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The quantification of spatially variable mechanical response in structural materials remains
a challenge. Additive manufacturing methods result in increased spatial property
variations—the effect of which on component performance is of key interest. To assist
iterative design of additively manufactured prototypes, lower-cost benchtop test methods
with high precision and accuracy will be necessary. Profilometry-based indentation
plastometry (PIP) promises to improve upon the instrumented indentation test in terms
of the measurement uncertainty. PIP uses an isotropic Voce hardening model and inverse
numerical methods to identify plasticity parameters. The determination of the baseline
uncertainty of PIP test is fundamental to its use in characterizing spatial material property
variability in advanced manufacturing. To quantify the uncertainty of the PIP test, ninety-
nine PIP tests are performed on prepared portions of a traditionally manufactured Al 7075
plate sample. The profilometry data and the Voce parameter predictions are examined to
distinguish contributions of noise, individual measurement uncertainty, and additional set-
wide variations. Individual measurement uncertainty is estimated using paired profilometry
measurements that are taken from each indentation. Principal component analysis is used
to analyze and model the measurement uncertainty. The fitting procedure used within the
testing device software is employed to examine the effect of profile variations on plasticity
predictions. The expected value of the error in the plasticity parameters is given as a
function of the number of tests taken, to support rigorous use of the PIP method. The
modeling of variability in the presence of measurement uncertainty is discussed.

Keywords: uncertainty quantification (UQ), indentation testing, aluminum 7075 alloy, high-throughput testing,
profilometry, finite element method, FEM, plasticity

1 INTRODUCTION

Additively manufactured (AM) metal components present new opportunities to simplify and
improve high performance designs (Bajaj et al., 2020; Beaman et al., 2020; Allavikutty et al.,
2021; Relativity Space, 2022). The obstacle to these applications is often the validation of component
reliability, due to AM metal-endemic high defect concentrations and highly variable microstructure
(Bermingham et al., 2015; Collins et al., 2016; Kok et al., 2018; Cocke et al., 2021; Snider-Simon and
Frantziskonis, 2022). Empirical reliability testing can be used to capture failure rates (Samuel et al.,
2018; Coro et al., 2019), but is too slow to inform design processes easily (Jared et al., 2017; Wiberg
et al., 2019; Biedermann and Meboldt, 2020). Computational modeling of the reliability of additively
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manufactured components is thus of great interest (Hu and
Mahadevan, 2017; Herriott et al., 2019; Cocke et al., 2021;
Mahadevan et al., 2022; Snider-Simon and Frantziskonis,
2022). Broadly, approaches to modeling of spatially variable
material properties are either full-field physics-based or
reduced order, data-driven approaches.

Full-field, physics-based models of spatially varying properties
depend on accurate physical models of microstructure generation
and on validated models of material response that are sensitive to
microstructure. Microstructure sensitive models of metal
plasticity (McDowell, 2008; Yin et al., 2008; Wronski et al.,
2018; Wen et al., 2020) can be used to produce expected bulk
property variation for a given set of microstructure generating
statistics (Adams et al., 2012, 2013a, 2013b; Groeber and Jackson,
2014; Diehl et al., 2017) by using many simulations of statistical
volume elements (smaller than representative volume elements)
of the microstructure (Kanit et al., 2003; Ostoja-Starzewski, 2006;
Yin et al., 2008). Furthermore, the physics of the AM process can
be used in lieu of statistics to instantiate microstructures (Herriott
et al., 2019). Validating these complex models can be problematic
primarily due to their need for data at multiple length and time
scales. Recent progress in using full field data to calibrate the
complex microstructure sensitive models has incorporated digital
image correlation (Avril et al., 2008; Mello et al., 2017; Durmaz
et al., 2022) and high resolution diffraction contrast tomography
(Pokharel et al., 2014, 2015; Pandey and Pokharel, 2021). These
procedures greatly improve the validation of microstructure
sensitive models, but they are not high-throughput
methodologies.

Reduced order and data-driven models of spatially varying
properties use simplified formulations and often larger
databases to reduce computational expense. Such methods
are crucial to reliability modeling that includes
microstructure-induced variability. For instance, invertible
surrogate modeling is a valuable tool to accelerate the
expensive crystal-plasticity FEM simulations of
microstructure sensitive models in calibration with
experiments (Yuan et al., 2018). Furthermore, results of the
full simulation of the fabrication process can be approximated
using a simplified model (Snider-Simon and Frantziskonis,
2022). The models of variability in this context must be able to
clarify each relevant source of variability to support clear
comparisons with validation data (Khalil et al., 2021). The
quantification of each source of variability (porosity, grain
morphology, crystallographic texture, etc.) requires additional
experimental data in addition to careful statistical modelling.

To test and improve reliability models, high-throughput
testing of components is needed. To establish precise
estimates of the variation (in addition to the mean) of a
property of interest, data collection methods must provide
validation sets with statistically significant sample sizes
(Boyce et al., 2017; Salzbrenner et al., 2017). Many
methods have been considered, including fabrication of
tensile specimens (Salzbrenner et al., 2017),
nanoindentation (Kalidindi et al., 2010, 2016; Pathak and
Kalidindi, 2015), and instrumented indentation testing
(Herbert et al., 2001, 2006; Buljak and Maier, 2011;

Campbell et al., 2021). Indentation based testing is
advantageous in terms of speed and material volume, but
the identification of plastic response is typically subject to
large scatter due to the method (Campbell et al., 2021).
Innovations in indentation-based testing have used FEM
simulations to improve the consistency of property
estimates (Cao and Lu, 2004; Syngellakis et al., 2017).
Further improvements to the reliability of these approaches
may yet be realized.

