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In order to effectively and conveniently identify the damage location and damage degree of
structural members under static response, a structural damage identification method
based on the force residual vector is proposed. The force residual vector is defined by
using the static displacement data and the stiffness matrix of the finite element model
structure. The structural element corresponding to the non-zero element of the
permutation force residual vector is intelligently determined as the damage element.
The damage degree of the damaged unit is calculated from the equilibrium equation,
which is established by the global stiffness matrix with only the damaged unit. For example,
the identification analysis of damage units of numerical models is carried out for a simply
supported beam as a simple structure and a truss as a complex structure based on the
proposedmethod. In El Centro seismic wave, the dynamic responses of the original model
and truss damagemodel are simulated and compared by using state space theory to verify
the necessity of damage identification.
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1 INTRODUCTION

As a modern green building, steel structure is widely used in building and transportation
infrastructure because of its light weight, high strength, strong seismic performance, short
construction period, and less environmental pollution (Han and Shi, 2012; Shi et al., 2020; Han
et al., 2021). However, with the extension of the service life of the structure, the damage of the
structure often brings potential safety hazards. They are vulnerable to damage due to dangerous
conditions such as aging, load changes, environmental corrosion, and earthquakes (OBrien and
Malekjafarian, 2016; Wang et al., 2018; Eftekhar Azam et al., 2019). One or more components of the
structure may be damaged, so the system cannot work normally. As these defects expand in
structural members, the safety decreases, resulting in the possible failure of members or the whole
structure.

In order to avoid this situation, it becomes more important to monitor the health of
infrastructures such as steel buildings and steel bridges. The traditional condition evaluation of
steel structure buildings and steel bridges is mainly carried out through visual inspection. In order to
detect structural damage as early as possible and prevent structural failure, it is necessary to carry out
continuous intelligent health monitoring of the structure. Reliable and effective nondestructive
identification can ensure the safety and integrity of the structure (Link and Zimmerman, 2015; Eun-
Taik and Hee-Chang, 2018; Truong et al., 2020; Mousavi et al., 2021). However, there are many
problems in using timely recorded data to estimate the location and severity of structural damage. In
the existing damage detection methods, the most commonmethod is the method based on vibration.
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In the past few decades, these methods have attracted more and
more attention. The principle behind these methods is based on
the fact that damage will change structural characteristics, such as
stiffness, mass, flexibility, and damping. The changes in these
structural characteristics change the dynamic parameters of the
structure, such as natural frequency and vibration mode (Nguyen
et al., 2016; Pérez and Serra-López, 2019). These changes in
structure and modal parameters can be used as indicators of
structural damage detection. These techniques are based on the
features extracted from modal parameters. They are divided into
the following categories: methods based on natural frequency,
methods based on modal shape, methods based on curvature/
strain modal shape, and other methods based on modal
parameters (Rucevskis et al., 2016). In the past few years, a
large number of studies on damage identification of various
structures based on vibration methods have been completed,
such as beams (Huang et al., 2019; He et al., 2021), plate
structures (Gomes et al., 2019; Huang and Schröder, 2021),
trusses (Azim and Gül, 2021; Zhuo and Cao, 2021), and
bridges (Azim and Gül, 2021; Zhan et al., 2021).

In general, structural damage detection is mainly used to
identify the location and damage level of the structure. In the
process of identification, the response of the external excitation is
measured by a dynamic test or static test. Therefore, the damage is
usually directly identified by numerical operation. The result of
structural damage is the reduction of the local stiffness of the
structure. Therefore, the damage of the structure can be regarded
as a change in stiffness, ignoring the change in quality, and can be
detected by changes in dynamic or static characteristics (Di Paola
and Bilello, 2004; Huynh et al., 2005; Wei Fan and Pizhong Qiao,
2011; Abdo, 2012; Sung et al., 2013).

