of the columnar structure is considered by
averaging the radius of the columnar structure at different
thicknesses according to the historical simulation snapshots.
As for the experimental grain size, it is affected by the bias
voltage and is estimated from X-ray diffraction (XRD) analysis
(Wang et al., 2015). When the vapor–solid transition velocity and
diffusion coefficient increase from 0.37 nm2 s−1 to 1.2 nm2 s−1 to
0.60 nm2 s−1 and 2.2 nm2 s−1, the simulated average grain size of
TiN coatings slightly increases from 10.38 to 10.61 nm and then
to 12.13 nm, which is in approximate agreement with the
experimental data, considering the uncertainty induced by the
shape factor of grains. The average grain size due to experimental
mensuration exhibits a significant increase as the bias voltage
decreases. The influence of bias voltage on grain size can be
explained from the phase-field simulations. The increase of bias
voltage is expected to lead to the decrease of both vapor–solid
transition velocity and diffusion coefficient. The decrease of
vapor–solid transition velocity contributes to the increase of
grain size as species in vapors is likely to diffuse along the
surface of the solidified parts, and epitaxial growth
perpendicular to the development direction is to be enhanced.
Similarly, the decrease of the diffusion coefficient has an effect on
the decrease of grain size due to insufficient mass supply. Thus,
the average grain size of PVD TiN coatings is determined by the
combined effect of vapor–solid transition velocity and diffusion
coefficient. The reason for the deviation between simulated grain
size and experimental results is that the longitudinal sections of
coatings are subjected to XRD in the experimental study, while
the calculated grain size is analyzed from each transverse layer
between tips and bottom of the simulated columnar structure.

3.2 Multi-Objective Decision-Making
Strategy
For industrial applications, multiple coating property metrics are
considered during the processing and service periods. Deposition
rate is one of the dominant factors intimately correlating with the
production efficiency and cost. In addition, the deposition rate
also concerns with successive coating property metrics, that is,
grain size, porosity, and surface roughness. For PVDTiN coatings
for cutting tools, a finer gain size results in higher hardness and
mechanical strength, but meanwhile, the porosity and unexpected
surface roughness might be avoided. However, a
higher deposition rate is prone to resulting in coatings with
porosity, and the level of surface roughness might be high
where in-sequence post-processing processes are, therefore,

desired for satisfactory surface quality. Considering the
marginal effect between the processing parameters and
different coating property metrics, the decision-making
problem toward the coatings with optimal process parameters
for best properties turns to be complicated as multiple objectives
are to be resolved.

In terms of the multi-objective decision-making problem, two
important aspects should be addressed. The first concerns with
supporting information for making the decision. Phase-field
simulation has come to such a stage, where microstructures of
related PVD processes can be retrieved according to the model
parameters and assumed environment conditions. Practical
experiments, which are generally expensive with respect to
either time consumption or experiment cost, can serve as
validation evidence for numerical simulations. Beyond
validation, linking between the model parameters and real
process parameters is likely to be formed, where either a
qualitative or quantitative relation can be retained. With
numerical simulation results, snapshots for microstructures
during different processing periods are provided, where
analysis over the corresponding coating property metrics can
be conducted. Experimental data can again substantiate the
validation of the related phase-field simulation results. The
overall correlation between processing parameters and coating
property metrics is subsequently established.

Once the supporting information is acquired, decision-making
can therefore be carried out only if the specific procedures can be
followed. For single-objective problem, either a convex or non-
convex optimization algorithm is feasible for resolving the
optimal decision vector with or without constraints. However,
complex marginal effects are to be encountered even if more than
one objective is being examined. One common strategy is to
reasonably transform the multi-objective problem into a single-
objective one by means of weighting the individual objective with
suitable weights. Typically, weight is expertise-based knowledge
information, which is extremely useful when the problem being
examined is reaching the state of art. In case of an unexplored
terrain, expertise-based information is generally absent, when
decision-making processes toward the optimal design are likely to
be impeded.

As multi-objective problems are one of the most well-studied
problems by mathematics, feasible specification is, therefore,
enabled by learning from related methods, that is, Pareto front
and hierarchical analysis. Pareto front is one of the most
insightful tools for measuring the marginal effects when
multiple objectives are being concerned. Pareto front is the
collection of feasible solutions, of which each is non-
dominated by others when no performance deterioration is
expected. In other words, each solution of the Pareto front is
one of the decision-making suggestions, where the marginal
effects of different objectives are subject to specific faith or
evaluation criterion. Generally, the Pareto front is identified
among the collection of many feasible solutions, which might
be one or tens of times about the number of solutions located in
the frontier. Acceleration is generally indispensable when the
sampling procedures are time-consuming (Gao et al., 2022).
Effective sampling strategies, that is, non-dominated sorting
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genetic algorithm and multi-objective tree-structured Parzen
estimator would also be desired when the evaluation processes
of sampling are of high experimental or numerical
computing cost.