Profilometry-based indentation plastometry (PIP) is a recently
developed indentation-based approach with growing research
activity (Campbell et al., 2018, 2019, 2021; Burley et al., 2021;
Tang et al., 2021; Gu et al., 2022). The technique has been shown
to support prediction of bulk tensile specimen response for many
ductile metals (Campbell et al., 2019, 2022; Tang et al., 2021; Gu
et al., 2022). Crucially, PIP’s FEM-based fitting procedure
reproduces the indentation profile, rather than a load-
displacement curve, thus mitigating the identifiability problem
(i.e. the non-uniqueness problem) that is typical of the
indentation test (Campbell et al., 2019). The magnitude of this
improvement has not yet been tested in the use-case of capturing
material spatial variability. Furthermore, the qualification of a test
for capturing spatial variations in bulk metal plasticity is not well-
established.

The purpose of this work is to investigate the uncertainty of
a large set of PIP measurements. To highlight the uncertainty
of the PIP measurements, a traditionally manufactured
wrought sample of Al 7075 plate was selected to allow the
variation in measurements to be small. By considering the
sources of uncertainty in the measurement set, the resolution
limit of the PIP test is established. Potential modifications of
the PIP test for improved precision are also investigated. An
overview of the uncertainty quantification (UQ) framework is
given in Section 2. The experimental data collection is given in
Section 2.1. The FEM approach used to estimate plastic
response is given in Section 2.2. The uncertainty analysis
methods are given in Section 2.3. The results of the
uncertainty quantification are given in Section 3. The
discussion of the relative impact of different sources of
uncertainty is given in Section 4, alongside proposed
improvements to the PIP methodology to support
quantification of spatial variation in plastic response.

FIGURE 1 | A schematic drawing of the UQ, uncertainty quantification
framework of the PIP experiments. The test is repeated at multiple locations
within the sample to produce multiple observations of indentation
profilometry. Themodel and fitting procedure are kept fixed to produce a
set of property estimates that reflect the effects of different categories of
uncertainty. The UQ will estimate the contribution of each category listed, as
explained in Section 2.3.
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2 MATERIALS AND METHODS

The UQ in this work includes two key aspects that are omitted in
typical UQ studies: 1) experimental data collection and 2)
uncertainty sources not captured by the model. Broadly, UQ
mostly focuses on a computational model only, in terms of the
relationship between variations in input parameters and output
predictions. Here, the subject of the UQ is a combined model and
experiment (PIP). Furthermore, the experimental data contains
variations, only some of which are captured by the model. Here,
both captured and uncaptured variations will be investigated,
whereas typical UQ only studies variations captured by the
model. A schematic overview of the UQ framework employed
in this manuscript is shown in Figure 1. The implications of this
novel UQ framework on the integration of experimental data
collection and modeling is further explored in Section 4.

2.1 Material and Experimental Details
Aluminum 7075 alloy with temper designation T651 (Al 7075-
T651) having density of 2.81 gcm−3, acquired in the form of a
plate (McMASTER-CARR, 9037K11), was investigated. Two Al
7075-T651 specimens were prepared. For PIP, a 65 × 50 × 5 mm3

rectangular specimen was sectioned using a high-speed saw. The
specimen was ground using silicon carbide papers from 400 to
1200 grit to achieve a smooth surface for indentation.

To characterize microstructure, a 7 × 8 × 5 mm3 rectangular
specimen was sectioned. This sample was mounted in an epoxy
resin and ground using silicon carbide papers up to 1200 grit.
Final polishing of the sample was performed using 1 µm alumina
and 0.05 µm silica suspension to a mirror finish. This was etched
by Keller’s reagent for 45 s until the grain boundaries were
revealed. Optical microscopy (Zeiss, Axio Lab A1) was used to
observe the microstructure of the Al 7075-T561 specimen. The
microstructure is shown in Figure 2. A schematic drawing of the
uncertainty quantification (UQ) framework of the PIP
experiments. The test is repeated at multiple locations within
the sample to produce multiple observations of indentation
profilometry. The model and fitting procedure are kept fixed

to produce a set of property estimates that reflect the effects of
different categories of uncertainty. The UQ will estimate the
contribution of each category listed, as explained in Section 2.3.

Grain size was estimated to be 135 ± 70 µm using the linear
intercept method detailed in ASTM E112 (ASTM
INTERNATIONAL, 2010). Importantly, the observed grain
size distribution is much lower than 500 μm, i.e., the threshold
for the PIP test. Below the threshold, variability in local
microstructure is not expected to affect the accuracy of
indentation predictions, as the plastic zone is estimated to
contain at least a few dozen grains (Clyne et al., 2021).

A total of 99 PIP tests were conducted using an Indentation
Plastometer (Plastometrex, PLX Indentation Plastometer v.1.0)
equipped with an indenter tip, linear variable displacement
transducer (LVDT), and a profilometer. The indenter tip is
made of hard tungsten carbide spherical ball bearing with a
radius of 1 mm. A LVDT is used for position control of the
indenter and the profilometer with a resolution of 0.3 µm. The
measurement of the indent profile is performed by a contacting
stylus profilometer with a resolution of 0.4 µm. Before conducting
the experiments, the elastic constants of aluminum alloy, such as
Young’s modulus and Poisson’s ratio, were assigned in the FEM
model using the dedicated software, “Software for the Extraction
of Material Properties from Indentation Data” (SEMPID)
available with the instrument. The instrument applied a
compressive force on the sample to achieve an approximate
penetration depth of 120 µm. The spacing between two
adjacent indents was kept at 3 mm such that volumes of
plastic deformation do not interact. The sample after
indentations were taken is shown in Figure 3. After
performing the indentation, the profilometer scanned the
indent in two mutually perpendicular directions along the
horizontal plane of the surface through the central axis of the
indent. The target force (1250 or 1300 N) and the indenter profile
measurements were used in the included fitting procedure, to
estimate plasticity parameters.