Considering the nature of the measurement data, the
measurement methods can be divided into two categories:
dynamic methods and static methods. Due to the convenience
of dynamic data measurement, several damage identification
methods have been developed on the basis of dynamic testing
(Cornwell et al., 1999; Abdo and Hori, 2002; Debruyne et al.,
2015; Nogal et al., 2016). Many experts have conducted extensive
research on damage identification using the residual force vector
method under dynamic response. Zimmerman and Kaouk (1992)
first proposed the theoretical algorithm related to the residual
force vector method. Kahl and Sirkis (1996) improved the
theoretical algorithm proposed by the former and identified
the damage location in the beam member. Li et al. (2016)
used the difference of the virtual residual force vector of the
intact structure and the damaged structure to locate the damage
location, combined with the response sensitivity method to
identify the local damage degree, and better identified the
location and damage degree of single damage and multiple
damages. Nobahari et al. (2018) used the concept of residual
force vector and proposed a method based on the damage index
of truss units. This method can find the most likely damaged
component location, and eliminate the undamaged units from all
variables to reduce the amount of calculation, and then use the
genetic algorithm to find a more specific damaged unit in the
concentrated position of the damaged component and calculate
its damage degrees.

The purpose of dynamic analysis is to determine the
parameters such as internal force, stress, and displacement
under dynamic load. In vibration modal analysis, the main
calculation work is to solve the Eigen problem, which requires
more calculation work than static analysis (Kirsch, 2003). The
general residual force vector method for damage identification is
mainly based on the modal parameters of the dynamic test, which
requires a more complicated modal analysis, and the accuracy of
the damage analysis results is not high. Based on the residual force
vector method under dynamic response, this article proposes a
force residual vector method. This method uses the sparse
property of the damage unit stiffness matrix and its
corresponding residual vector distribution rule to realize the
location of the damaged unit and gives the damage degree
after the location by solving the self-balance equation of the
damaged unit. In this study, numerical examples of simply
supported beams and trusses have been verified, and the
damage location and damage degree of the structure have
been identified. In order to verify the necessity of structural
damage identification, the dynamic responses of the original
model and the damaged truss model are simulated and
compared by using the state space theory under the action of
the El Centro seismic wave.

2 THEORY OF FORCE RESIDUAL VECTOR
METHOD

2.1 Basic Assumptions
In damage identification with the force residual vector method, it
is necessary to make some basic assumptions about the structure:

(1) When the structure is damaged, only the rigidity of the
structure is reduced, and the influence of quality on the
structure is ignored.

(2) The damage of structural units is discontinuous in the finite
element model. This assumption has been given in previous
studies (Kasper et al., 2008; Zhang et al., 2009).

2.2 Theoretical Equations
A structural system produces node displacement D under the
action of static force F. The static equilibrium equation in the
global coordinate system can be expressed as the following
formula:

KD � F (1)
where K is the global stiffness matrix of the structural system, and
D is the node displacement vector in the global coordinate system.

When the structure is damaged, its stiffness matrix will
change. Assuming that αi is the damage degree of the stiffness
matrix corresponding to the i − th structural unit, the
perturbation matrix △K of structural damage can be expressed
as the following formula:

ΔK � αK (2)
where α is the damage degree vector.
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Substituting the damage stiffness △K and the displacement d
of the structure after damage into Equation 1, we get the
following formula:

(K − ΔK)d � F (3)
For Equation 3, moving the term without△K to the right side

of the equation, we get the following equation.

ΔKd � Kd − F (4)
The vector on the right side of Eq. 4 is defined as the force

residual vector P:

Kd − F � P � [p1 p2 / pn ]Τ (5)
The values of elements pi corresponding to the damaged units

in the P vector are much larger than those of the undamaged
units. The values of elements pi corresponding to the undamaged
unit approach 0. That can be used as a filtering condition in the
analysis process. The elements in the vector P of Eq. 5 are
arranged in descending order of their absolute values. The
structure units with larger values in front are corresponding to
the damaged units. It can be used to realize localization of damage
unit precisely.

