
Estimation of inorganic crystal
densities using gradient boosted
trees

Jesse Zhao*

Dougherty Valley High School, San Ramon, CA, United States

Density is a fundamental material property that can be used to determine a

variety of other properties and the material’s feasibility for various applications,

such as with energetic materials. However, current methods for determining

density require significant resource investment, are computationally expensive,

or lack accuracy. We used the properties of roughly ~15,000 inorganic crystals

to develop a highly accurate machine learning algorithm that can predict

density. Our algorithm takes in the desired crystal’s chemical formula and

generates 249 predictors from online materials databases, which are fed into

a gradient boosted trees model. It exhibits a strong predictive power with an R2

of ~99%.
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Introduction

As the demand for newer materials increases, being able to determine their properties

quickly and accurately becomes a critical step in the development process. The density of a

crystal is of great significance as it impacts its feasibility for certain functionalities in

industrial settings. For instance, crystal density heavily affects the detonation velocity and

detonation pressure of energetic materials, meaning that an accurate estimation of

detonation performance relies on accurate density (Keshavarz et al., 2015). There are

presen tly several large databases that store the density as well as other important

properties of large numbers of crystals to help researchers (Bruno et al., 2017). However,

there is still data that is not readily available to researchers due to the innovative nature of

materials science, requiring them to calculate properties like density themselves.

Currently, there are no fast and reliable methods to assess the density of a crystal before it

has been synthesized. Researchers are forced to rely on a battery of tests based on trial and

error, which consumes large amounts of time and resources. Developing a material from

scratch and realizing it does not have the appropriate properties after a long testing period is

simply not viable long-term. Only computational methods predicting material properties in

silico are still valid. Generally, present in silico calculations use crystal structure prediction

(CSP) to find the density of a single crystal, use “group addition” methods (GAM), or use

density functional theory (DFT) in combination with quantitative structure-property

relationship (QSPR) (Wang et al., 2020). CSP based on first-principle calculations can
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provide reliable information, but it is often very computationally

expensive as it requires sampling numerous space groups and unit

cells to create a set of candidate structures, then calculating the global

minimum energy to predict a plausible crystal packing (Graser et al.,

2018; Oganov et al., 2019). Deep learning variations of CSP offer a

faster alternative but at the cost of predictive accuracy (Ryan et al.,

2018; Liang et al., 2020). GAM fails to take account of predictors that

are needed to determine density and requires manually identifying

substructures, making it inaccurate and unfeasible for processing

large datasets (Wang et al., 2020). DFT + QSPRmodels are used the

most, but most instances are trained on <300 samples and few

predictors, leading to inaccuracy (Wang et al., 2020).

Accurate density estimation requires an approach that allows the

utilization of large amounts of predictors to draw patterns. Machine

learning (ML) approaches have been exceptionally proficient at

analyzing trends in data to create highly accurate estimates. In

particular, the large number of estimators present in tree-based

ensemble algorithms allows for highly complex conclusions to be

made from relatively small data sets. There have been many past

instances where ML approaches have been successful in predicting

the properties of materials, including melting temperatures (Seko

et al., 2014), bandgap (Xie and Grossman, 2018), wettability (Kim

and Li, 2022), and many others (Sumpter and Noid, 1996; Pilania

et al., 2013; Srinivasan and Rajan, 2013; Meredig et al., 2014; Menon

et al., 2019; Manzoor et al., 2021; Viatkin et al., 2021). While there

have been no research onML approaches in predicting the density of

inorganic crystals, ML models have been created to estimate the

crystal density organic compounds distinguished as high explosives

using chemical structures, achieving a maximum performance of an

R2 of 0.914 and root mean square error (RMSE) of 0.044 (Nguyen

et al., 2021).

This paper presents an ML model that can estimate the density

of stable inorganic crystals at ground state given its chemical

formula. Using gradient boosted trees, we achieve a good test

accuracy with an R2 of ~0.99 and an RMSE of 0.31. Our model

is certainly not as accurate in predicting a specific subset of materials

as the RMSE is significantly greater than previous models predicting

crystal density of high explosives. However, our model has a higher

R2 value, suggesting greater generalizability to a variety of

applications. The mean absolute percentage error of our model is

just 4%. These accuracies are ultimately not comparable due to the

significantly different factors affecting crystal structure and density

between organic and inorganic compounds. We use predictors

generated from the crystal’s chemical composition. Given

polymorphism, the model’s output is always of the most stable

polymorph with the lowest energy above hull. This model can be

integrated into a high-throughput screening of possible inorganic

crystals, whether for their candidacy as energetic material or for

other purposes. Its estimations of crystal density are applicable to the

tap density of powder materials, where porosity rather than crystal

density is the biggest source of error. However, it cannot be used in

applications such as in cantilever resonators, where highly accurate

densities are required. Themodel also provides insight into themain

factors that affect the density of inorganic crystals.