FIGURE 2 | Optical micrograph of the Al 7075 T651 plate. The
representative average grain size is 135 ± 70 µm estimated by line intercept
method.

FIGURE 3 | A picture of the sample after indentation measurements
were taken. Indentations in excess of 99 were discarded due to loss of data.
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2.2 Plasticity Modeling
In the PIP method, a numerical simulation (FEM) is used to infer
plasticity from the indentation profile associated with a known
indentation load. The relationship is inverse, so the simulation
must be performed iteratively to optimize the parameters of the
plasticity model to reproduce the observed profile. This process
has been thoroughly documented elsewhere (Campbell et al.,
2021; Clyne et al., 2021). The following overview is included to
support discussion of uncertainty quantification.

The material is modeled as an isotropic, homogeneous, elasto-
plastic solid (Campbell et al., 2018, 2019). Plastic strains are
assumed to be consistent with the Voce Hardening model (Voce,
1948), i.e.,

σ � σs − (σs − σy)exp(−εp
ε0

) (1)

where σ, σs, and σy, (MPa) are the von Mises stress, saturation
stress, and yield stress respectively, while εp and ε0 are the
effective von Mises plastic strain and the characteristic strain,
respectively (Campbell et al., 2021; Clyne et al., 2021). The value
of ε0 affects the strain hardening rates, and σs controls the
theoretical maximum hardening the material can support.

The parameter values are determined by fitting the
experimentally measured indentation profile z(r)exp through
iterative FEM simulation of indentation to obtain a modelled
profile z(r)mod. The comparison of profiles z(r)exp and z(r)mod is
evaluated in terms of a mean of squared errors, evaluated over a
set of interpolation points. In practice, the fitting parameters used
in the PIP procedure are slightly different from the Voce
parameters as seen in literature. The excess stress,
i.e., σe � σs − σy, the yield stress, and the inverse characteristic
strain are the three fitting parameters identified by PIP, i.e.,

σ � (σe + σy) − σe · exp( − εp
1
ε0
) (2)

A look-up table of simulations results is referenced to find the
best values of the three fitting parameters from a coarse grid of
stored results. This acceleration allows the results of an iterative
FEM process to be obtained within seconds on a standard desktop
computer.

The misfit between the modelled profile and the experimental
profile is calculated in a specific way to be robust to slight
variations in applied load. For any look-up table approach, the
number of pre-run simulations needed scales with the number of
distinct indentation loads allowed in the indentation. In SEMPID,
the possible indentation loads are multiples of 50 N (1200, 1250,
1300 N, etc.). This is referred to as the target load. PIP captures
the measured load (obtained from the LVDT during the test) in
addition to the target load. In the set of indentations made in this
work, the measured load varied by up to 15 N from the target
load. These variations in load (perhaps due to controller
imprecision) have effects on the profilometry. To
accommodate slight variations in experimental indentation
displacement, the modelled profiles are all raised or lowered to
be coincident with the experimental profile at r � 0. As a result,
modelled profiles with identical plastic parameters associated

with different indentations have slight variations in z,
uniformly over r.

The data obtained from the PIP tests and plasticity parameter
estimates are the subject of this work, whereas the uncertainty
quantification are the results. Thus, the plasticity estimates are
shown here. The parameter estimates obtained for the 84
indentations are shown in Figure 4. Each parameter is shown
as an empirical cumulative distribution function (ECDF), to
highlight the regular spacing between the possible parameter
values. A normal distribution fit to the SEMPID results is also
shown, to provide comparison with the marginal distributions of
the parameter estimates. The PIP test captures a weighted average
of the response of the deformed grains, so the Central Limit
Theorem indicates a normal distribution is appropriate. The best
fit with the normal distribution is shown by the yield stress. The
other plasticity parameters exhibit high standard deviations
relative to their mean predicted values. This is likely a result
of a poorly conditioned relationship between the parameters and
the data, i.e., an identifiability problem.

The joint distribution of the Voce parameter estimates from
SEMPID are shown in Figure 5. The variations in the three
parameters are highly correlated. High correlation can be an
indication of problems with parameter non-uniqueness.
Importantly, the variations in the parameters are due to small
variations in the measured indentation profiles. The analysis of
these profile variations is presented in Section 2.3.

2.3 Uncertainty Quantification
PIP is typically performed once on a sample. In the current work,
repetition of PIP is explored. The plate material is expected to
show very little spatial variation in plasticity as the processing
history is consistent throughout the sample. Nevertheless, small
differences between indentation profiles can have non-negligible
effects on plasticity predictions, as shown previously in Figure 5.
The categorization of the sources of uncertainty present in the
collected data is a key objective of this work. In other words, this
work identifies what uncertainties exist in the individual
measurements from PIP, and whether the variation in a set of
measurements (referred to as set uncertainty, SU) can be
distinguished from individual measurement uncertainties
(indicated as measurement uncertainty, MU). To leverage PIP
as a high-throughput mechanical property test, these
uncertainties must be quantified. This work focuses on the
profilometry measurements; however, issues of parameter non-
uniqueness and model form uncertainty are discussed in
Section 4.