Equation 5 is composed of n equilibrium equations at nodes,
suppose that there is a unit damage on a node and that the
elements pi values, the unit stiffness matrix, and the displacement
vector are proportional for a given damage unit, then the ratio is
the damage degree. It can be realized identification of damage
degree. Therefore, the damage coefficient can be obtained
according to the following formula:

αiK id � Pi (6)
where Ki is the global stiffness matrix containing only the unit
stiffness matrix elements of the damage unit.

2.3 State Space Theory
State space representation is a mathematical model that
represents a physical system as a set of inputs, outputs, and
states, and the relationship between inputs, outputs, and states
can be described by many first-order differential equations. For a
damped system with n degrees of freedom, the dynamic
differential equation can be expressed as follows:

M€u(t) + C0 _u(t) + Ku(t) � U(t) (7)
where M is the mass matrix of the structure, C0 is the damping
matrix of the structure, K is the stiffness matrix of the structure,
U(t) is the load vector at t, and €u(t)、, _u(t), and u(t) are the
acceleration, velocity, and displacement responses at t,
respectively.

Both sides of Equation 7 are multiplied by M−1 at the same
time, which can be expressed as follows:

€u(t) +M−1C0 _u(t) +M−1Ku(t) � M−1U(t) (8)
Finishing Equation 8 can Be Expressed as follows:

€u(t) � −M−1Ku(t) −M−1C0 _u(t) +M−1U(t) (9)

Define the state vector, which can be expressed as follows:

X(t) � [ u(t) _u(t) ]Τ (10)
The derivation of the state vector can be expressed as follows:

_X(t) � [ _u(t) €u (t)]Τ (11)
Combined Equations 9–11 can be expressed as:

_X(t) � [ _u(t)
−M−1Ku(t) −M−1C0 _u(t) +M−1U(t) ]

� [ 0 N
−M−1K −M−1C0

]X(t) + [ 0
M−1 ]U(t)

(12)

where N is the unit matrix.
Ac and Bc are obtained from Equation 12, which can be

expressed as follows:

Ac � [ 0 N
−M−1K −M−1C0

], Bc � [ 0
M−1 ] (13)

Combined Equations 12 and 13 can be expressed as follows:

_X(t) � AcX(t) + BcU(t) (14)
where Ac is the state matrix of structural continuous time system,
and Bc is the input matrix of structural continuous time system.

Ca, Cv, and Cd are acceleration output matrix, velocity output
matrix, and displacement output matrix, respectively, then the
output response Y (t) can be expressed as follows:

Y(t) � Ca€u(t) + Cv _u(t) + Cdu(t) (15)
Combined Equations 8–15 can be expressed as follows:

Y(t) � [Cd − CaM
−1K Cv − CaM

−1C0 ][ u(t)_u(t) ] + CaM
−1U(t)

(16)
According to Equation 16, Cc and Dc can be expressed as

follows:

Cc � [Cd − CaM
−1K Cv − CaM

−1C ], Dc � CaM
−1 (17)

According to Equation 17, it can be expressed as follows:

Y(t) � CcX(t) + DcU(t) (18)
where Cc is the structure state observation matrix, and Dc is the
structure input observation matrix.

The continuous time state space model (Emmert et al., 2016;
Rangapuram et al., 2018; Silva et al., 2020; Varanasi and Jampana,
2020) of the system can be expressed as follows:

_X(t) � AcX(t) + BcU(t) (19)
Y(t) � CcX(t) + DcU(t) (20)

Because the output response of the measured structure is
collected according to the sampling frequency, there is a
specific sampling time interval, that is, the output response is
discrete in time. Therefore, the state space model of the discrete-
time system should be adopted. Under k sampling points, the
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discrete-time state space model of the system can be expressed as
follows:

X[k + 1] � AX[k] + BU[k] (21)
Y[k] � CX[k] + DU[k] (22)

The state matrix of the discrete-time system is A � eAcΔt, the
input matrix of the discrete-time system is B � A−1

c (A −N)Bc,
the observation matrix of the discrete-time system is
C � [Cd−CaM

−1K Cv − CaM
−1C0 ], and the input

observation matrix is D � Dc� CaM−1.