Methods

Data collection and featurization

Using pymatgen (Ong et al., 2013), we initially retrieved

approximately 32,000 inorganic crystals from the Materials

TABLE 1 List of predictors used in the machine learning modeling.

Category Predictor Category Predictor

Magpie Atomic Number Other Stoichiometry p-norm (p = 0,2,3,5,7)

Mendeleev Number Elemental Fraction

Atomic Weight Fraction of Electrons in each Orbital

Melting Temperature Ionic compound is formable

Column (on Periodic Table) Ionic charge

Row (on Periodic Table)

Covalent Radius

Electronegativity

Number of valence electrons in each orbital (s, p, d, f)

Total number of valence electrons

Number of unfilled states in each orbital (s, p, d, f)

Total number of unfilled states

Ground state specific volume

Ground state bandgap

Ground state magnetic moment

Ground state space group number
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Project database (Jain et al., 2013) along with their corresponding

densities and energies above hull. To solve for polymorphism, we

kept only the polymorphs with the lowest energy above hull. To

ensure less noise in our data from unstable compositions, we also

filtered out all crystals with an energy above hull of above 0.05 eV/

atom, leaving roughly 15,000 crystals.

We extracted each crystal’s features using MatMiner, an open-

access Python library that is designed for data mining material

properties (Ward et al., 2018). To keep the model applicable, we

chose from the composition-based featurizers that MatMiner offers.

We used the “ElementProperty” class with the “Magpie” preset to

extract statistics (i.e., average deviation, range, minimum, maximum,

and mode) of 22 different elemental features, such as the number of

valence electrons in each orbit and electronegativity, calculated by

rule of mixture. We chose this preset because it accounts for a wide

range of properties in various aspects, including chemical and

magnetic, from which the algorithm can learn. It should, however,

be noted that some of the features are based on condensed matter

properties. The “Magpie” preset returns features like melting

temperature and bandgap, which are not inherent to any element.

These properties are likely calculated from pure compounds.

However, MatMiner returns constant values for each property

with respect to elemental fractions. We also used several other

composition-based packages, including the “Stoichiometry” and

“ElementFraction” packages, which include numerous additional

features that provide information about specific elemental ratios,

valence orbit ratios, etc., for a total of 249 features. A full list of features

can be found in Table 1. These features were used as parameters used

to predict density. Any null values were imputed with 0.

Machine learning

To model the data, we used the gradient boosted trees

regressor implemented in the XGBoost Python package (Chen

and Guestrin, 2016). We randomly split the data in the ratios of

90 and 10% for training and testing, respectively. No

preprocessing was performed on the data.

We optimized hyperparameters including the number of

estimators, the max depth of each tree, the learning rate, and

the column subsampling proportion using the randomized search

algorithm implemented in the scikit-learnPython package. Greater

depth and number of estimators mean that the model can model

the data with greater complexity, thus reducing “bias”. However, it

also means the model may be subject to overfitting in which they

learn noise, increasing “variance”. Other hyperparameters like

column subsampling proportion are used to decrease variance,

regularizing the model. These hyperparameters were crucial in

reducing bias without overly compromising variance.

TABLE 2 Mean impacts on R2 for the ten most important predictors
using permutation-based feature importance. R2 originally had an
approximate value of 0.99

Shuffled predictor Mean impact on
R2 (95% confidence)

Mean number of f-valence electrons −0.160 ± 0.002

Mean ground state specific volume −0.049 ± 0.001

Fraction of s-valence electrons −0.032 ± 0.000

Fraction of p-valence electrons −0.027 ± 0.000

Maximum atomic number −0.024 ± 0.000

Mean atomic number −0.014 ± 0.000

Mean atomic weight −0.012 ± 0.000

Minimum number of valence electrons −0.012 ± 0.000

Mean melting temperature −0.012 ± 0.000

Mean electronegativity −0.009 ± 0.000 FIGURE 1
Results of regression model predicting density (g/cm3). The
prediction accuracy (R2) is approximately 0.99.