The use of PIP to gather statistical data on a material can be
considered as a data collection and an inference. The data
collection provides profilometry data and associated load
measurements. The inference step performs noise filtering and
plastic parameter estimation via curve fitting. The curve fitting
procedure is not altered in this work--uncertainty in the data
collection is the focus. Further, each source of uncertainty is
interpreted in terms of the effect it has on plastic parameter
estimates. Measurement noise, MU, and SU are all quantities of
interest in this work. Table 1 shows a summary of the likely
contributions to each of the quantities of interest. It is noted that
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15 profiles are removed prior to the analysis of noise and
measurement uncertainty to limit the study to profiles from a
similar load. The effect of this on the interpretation of the results
is discussed in Section 4.

In the current statistical work, it is crucial to distinguish noise
from other sources of uncertainty. Discrepancy between the
model assumptions and the actual specimen (both in geometry
and material response) is likely to present in the MU and is
distinct from noise. The isolation of the discrepancy to specific
physics missing from the model requires additional modeling
work. However, measuring MU as a category provides an
estimate of the extent of such effects. After noise is filtered
out, the MU (including the effects of material inhomogeneity,
for instance) may be estimated with greater specificity and

accuracy, improving any future comparisons to microstructure
sensitive modeling. It is noted that in typical PIP usage, both noise
and MU are of limited significance.

The choice of noise filtering method can affect plasticity
parameter predictions. The Plastometrex analysis interpolates
the experimental profiles before calculating fit to a model,
filtering out noise in the process. This is also known as
downsampling. Typically, a low-pass filter is employed prior to
downsampling (Buades et al., 2005; Rao, 2012). A low-pass filter
is used to give a comparison to the default Plastometrex
approach, and both methods are described in the
Supplementary Material. For each experimental profile, the
fitting procedure detailed in Section 2.2 is performed against
all the modelled profiles obtained while gathering the PIP results.

FIGURE 4 | The marginal ECDFs, empirical cumulative distribution functions of the SEMPID plasticity parameter estimates from the PIP test set with 1250 N target
indentation load, for the yield stress (A), the excess stress (B), and the inverse of the characteristic strain (C).

FIGURE 5 | The joint distribution of the SEMPID plasticity parameter estimates from the PIP test set with 1250 N target indentation load. Coincident data are
combined, and the size of the plotted point indicates the number of observations at that coordinate of parameter values.

TABLE 1 | A summary of the likely contributing factors pertaining to each of the categories of uncertainty present in the experimental data set. The influence of the factor
marked with an asterisk is not examined in this work.

Measurement Noise Individual Measurement Uncertainty
(MU)

Observation Set Variability
(SU)

• Profilometer sensor
noise

• Surface roughness • *Differences in target load (Analysis limited to P = 1250 N, 84 of 99 tests)
• Surface tilt • Measured load variations from target load
• Orientation of grains in plastic zone (towards direction of

measured profile)
• Differences in the indentation displacement due to spatial variation in

material/microstructure
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When the noisy experimental profile and the filtered profile fit
best with different modelled profiles, this indicates that the noise
filtering process non-negligibly altered the information contained
in the profile.

A comparison of the two noise filtering techniques is shown in
Figure 6, which plots the predictions of yield strength after each
noise filtering approach against the predictions matching the
unfiltered experimentally obtained profiles. Marker size is used to
denote multiple coincident estimates. Markers that do not fall on
the diagonal line denote estimates that are altered by the noise
filtering. The magnitude of the effect of the noise filtering
methods is summarized as a coefficient of determination,
i.e., R2 values associated with the yield strength prediction set
comparisons. The R2 values are calculated,

R2 � 1 − ∑Ntests
i�1 (σ i

filter − σ iraw)2
∑Ntests

i�1 (σ iraw − �σraw)2 (3)

where �σraw is the mean yield strength from the set of best fit
modelled profiles to the raw experimental profiles, σ iraw is the
yield strength from the i-th raw experimental profile, and σ ifilter is
the yield strength from the i-th experimental profile after noise
filtering has been performed.Ntests is the number of indentations
included in the set. The R2 value of 0.934 indicates that there is a
non-negligible impact of any choice of noise filter on the
predicted plasticity parameters. It is worth noting that the
distinction between noise and signal in experimental data is
often somewhat subjective (Konold and Pollatsek, 2002; Epps
and Krivitzky, 2019). In this work, the use of a low-pass filter is
physically motivated under the assumption that the high-
frequency component of the profilometry is predominantly an
artifact arising from the discrete resolution of the profilometer.

MU is estimated by comparing the profiles taken in the X and
Y directions, with respect to each indentation. To quantify the
uncertainty in a single PIP measurement, it is necessary to have
more than one observation associated with the indentation test.
The Plastometrex device takes two profiles, in perpendicular

directions, to check for signs of pronounced anisotropy in the
plane of the surface. In this work, the two profiles are used to
show variations in the profilometry measurement.