2.4 Solving Steps
The specific solving steps of this method are as follows:

(1) Establish a stiffness matrix for the target structure and
combine the static balance equation to obtain the force
residual vector P.

(2) List the elements of vector P according to their corresponding
degrees of freedom of structure units, and arrange them in
descending order of absolute value.

(3) For the arranged absolute value sequence, divide the previous
element by the next element. The position where the quotient
obtained by the calculation tends to infinity is the last
damaged unit, and the value of the degree of freedom
about the last damaged unit is expressed as the total
amount of degree of freedom about the damaged units.
According to the fact that a structure unit has four
degrees of freedom, the number of damaged units can be
judged.

(4) For the elements in the list arranged according to the
structure unit number, the structure unit whose ratio of
the vector value corresponding to the first displacement
and the third displacement equals -1 is the damaged unit
so that the damaged unit is located. In addition, verify the
judgment result of step (3).

(5) Take out the structure unit stiffness matrix of the located
damage unit in the global coordinate system, establish the
node balance equation one by one according to the number
of the damaged units, and solve the damage degree of each
unit according to Equation 6 to determine the damage level
of the structural member.

(6) The dynamic responses of the original model and the damage
model are analyzed by using the state space theory, and the
corresponding peak values of displacement, velocity, and
acceleration are obtained. The dynamic responses of the

original model and the damage model are analyzed by
using the state space theory, and the corresponding peak
values of displacement, velocity, and acceleration are
obtained. Then calculate the relative difference of the
corresponding peaks, and summarize the analysis.

Figure 1 shows the flow chart of the specific solving steps of
this method.

3 NUMERICAL MODEL EXAMPLES

In order to apply the force residual vector to practice, the
following takes simply supported beams and truss structures
as examples for numerical model calculations. The structural
form of the two engineering examples adopts steel structure. First,
we set the degrees of damage of some structural units and
calculate the displacements of the structural unit nodes by
calculating the force residual vector. Then the node
displacements are used to locate the damaged units and
determine the degrees of damage. If the identified location and
the identified degrees of damage are consistent with the set values,
it can show that the force residual vector method can be used to
identify the damage location and the damage degree of the
structure through the values of node displacements.

3.1 Numerical Model Example of Simply
Supported Beam
3.1.1 Calculated Displacement Value of Simply
Supported Beam
Take the simply supported beam model shown in Figure 2 as an
example to explain the proposed method. The simply supported
beam structure is divided into 12 units, and then the finite
element analysis for it is carried out. The basic parameters of
No.14 I-beam are as follows: unit length L = 0.1 m, cross-sectional
area A = 2.15 × 10−3 m2, elastic modulus E = 200 GPa, moment of
inertia I = 7.12 × 10−6 m4, and density ρ = 7.8 × 103 kg/m3. The
simply supported beam model structure added a downward force
F = 10 kN in the middle of the span, constrained the horizontal
and vertical displacement at node 1, and constrained the vertical
displacement at node 13.

Regardless of the axial displacement of the simply supported
beam model, the stiffness matrix of the beam units related to the
vertical and angular displacement is taken as follows:

FIGURE 1 | Flow chart of calculation.
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K e � EI

L3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (23)

According to the degrees of damage αi (0 < αi < 1) introduced
Eq. 2, the global stiffness matrix of the beam can be expressed as
follows:

K � ∑12
i�1

(1 − αi)K i (24)

where Ki represents the i − th unit stiffness matrix in the global
coordinate system, and the subscript i represents the unit
number.