Usually, the multi-objective problem can be reduced to a
single-objective problem when multiple objectives are properly
penalized. However, when expertise experience is absent, bias and
subjective influence seem inevitable. To obtain the
comprehensive overview toward multiple objectives,
hierarchical analyses are generally adopted. The analytic
hierarchy process is usually a problem-dependent method,
where nebulous prior knowledge toward the importance of
objectives in practical applications is required. Therefore,
objectives can be classified, ranked, and selected from the
overall feasible solutions, that is, the Pareto frontier.

The framework for the present hierarchical multi-objective
optimization is displayed in Figure 8. Phase-field simulations are
used for acquiring sufficient supporting information for decision-
making. Metrics toward different coating properties are,
therefore, evaluated based on the numerous simulation results.
Experimental data from the practical PVD processing processes
serve as validation evidence, which enables the linking between
the processing parameters and model parameters. As a result, the
correlation between the processing parameters and different
objective metrics is established. In this work, the hierarchical
multi-objective optimization involves two stages: intuitive
visualization and analytic hierarchy process. Intuitive

understanding toward the correlation between processing
parameters and coating properties can be first acquired by
proper visualization. Dual objectives are then examined where
the Pareto frontier should be identified. Mapping with an
overlapped contour could serve as an alternative approach
when the number of variable factors is limited and therefore
visualization is enabled. As the number of objectives increases,
overlapped mapping might be the most suitable method for the
analytic hierarchy process. Here, we focus on the TiN-based
coatings, especially for cutting tools, and up to four objectives
(i.e., deposition rate, porosity, surface roughness, and grain size)
are concerned.

3.3 Screening of Optimal Model Parameters
for Best Coating Properties
In terms of industrial applications, the fabricated coatings should
possess the best properties with respect to specific practical
requirements. For instance, PVD coatings with appropriate
amount of porosity are desired for filter materials and catalytic
materials, while the latter would also have special requirement on
the roughness of the surface. As for cutting tools, PVD coatings
are responsible for providing extremely high toughness, and thus
the coatings with porosity are anticipated to be avoided as
vibration during cutting processes will likely damage the
coating structure. Roughness of the coatings is related to
subsequential manufacturing processes and is largely

FIGURE 8 | Hierarchical multi-objective decision-making strategy for coatings by PVD processing.
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influential on the friction and wear properties. Furthermore,
grain size plays an important role in mechanical performances
such as the strength and hardness of the coatings for cutting tools.
Another key point in industrial production lies in the
productivity, which is closely tied to the deposition rate of
coatings during PVD processing. Considering both production
efficiency and coating properties, ideal factors such as high
deposition rate, low porosity ratio, flattened surface
morphology, and small grain size are desired in PVD coatings
for cutting tools. Therefore, multiple objectives are to be
considered for the present design of PVD TiN coatings.

Specifically, objective 1, which denotes the deposition rate, is
to be maximized; while objectives 2–4, respectively, denoting the
porosity, surface roughness and grain size, are all to be
minimized. To simplify the process of optimization, the
inverse of the deposition rate is applied. Then, all four
objectives should be minimized, aiming at screening the
optimal process parameters for PVD TiN coatings with best
properties. The set of mathematical optimal solutions generally
indicated as the Pareto frontier of objective space is shown in
Figure 9. Figure 9 illustrates the correlation between pairwise
objectives from concerned properties of the imitated coatings,
and all feasible choices over the objective space are denoted as
green dots. By applying the Pareto search algorithm on the
dataset, the Pareto frontiers are then determined, that is, the
circles highlighted in purple. The Pareto frontier can be used to
identify the ideal combination of pairwise coating performance.
In Figure 9, it is observed that there are two types of relations
based on a comprehensive analysis of various objective spaces.

One is that the two objectives are not in conflict, as shown in
Figures 9A,F, where the two objectives are approximately
positively correlated, that is, when the value of one objective
decreases, the other objective can also take a smaller value. In this
case, a single solution exists that simultaneously minimizes each
objective, while the other type is that the two objectives are
conflicting, as shown in Figures 9B–E. Figures 9B,C exhibit
more obvious negative correlation than Figures 9D,E. Therefore,
the set of Pareto optimal solutions is found to satisfy the different
objectives. For example, when the average grain size is expected to
be 12 nm, the least related roughness is about 9 nm.