To isolate the MU, systematic differences between X and Y
profiles are removed. The systematic difference between X and Y
directions may be caused by differences in the shape of the
indenter tip along the X and Y profiles, by texture in the plate
sample, or by a non-zero average tilt to the polished surface of the
sample. The systematic difference is measured for the 84 selected
and low-pass-filtered profiles and is shown in Figure 7. The
difference profile has a maximum magnitude of 1.2 μm. This
small difference has a substantial effect on the plastic parameter
predictions, however. The influence of the bias is estimated by
refitting the experimental profile set to modelled profiles after
adding the bias shown in Figure 7. Scatter plots of the Voce
parameter estimates associated with a profile and that profile plus
the X-Y Bias are shown in Figure 8. The points that do not fall on
the diagonal line indicate a parameter estimate that is changed by
including the X-Y bias. It is possible that a modelled profile not
included in the set obtained from PIP (and corresponding to
different Voce parameter values) would fit the modified
experimental profile even more closely. The effect of the X-Y
bias shown in Figure 8 is thus a conservative estimate.

Random variations in the X-Y profile differences are used to
estimate the MU of the PIP test using principal component
analysis (PCA). Whereas noise is considered uncorrelated with
respect to r, the variations in the measured profiles from
inhomogeneity have highly correlated variations as a function
of r. Noise is typically modelled as random draws from a
Gaussian distribution with zero mean, one draw per
observation. To define the variations with a more appropriate
assumption of the independent factors of the measurement
uncertainty, PCA is used.

The PCA is applied using the python package scikit-learn
(Pedregosa et al., 2011). A simplified description of the method is
given here. The variations (Z (profile 10)—Z (profile y)—X-Y
Bias) are organized into a Nprofiles (= 84) by Nr (= 3334) array,
X. The covariance matrix of X, KXX , has shape Nr by Nr, and

FIGURE 6 | The scatter plot comparing the estimates of yield strength
obtained by fitting modelled profiles to the raw experiment data against the
yield strength estimates from fitting modelled profiles to the noise filtered
experiment data using (A) the downsampling from PIP, and (B) using a
low-pass filter.

FIGURE 7 | The average of the difference profiles obtained by
comparing each pair of X and Y profiles in the observation set.

Frontiers in Materials | www.frontiersin.org July 2022 | Volume 9 | Article 9197976

Tallman et al. Uncertainty Quantification Indentation Plasticity Test

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


contains the covariances measured in the variation set between
each pair of r values. The eigenvectors of KXX are the principal
components (PCs) of X. These PCs can be used in linear
combinations to reproduce every profile in X. Here, a reduced
number of the PCs are used to approximate the profiles with a
greatly reduced number of independent components. The PCs
that are used correspond to the largest eigenvalues of KXX , which
indicate the PCs that explain the largest proportion of the
variance in X. The PCs associated with the measurement
uncertainty are shown in Figure 9. Each PC is plotted in
order of decreasing explained variance ratio. PCs after six
captured less than 1% of the total variance and were not

included. The shapes of the PCs can be compared to wavelets
of increasing frequency.

In this work, PCA is used to perform a linear analysis only.
Because the variations in the observation set are all small
perturbations of roughly the same profile shape, a linear
analysis is likely to be sufficient for capturing trends. For
example, PC1 modifies the radius of the indentation. This
radius adjustment can only be a linear effect if the
adjustments are small. The high total explained variance of the
6PCs (95.89%) indicates the PC analysis is effective in this case.
Notably, the PC approximation of the profiles lead to consistent
Voce parameter predictions, relative to the raw experimental
profiles. The R2 values of the comparison with the raw
experiment-based predictions are 0.991, 0.961, and 0.990 for
yield stress, excess stress, and inverse characteristic strain,
respectively. It is unclear why the PC approximated + filtered
profiles are more consistent with the raw profiles than the filtered
profile predictions.

3 RESULTS

The uncertainty sources isolated in Section 2.3 and hypothesis
testing can be used to provide empirical support for two different
interpretations of the set of results, determined by whether SU is
measurable in the presence of MU. If the MU and SU cannot be
distinguished, the test results can be interpreted as indeterminate.
In other words, evidence cannot support attributing the
uncertainty to a specific source, and the most conservative
treatment may depend on the intended use of the testing data.
If there is a measurable difference between MU and SU, a more
precise level of material spatial variability can be modeled from
the set of results, and the SU can be quantified and attributed to
the spatial variation of plastic response in a polycrystalline
sample. The results of this work focus on determining the
appropriate interpretation of the data set and presenting the
interpretation.

Variations in the set of PIP measurements must be tested to
determine if they are drawn from the same distribution as theMU
(the null hypothesis) or from a different distribution. Each pair of

FIGURE 8 | Scatter plots of the X-Y bias’s effect on the PIP predictions of the Voce parameter values for the 84 profiles in the reduced set (A) yield stress (B) excess
stress (C) 1/ ε0.

FIGURE 9 | The principal components used to approximate the random
variations observed in the 84 experimentally measured indentation profiles,
after noise filtering with a low pass filter.
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the 84 profiles in the reduced set are used to generate 7310
pairwise differences, ΔZij(r), i.e.,

ΔZij(r) � Zi(r) − Zj(r), for i, j in (1, Nprofiles), i ≠ j (4)
where Zi(r) is the i-th filtered experimental profile. The
differences contain examples of discrepancies between different
indentations from the plate sample. Distinguishing these
difference profiles from the MU profiles will require a
probabilistic test. For univariate samples, the Kolmogorov-
Smirnov (K-S) two-sample test can be used to establish the
probability of drawing two samples from the same
distribution. The procedure requires constructing ECDFs for
each sample and finding the maximum difference between the
ECDFs. That difference is the KS two-sample statistic. The two-
sided asymptotic Kolmogorov–Smirnov distribution, the sample
size, and the statistic can be used to calculate the probability.