Table 1 shows the node numbers and the numbers of the node
degrees of freedom of simply supported beam units.

Take multiple damage case as an example: the loss of stiffness
is 15% for unit 2, 60% for unit 4, 13% for unit 8, and 30% for unit
10, that is, α2 = 0.15、α4 = 0.60、α8 = 0.13, and α10 = 0.30.

The node displacements are calculated according to Equation
3 and arranged in Table 2 according to the order of degrees of
freedom of the units. In the table, va and θa are the vertical and

rotational displacements of the left node of unit, while vb and θb are
the vertical and rotational displacements of the right node of unit.

Figure 3 shows the deformation diagram of the simply
supported beam. In the figure, the dotted lines present the
original structure, and the solid lines present the deformed structure.

3.1.2 Damage Identification of Simply Supported
Beam
The calculated node displacements in Table 2 are used as the
known values of structural damage identification.

The force residual vector P is determined according to
Equation 5 and shown in Table 3.

Figure 4 shows the distribution and arrangement of force
residual vector P.

Figure 4A presents the distribution of force residual vector P.
The abscissa represents, from left to right, the sequential number
of vertical and rotational degrees of freedom of unit nodes. The
ordinate corresponds to the force residual vector of
corresponding units. Figure 4B shows the arrangement of the
absolute values of P in descending order. The abscissa represents
the cumulative values of the number of vertical and rotational
degrees of freedom of unit left and right nodes (the total number
of degrees of freedom of unit nodes, including vertical degrees of
freedom and corner degrees of freedom).

For the arranged absolute value sequence in Figure 4B, by
dividing the previous element by the next element, we obtain the
positioning diagram shown in Figure 5. The vertical coordinate
of Figure 5 is expressed as the ratio of the absolute value P of the
residual force vector corresponding to the first displacement and
the third displacement in the element. Themaximum ratio, which
represents the total number of degrees of freedom of the damage
units, is located at 16. Since each unit corresponds to 4 degrees of
freedom in the local coordinate system, it can be seen that four
units in the simply supported beam have been damaged, which is
consistent with the set number of damaged units.

In Table 3, the units 2, 4, 8, and 10, whose ratio of the residual
vector values P corresponding to the first displacement and the
third displacement of the units is -1, are damaged units. Those
located damage units are the same as the set damage units.

FIGURE 2 | Sketch of simply supported beam.

TABLE 1 | Node number and number of node degrees of freedom of units.

Node Number 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of node degrees of freedom Vertical displacement — 2 4 6 8 10 12 14 16 18 20 22 —

Angular displacement 1 3 5 7 9 11 13 15 17 19 21 23 24

TABLE 2 | Node displacement of simply supported beam (mm).

Displacement Unit

1 2 3 4 5 6

va 0.000 −0.787 −0.770 −0.708 −0.620 −0.313
θa 0.000 −0.078 −0.152 −0.219 −0.266 −0.290
vb −0.787 −0.770 −0.708 −0.620 −0.313 −0.155
θb −0.078 −0.152 −0.219 −0.266 −0.290 −0.296

Displacement Unit

7 8 9 10 11 12

va −0.155 0.039 0.232 0.413 0.536 0.662
θa −0.296 −0.282 −0.250 −0.202 −0.142 −0.073
vb 0.039 0.232 0.413 0.536 0.662 0.714
θb −0.282 −0.250 −0.202 −0.142 −0.073 0.732
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The identification values of damage degrees are obtained by
solving damage degrees using Equation 6, and the setting values
of the corresponding units are listed in Table 4.

It can be seen from Table 4 that all the identification values of
damage degrees are completely consistent with the corresponding
setting values. It can be concluded that the force residual vector
method can be used to locate the damage position and identify the
damage degree of the simply supported beam structure.