FIGURE 2
Scatterplot of the density (g/cm3) versus the mean number of
f-valence electrons in crystals.
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Results and discussion

Regression model

The gradient boosted trees algorithm is an ensemble

algorithm that combines weak learners into a single strong

learner iteratively. Decision trees evaluate an input based on

conditions at each node, which are determined through model

training. They can be thought of as a nested if-else statement or as

a piecewise function. In the gradient boosted trees algorithm, a

decision tree is fitted to the data, and successive decision trees are

fitted to the residual of their predecessors, hence “boosting” the

model with every iteration (Friedman, 2001).

We chose to use the XGBoost implementation of gradient

boosted trees due to its high performance in learning complex,

localized relationships, as well as its good generalizability

(Nielsen, 2016). The complexity is required because the model

must learn the sophisticated interactions of atoms in crystals to

create a generalized function for density. Small changes in the

interactions may change crystal structure, and therefore density,

completely. XGBoost can adapt the sizes of local

“neighborhoods”, which can be thought of as the subfunctions

inside a piecewise function, to fit the data (Nielsen, 2016). Its

adaptiveness allows it to learn both general trends as well as

individual areas of complexity, meaning it canmaintain a balance

between bias and variance (Nielsen, 2016). Our data is also highly

varied. For instance, some predictors such as mean atomic weight

are dense by nature while others like elemental fraction are

sparse. The data occupies drastically different scales as well.

Mean atomic weight stretches from 0 to upwards of 200 while

elemental fraction spans only from 0 to 1. This heavily skews

feature importance towards large features while neglecting

smaller ones. Traditional methods would require

preprocessing the data through normalization and

transformations. XGBoost is generalizable to a wide

assortment of data, including dense and sparse data (Nielsen,

2016). In addition, decision trees treat features individually,

removing the problem of differing scales. These characteristics

make XGBoost highly applicable to the problem at hand.

Figure 1 shows the results of the regressor in predicting

density over the test set. The average R2 value is ~0.99 with a

margin of error of 0.001 at 95% confidence, showing a very

strong predictive power. The average RMSE is ~0.31. More

detailed information on the accuracy of this and other models

based on several metrics are summarized in Supplementary

Material.

Feature importance

Given a trained model, the relative importance of each of the

predictors can be calculated via permutation-based feature

importance (Altmann et al., 2010). The values of a predictor

are randomly shuffled, thus randomizing its value while

preserving the distribution of the variable. The change in the

model’s performance is then calculated, and the shuffled

predictors that impact performance the most are consequently

the most important predictors.

Table 2 describes the mean impacts of the tenmost important

predictors on R2 calculated via permutation-based feature

importance. Note that R2 had an original value of 0.99 over

the entire dataset with the model used. The mean number of

valence electrons in the f-orbital is clearly shown to be the most

important predictor by a significant margin. As shown in

Figure 2, there is a remarkable relationship between the mean

number of f-valence electrons and density. The number of

f-valence electrons is naturally correlated with density, as a

greater number of f-valence electrons suggests a greater

atomic weight. The correlation can also be explained by the

bond valence model, which describes an inverse relationship

between bond valence and bond distance (Brown, 1978). With

more f-valence electrons, the bond distance of crystals would

decrease, leading to tighter crystal packing and greater density.

Notice that the model uses the mean number of f-valence

electrons in the crystal above other representations, while it

prefers the fraction of the total valence electrons for s-valence

electrons and p-valence electrons. The second most important

predictor, specific volume at ground state, is more clearly

associated with density as it helps provide the model with a

ballpark regarding the volume of the crystal. Most of the

strongest predictors are either associated with mass or valence

electrons. While the effects of microstructure are also essential to

calculating the density of materials, they are outside of the scope

of this study.

XGBoost models also provide their own built-in methods

for computing feature performance. It provides a slightly

FIGURE 3
Results of distilled regression model predicting density (g/
cm3). The prediction accuracy (R2) is approximately 0.98.
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different picture of the ranking of the most important

predictors. One example is that the fraction of ground state

specific volume is ranked as the sixth most important

predictor rather than the second most. XGBoost uses gain-

based importance, which is derived from the training dataset.