In this work, the K-S 2-sample test is applied to the PCA
representation of both profile-difference sets: associated with
individual indentations (MU) and the set of indentations (SU
+ MU), respectively. Clearly, the set profile-differences should
include the variations from the individual indentation profile-
differences in addition to the variations between indentations.
With this reasoning, the PCs from the individual indentation
profile-differences are used to approximate the set profile-
differences. The PC approximation of the set profile-
differences had nearly equal goodness of fit as the PC
approximation of the individual indentation profile-differences,
with 80% of profiles in either case having R2 > 0.8.

The PC weights used to approximate the profile-differences
are used to form ECDFs. A K-S 2-sample test is performed on
each of the 6 PCs. The probabilities of these tests are shown in
Table 2. The value of the variances of the PC weights are also
included for each type of profile-differences. The best way to
interpret the probabilities returned by these tests is not
immediately clear. The naïve option of taking the product of
the individual probabilities is problematic, as it treats each PC as
equally informative when clearly this is not the case. A weighted
product could impose the differently sized contributions of the
PCs, i.e.,

ptotal � ∏NPC

i

p
σ2i /s
i , s � ∑NPC

i�0
σ2i (5)

where ptotal is the aggregated probability that the two samples are
from the same distribution (neglecting correlations), σ2i is the

variance of weights associated with the i-th PC, and NPC is the
number of PCs used in the approximation. For this work, the
indentation profiles are treated as single observations, and as such
the PC weights are treated as containing fractions of the
information contained in the profile. The value of ptotal for
the obtained profiles is 0.38, reflecting that the SU is not
distinguishable from the MU. It is noted that the exclusion of
the indentation tests for which the target load was 1300 N (as
opposed to 1250 N) from the analysis may be resulting in an
underestimate of the SU. Unfortunately, the significant difference
in the load would require more complicated analysis to support
inferences across the different loads. More investigation is needed
to determine best practices for distinguishing set variations.

The total uncertainty is used to predict how many indentation
tests are needed to obtain a given level of expected error. Using
the results of the K-S 2-Sample test, the indentation test set
variation is interpreted as indistinguishable. In essence, the
uncertainty cannot be attributed to any specific source, given
the data set. This allows a simple approach to calculating the
expected value of error in the Voce parameter predictions. If the
experiment was to be repeated with a different number of
indentations, it is important to know what error would
accompany the mean estimate of the plastic parameters.

To estimate prediction error as a function of the number of
tests, the set of results is used in a bootstrapping approach. A
sample of test results are drawn with replacement from the 84
tests in the analyzed set. The average of that sample is taken. This
process is repeated 1000 times. The expected error in the Voce
parameters is estimated as a function of the number of
indentation tests performed. These results are shown in
Figure 10. The root mean square (RMS) error, taken from
1000 drawings of N test results (where N is the number of
tests), is plotted against Ntests for each independent parameter.
It is shown that the expected error reduces with increasing
numbers of tests.

Importantly, the expected error is of a different relative
amount for the different parameters. This is shown more
clearly in Figure 11. The probability that an error of less than
2% is shown as a function of the number of tests in the sample. It
is visible that the yield stress can be accurately estimated with
fewer than 20 test repetitions, for this material. The hardening
behavior, as captured with the excess stress and reference strain
parameter estimates, is not well estimated by even large numbers
of test repetitions. This difficulty may indicate the need to
consider issues in “parameter uniqueness” associated with the

TABLE 2 | The probabilities associated with the series of K-S 2-sample tests performed on the sets of PCweights. The K-S test is repeated for each PC used to approximate
the profile-differences from individual indentations and from the entire set.

PC Number
i

1 2 3 4 5 6

PC Explained Variance ratio 53.6% 27.2% 8.5% 3.3% 2.0% 1.3%
MU weight variance 0.0317 0.0226 0.0126 0.00784 0.00610 0.00486
SU + MU weight variance 0.0442 0.0187 0.0187 0.00813 0.00496 0.00480
Probability pi 0.316 0.739 0.0932 0.650 0.153 0.334
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combination of the Voce plasticity model and the PIP
methodology.

4 DISCUSSION

The experiment-model joint UQ framework demonstrated in this
work facilitates the integration of experiments and modeling in
the testing of variability in the mechanical response of materials.
In the determination of plastic response of metals, a uniaxial
tensile test is the widely accepted standard, despite the
convenience of indentation testing (Salzbrenner et al., 2017;
Clyne et al., 2021; Mohan et al., 2021). The tensile test
produces repeatable results and is often insensitive to small
spatial fluctuations in yield strength, relative to the specimen
cross-sectional area (Nichols, 1980). In contrast, the indentation
test involves severe strain gradients, the majority of the observed
deformation occurs within a small volume of material (Clyne
et al., 2021), and local variations in properties can influence the
test results, more so than in a tensile test. In typical statistical
treatments of testing data, the additional variance in the
indentation test results would weaken the conclusions from

the tests in the form of wider error margins. In contrast, with
the UQ framework, the variation in the indentation test results
can be used to infer variation in material properties. New testing
conditions can be designed to take even more advantage of the
UQ framework. Crucially, embedding experimental data analysis
in the context of a computational model is what enables the
variation in experimental results to be an asset. In material
systems with highly variable properties (such as additively
manufactured metals or metal matrix composites), such a shift
in testing design may greatly accelerate the development process.