In order to further correlate the coating properties and model
parameters, the predicted cases with respect to a combination of
different objectives on the Pareto frontier are further investigated.
Particularly, different objectives, that is, grain size, porosity, and
surface roughness against the deposition rate are examined, as
shown in Figure 10. The heatmap is used to visualize the
deposition rate against the model parameters, while the other
objectives (i.e., grain size, porosity, and surface roughness) are
being imposed in the form of a contour, as shown in Figures
10A–C. For grain size, a similar tendency is observed with respect
to the varying deposition rate. The lowest level of grain size is
reached when the deposition rate is of high level. For porosity, a
consistent tendency is observed considering the varying
deposition rate, where a critical region is found at the region
of the lower deposition rate. Moreover, a critical point can be
further determined to be B = 0.39 nm2 s and D = 2.9 nm2 s. As for
surface roughness, the potential levels of roughness are diverse
and can be controlled according to the model parameters. For the

FIGURE 9 |Mathematical optimal solutions (Pareto frontier) for simultaneous optimization of multiple objectives: (A) deposition rate and grain size, (B) deposition
rate and porosity, (C) deposition rate and surface roughness, (D) grain size and porosity, (E) grain size and surface roughness, and (F) porosity and surface roughness.
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smooth surface, the processes with lower deposition rates are
beneficial, while higher deposition rates lead to coatings with
rough surfaces.

For a multi-objective decision-making problem, consideration of
dual objectives seems to be still incomplete. Therefore, the objectives
including grain size, porosity, and surface roughness are further
synthesized, as shown in Figure 11. In the figure, the grain size
against the model parameters is plotted as the heatmap, and the
contour of the solid lines demonstrates the porosity, while the
contour of the dash lines indicates the level of roughness.
Furthermore, the optimal points for dual objectives are also
recommended by Pareto front calculation. Overlapping regions
are found among the Pareto front related to grain size against
the porosity and surface roughness, where the surface diffusion
coefficient D is of a lower level. Two distinct regions are suggested,
that is, the one with B from 0.3 nm2 s to 0.5 nm2 s, and the other,
from 0.85 nm2 s to 1.0 nm2 s. For the region with B of smaller
magnitude, the grain size is prone to change along with the
vapor–solid transition velocity. As for the region with B of larger
magnitude, the deposition rate is higher than that of the others.

Recalling the experimental results with relatively better coating
properties reported by Wang et al., (2015), it is found that the
corresponding result (marked as star symbol in Figure 11) exactly
lies in one of the previously recommended regions, which clearly
proves the reliability of the present strategy of screening the optimal
model/process parameters for best coating properties. Furthermore,
based on Figure 11, another potential processing window with a
higher deposition rate is also suggested for industrial production,
though the corresponding porosity and surface roughness are of a
less promising level. As shown in Figure 11, the quantitative relation
between the model parameters and coating properties (i.e., porosity,
surface roughness, and grain size) has been established, whichmeans
that once the optimal model parameters are acquired, different
coating properties can be quantitatively predicted, or when the
coating properties are determined according to practical needs,
the optimal combination of model parameters is expected to be
inferred. Then, on the basis of the parametric relation between the
model parameters and process parameters established in the work of
Section 3.1, the process parameters (such as the bias voltage here)
can be reversely traced, as shown in Figure 4. Coordinating the

FIGURE 10 | Screening window of the model parameters for best coating property combination of: (A) deposition rate and grain size, (B) deposition rate and
porosity, and (C) deposition rate and surface roughness.

FIGURE 11 | Screening window of the model parameters for best coating property combinations of grain size, porosity, and surface roughness, compared with the
best experimental result (Wang et al., 2015).
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research results of Section 3.1 and this section, the quantitative
relation of “process-microstructure-properties” can be established.

4 CONCLUSION

• The growth processes of TiN coatings prepared by PVD
(specifically HiPIMS) under different process parameters
were reproduced by phase-field simulations with different
sets of model parameters. The parametric relation among
the process parameters (i.e., bias voltage), model
parameters, and different coating properties was then
successfully established by correlating between the phase-
field simulation results and the limited experimental data.

• A hierarchical multi-objective optimization-based approach
for a comprehensive design of the best coating properties
and the corresponding optimal process windows was
proposed and successfully applied in PVD TiN coatings
based on the quantitative phase-field simulations. The
screened windows for PVD TiN coatings were validated
to be consistent with the optimal experimental results.

• It is anticipated that a combination of 3-D quantitative
phase-field simulation and hierarchical multi-objective
optimization strategy should be feasible for the high-
throughput screening of optimal process parameters for
different PVD coatings with best properties.
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