Because gain-based importance is not calculated using unseen

data, it does not take overfitting into account. Based on the

discrepancies between the rankings, we observe that

predictors relating to melting temperature among others

tend to be overfit. A table of the top ten most important

predictors as calculated by XGBoost can be found in

Supplementary Material.

224 of the predictors used had a measured impact of less than

0.001 on R2. We used the calculated feature importance to distill the

model by iteratively removing insignificant predictors, training the

model, and measuring accuracy. We also removed mean atomic

weight, as it is highly correlated with mean atomic number but

considered less important. While multicollinearity is not an issue for

boosted tree algorithms, this served to further distill the predictors

needed, leaving a total of 7. These predictors were the 7 most

important predictors as listed in Table 2, not includingmean atomic

weight. Using just the 7 predictors, the model was able to achieve an

accuracy of ~0.97. Figure 3 shows the results of the distilled regressor

in predicting density over the test set.

FIGURE 4
Results of extrapolation to crystals with higher energies above hull. (A) Results of the regressionmodel predicting densities (g/cm3) of all crystals
with an energy above hull above 0.05 eV/atom. It has a prediction accuracy (R2) of approximately −0.40. (B) Results of a regression model trained on
all crystals predicting the densities of the test set, which is sampled from all crystals. It has a prediction accuracy (R2) of approximately 0.70.

FIGURE 5
Scatterplot of density (g/cm3) versus mean atomic weight (u) for all crystals with an energy above hull below (A) 0.05 eV/atom (B) 0.5 eV/atom
(C) 2.5 eV/atom (D) no limit.
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Extrapolation to crystals with higher
energy above hull

There may come instances where calculating the densities

of unstable or metastable crystals is necessary. Figure 4A

depicts the results of the regressor in predicting crystals

with an energy above hull over the trained threshold of

0.05 eV/atom. The model has a significantly worse accuracy

of approximately −0.40. The residuals show a clear diverging

trend of overprediction, which provides the greatest source of

error in the model. We trained a new regressor using the same

parameters and hyperparameters, but on all crystals,

regardless of energy above hull. As portrayed in Figure 4B,

the results of the new regressor in predicting the test set were

also relatively poor, with an accuracy of approximately 0.70.

There is a clear diverging trend of overprediction as well.

The cause is evident when considering Figure 5, which

shows the scatterplot between density and mean atomic mass of

the crystals in the dataset at several different energy caps. The

higher the energy cap, the stronger the diverging trend,

indicating that unstable crystals in the dataset have a strong

association with having an abnormally low density. Given their

low density, these crystals are most likely two-dimensional

crystals. Analysis of individual datapoints that fall within the

trend shows that most crystals are in either the mmm or the 4/

mmm point groups, and many are part of the orthorhombic

crystal system. Two-dimensional crystals do not have a well-

defined volume, so the model can not feasibly predict their

density.

However, we can still extrapolate the model to metastable

crystals. Figure 6 illustrates the change in model accuracy across

higher maximum energy above hull value caps. The model

maintains a acceptable predictive power of over 0.80 for

crystals with an energy above hull up to 0.65 eV/atom,

demonstrating a level of generalizability. Initially training the

model on crystals with an energy above hull below 1.0 eV/atom

leads to better results, with an accuracy of 0.97 on the test set.

However, note that there are less crystals with a greater energy

above hull, so they are underrepresented in the test set. Training

on all crystals regardless of energy above hull is also ultimately

not viable because it reduces accuracy for stable crystals as well.

Figure 4B shows how, while the diverging trend is overpredicted

on, there is also a light spread of outliers that are underpredicted

on as well. These datapoints are estimated with much greater

accuracy with the original model. The performance of various

models trained and tested as such is summarized in

Supplementary Material.

Conclusion

We have developed an ML model that can predict the densities

of inorganic crystals based on chemical composition using the

XGBoost implementation of the gradient boosted trees algorithm.

After training on ~15,000 datapoints retrieved from the Materials

Project database with an energy above hull of below 0.05 eV/atom,

we have achieved a testing accuracy of ~0.99. Using the model, we

have identified the key predictors, which provide insight into the

factors affecting density and crystal structure. We have also found

that the model is unable to generalize to two-dimensional crystals.

However, most two-dimensional crystals in the dataset are unstable,

suggesting that the model can accommodate at least metastable

crystals with relatively low error. In this paper, we have

demonstrated that ML can be used to create models that provide

highly accurate estimations of the density of inorganic crystals, for

stable ground states.
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