The demonstrated UQ framework presents a complementary
approach to parametric uncertainty propagation and may be
highly suited to multiscale modeling of mechanics. The
mechanical properties of metals are often investigated using
hierarchical multiscale modeling, that is, models of materials
at different distinct length and time scales, used in combination
(McDowell, 2010). The hierarchical approach uses model
parameters to connect between scales, rather than boundary
conditions. Informing hierarchical multiscale models is
typically done from the top-down (e.g., the plasticity model in
this work), the bottom-up (as is demonstrated in uncertainty
propagation studies), or rarely, in a combination of top-down and

FIGURE 10 | Prediction of the error in the predictions of the Voce plasticity parameters, based on the number of indentation tests in the sample. The plotted values
are the root mean square (RMS) of the errors calculated from 1000 different random samples drawn (with replacement) from the experiment set.

FIGURE 11 |Bootstrapping based prediction of the probability that less than 2% relative error in the samplemean of plasticity parameter estimates will be obtained,
as a function of the number of tests within the sample.
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bottom-up pathways. Top-down approaches are limited by the
identifiability problem; i.e., the model parameters cannot always
be given unique values by fitting predictions to data (Arendt et al.,
2012). Bottom-up approaches can produce distributions or
intervals that are unreasonably wide (Salehghaffari et al.,
2012), unless the analysis is very selective about the
uncertainty being considered (Bandyopadhyay et al., 2019;
Kotha et al., 2020; Tan et al., 2021). The combination of top-
down and bottom-up has been proposed as a way to make use of
more sources of information at once while also finding
compromise between the limitations of either pathway
(Panchal et al., 2013; Arróyave and McDowell, 2019; Tallman
et al., 2017, 2020). Some recent work has investigated hierarchical
multiscale modeling by generating uncertainty from the bottom-
up and constraining the variation in a top-down manner (Liu
et al., 2021; Kovachki et al., 2022). In the current work, the
experimental data provides a top-down constraint for variation,
and the quantification of uncertainty from individual sources is
left to future work. Individual uncertainty sources could be
propagated from the bottom-up using higher-resolution
modeling or measured from the top-down through a design of
experiments that controls for individual uncertainty sources.
Applying the UQ framework from this work would constrain
multiscale UQ predictions with empirical estimates of
uncertainty. Furthermore, the framework addresses the need
for richer datasets in UQ, more so than typical statistical
treatments of experimental data.

The experiment focused UQ can direct improvements in
test methods and modeling by isolating the effects of model
discrepancy or MU. The plate Al-7075 material is produced
to have very little variability in bulk properties in the spatial
domain. Thus, the reported finding of little variation within
the set (beyond the MU) is as expected. In this case, the MU
was found to be too large to allow estimation of material
property variability. In other material samples with larger
spatial variations, the PIP method as used here may be
sufficient to obtain estimates of the material spatial

variability. However, to improve the accuracy of local
variability estimates it is valuable to discuss the limitations
present in the current method. Furthermore, means of
reducing MU and improving the accuracy of estimates are
identified and discussed.

The set of indentations with target load of 1250 N included
measured load values that varied from 1248 N to 1266 N.
These variations in the maximum indentation load have
influence on the profile variations, and these variations are
not reflected in the modelled profiles used to determine the
Voce parameters (the modelled profiles adhere to 50 N
increments). It is important to distinguish between the
effect of load variations and differences in material
response when interpreting the data.

Using a linear regression, the effect of the load variations
can be estimated and removed from the set variations. The
model of the load variation effects is given as,

ΔZ(ΔP) � ∑NPC

i�1
aiPCiΔP (6)

where ai is the coefficient for the ith PC, and ΔP is the difference
between the measured maximum load and the target load. The
plot of ΔZ

ΔP (r) is shown in Figure 12. Notably, it is shown that
around 11 N difference translates to a one-micron difference in
the depth of the indentation.

The set of profiles are adjusted using the regression model and
the individually measured maximum indentation loads. The
effect on the Voce parameter predictions is summarized in R2

values in comparison with the raw experiment-based predictions,
which are 0.634, 0.413, and 0.363 for yield stress, excess stress,
and inverse characteristic strain, respectively. The effect of the
load adjustments is smaller than the effect of the systematic
differences between X and Y profiles, as previously shown in
Figure 8.

Gathering and averaging multiple profiles per indentation
can reduce the MU of the indentation tests. When determining
variability in PIP data, smaller variations in profilometry
measurements become important. In this work, the variations
due to noise filtering methods and due to material heterogeneity
or surface roughness are modeled in effective terms, using the
PIP fitting of Voce parameters. Importantly, the profilometry
can vary enough within a single indentation (in which
anisotropy and asymmetry were not detected) to produce
different Voce parameter estimates. The FEM modeling used
to evaluate Voce parameters assumes the material as isotropic
and homogeneous, and that the indentation has radial
symmetry. As an extension of that assumption, profilometry
data can be equivalently collected radially from the indentation
center in any direction without altering the model assumptions.
Furthermore, averaging these observations prior to parameter
fitting is also in agreement with the assumptions of the FEM
model. The effect of using two profile measurements instead of
one is explored here.

A set of 84 double profiles is used to demonstrate the MU
reduction that can be obtained in future studies. The X and Y
profiles are combined by taking the mean of the X and Y profiles

FIGURE 12 | The linear model of the effect on the indentation profile of
small variations in themaximum indentation load. A variation of 11 N translates
to roughly a one-micron difference in the profile depth.
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and removing the X-Y bias. X-Y bias is excluded to prevent
texture from influencing the results. The quantity of interest is the
effect of using multiple profiles when the profiles have random
MU. The effect of using two profiles is summarized in R2 values in
comparison with the raw experiment-based predictions, which
are 0.207, 0.161, and 0.079 for yield stress, excess stress, and
inverse characteristic strain, respectively. the effect is shown to be
larger than the effect from load variations but smaller than the
effect of X-Y bias. Additionally, the K-S 2-sample test is repeated
for the double profile set. The use of two profiles is assumed to
affect the distribution of measurement uncertainty by reducing
the variance of the PC weights. The MU weights (profile
deviations from mean) are reduced for the K-S test by a factor
of 1/

�
2

√
, as is expected for the mean of two independent

identically distributed samples.
The mean and standard deviation of the predictions are used to

compare the different modified profile sets in terms of predictions.
The K-S 2-Sample test is repeated for the load-adjusted profile
variations, the combined X and Y profiles, and the combined and
load-adjusted profiles. The probability of the two samples (individual
measurement variations and the set variations) being from the same
distribution is shown for each profile set in Table 3 alongside the
Voce parameter prediction means and standard deviations. The
standard deviation decreases after load adjustment and after using
the double profile approach, for each Voce parameter. The estimate
means are held consistent within 2% of the original mean for yield
stress, within 10% for excess stress, and within 5% for 1/ε0. The
lowest probability corresponded to the double profiles without
load adjustment. This reflects the case in which the set variation
is highest while measurement uncertainty is smallest. Reducing ptotal

is crucial to the measurement of spatial variability. Notably, a 15%
reduction of the standard deviation of σy was accompanied by at
least a 57% reduction in ptotal. This supports the case that relative
reductions in MU can be sufficient to enable measurement of spatial
variability.

The surface polishing prior to indentation testing may need a
higher quality finish to support variability studies, relative to what is
recommended for the PIP method. The X-Y bias was shown to have
large effects on the Voce estimates, despite the size of the difference
profile being around 1.2 microns. A study on surface roughness
effects on variability predictionsmay determine the appropriate level
of surface finish needed.

Non-uniqueness in parameters is still a relevant concern for
PIP practitioners. The PIP method is shown to be notably more
consistent with predictions of σy than of the hardening response
of the plate Al 7075. The analysis of the MU indicated that the
variation observed was primarily due to the uncertainty of the
measurement and inference, rather than from material
variability. The elevated variation in the excess stress and in
the characteristic strain is likely due to a non-uniqueness in the
fitting between modelled profile and the experiments. The
model form of the plastic flow rule (Voce model) is not
necessarily the best choice for the Al 7075 T-6 plate used in
this work. The model does not describe the elastic-plastic
transition, and it can be difficult to accurately identify the
hardening parameters of materials with low ductility. All of
these missing features can lead to compensatory effects on the
fitting parameters. When ductility is low, it may be easier to
determine a linear hardening rate from the profile than the
asymptotic hardening of the Voce model.

Furthermore, one-step indentation profilometry has limited
resolution in terms of strain-dependent plastic response. As
stated, the PIP test uses the indentation profile to infer the plastic
response of the displaced material. The profile shape is a collective
result of a volume ofmaterial that has experienced different amounts
of plastic strain (Clyne et al., 2021). The collective hardening
response obtainable from that volume is an averaging of different
instantaneous hardening rates. Future work may explore what
additional data could better indicate the change in hardening rate
as a function of plastic strain. One option could take profilometry
data at different indentation depths during one indentation test. This
would provide multiple “snapshots” of the effective hardening
response and would support inferring changes in hardening rate
with the accumulation of plastic strain.

This work demonstrates the significant MU reductions that can
be attained by gathering and averaging multiple profiles from a
single indentation test. The reduction ofMU in the PIP test is crucial
for it to provide high quality characterization of spatially variable
plasticity in metals. Importantly, this method requires no additional
hardware. This insight constitutes a significant and accessible step
towards high-throughput, high-precision collection of spatially
varying bulk plastic response.

In this work, the sources of uncertainty in a set of PIP tests of
Al 7075 are categorized to assess obstacles to experimental testing

TABLE 3 | The Voce parameter prediction means and standard deviations and the total probability determined by the K-S 2-Sample test, for each of the profile sets analyzed
in this work. The single profiles are the X-profiles, the load adjusted single profiles are X-profiles minus the linear regressionmodel of load-variation effects on profilometry.
The double profiles are the X profiles averaged with the Y profiles with respect to each indentation, after adjusting the Y profiles for bias. The load adjusted double profiles use
a different regression model, based on the double profile set, to adjust profiles for the variations in loading between indentations.

Profile set type Single profiles Load
adjusted Single Profiles

Double Profiles Load
Adjusted Double Profiles

Mean (σy ) 580.44 579.26 580.88 581.04
St.Dev (σy ) 13.82 13.45 11.96 11.41
Mean (σe ) 279.07 272.09 280.95 258.33
St.Dev (σe ) 109.03 105.27 96.95 88.92
Mean (1/ε0 ) 3.258 3.329 3.148 3.269
St.Dev (1/ε0 ) 1.107 1.045 1.016 0.9335
KS2S ptotal 0.380 0.475 0.0868 0.203
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of spatially varying plastic response in metals. The effect on
plasticity estimates due to noise filtering, profile orientation bias,
and small variations in indentation load are shown to be non-
negligible for studies of the variation in properties. It is estimated
that 10 PIP tests would be sufficient to estimate yield stress within
a 2% margin, for this material. The Al 7075 hardening response
estimates from PIP are shown to have significantly more error
and sensitivity to variations in profilometry. Most importantly,
the value of taking and using two profiles from a single
indentation is demonstrated, and the consequent reduction of
MU is significant enough to support measurement of spatial
variation in properties.
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