3.1.3 Dynamic Response Analysis of Simply
Supported Beam
Dynamic response is the dynamic characteristic of the reactive
structure under external excitation. The dynamic responses of the
original model of the simply supported beam and the damagemodel
of the simply supported beam under the action of the El Centro
seismic wave are simulated and analyzed by using the state space
theory, and the dynamic response degree of the structure under the
action of the original model and the damage model is verified.
Parameter setting of dynamic response analysis in this example:
sampling frequency Fs = 50 Hz, sampling interval△t = 1/Fs = 0.01 s,
number of generated samples N = 2500, El Centro seismic wave is a
wave in the east–west direction. Figure 6 shows the time history
curve of El Centro seismic excitation applied to the model. Figure 7
shows the displacement, velocity, and acceleration output dynamic
response of the original model of a simply supported beam. Figure 8
shows the dynamic response of displacement, velocity, and
acceleration output of the damage model of a simply supported
beam, and the peak values of the dynamic response in Figures 7 and
8 are the maximum values of dynamic response of displacement,
velocity, and acceleration output.

It can be seen from Figure 7 that under the excitation of
seismic wave, the displacement, velocity, and acceleration time

history curves of the original model begin to decay freely
around 5 s, with the peak value of displacement at 4.5 s, the
peak value of velocity at 3.54 s, and the peak value of
acceleration at 5.02 s. It can be seen from Figure 8 that
under the excitation of seismic wave, the displacement,
velocity, and acceleration time history curves of the original
model begin to decay freely around 5s, with the peak value of

FIGURE 3 | Deformation diagram of simply supported beam.

TABLE 3 | Values of force residual vector P (N).

Displacement Unit

1 2 3 4 5 6

va 0 882.535 −888.35 7500 −7500 0
θa 0 −88.24 176.47 −2250 3000 0
vb 882.535 −888.35 7500 −7500 0 0
θb −88.24 176.47 −2250 3000 0 0

Displacement Unit

7 8 9 10 11 12

va 0 −747.13 747.13 −2142.90 2142.9 0
θa 0 −373.56 298.85 −642.86 428.57 0
vb −747.13 747.13 −2142.90 2142.9 0 0
θb −373.56 298.85 −642.86 428.57 0 0

FIGURE 4 | Distribution and arrangement of residual vector values of
simply supported beam. (A) Distribution diagram of residual vector value (B)
Arrangement diagram of the absolute value of the residual vector
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displacement at 4.94 s, the peak value of velocity at 5.24 s, and
the peak value of acceleration at 2.46 s.

Extract the dynamic response peaks of displacement, velocity,
and acceleration of the original model of the simply supported
beam and the damage model of the simply supported beam in

Figures 7 and 8, and calculate the relative difference between the
dynamic response values of displacement, velocity, and
acceleration of the original model and the damage model.

It can be seen from Table 5 that under the selected El
Centro seismic wave excitation, the displacement response
peak of the damage model exceeds the displacement
response peak of the original model by 34.0%, the velocity
response peak of the damage model exceeds the velocity
response peak of the original model by 13.5%, and the
acceleration response peak of the damage model exceeds the
acceleration response peak of the original model by 13.8%.
Considering the long-term use of the structure and the impact
of the environment, the structural stiffness is bound to decay.
The dynamic response analysis results of different stiffness
models are quite different, which shows that the original
simply supported beam model can’t effectively reflect the
dynamic characteristics of the structure, so it is necessary to
identify the damage of the original model. The model after
damage identification will not have the problem of
misjudgment of structural resistance under earthquake.

3.2 Example of Truss Numerical Model
3.2.1 Calculated Value of Truss Displacement
The specific numerical model size of the truss structure is shown
in Figure 9. The truss has 10 spans, 37 elements, which are all bar
units, the length of the bottom and upper horizontal bar units is
0.4 m, 0.3 m for the vertical bar units, and 0.5 m for the diagonal
bar units. The elastic modulus of the steel used is E = 200 GPa, the
cross-sectional area of the L-shaped steel unit is A = 2.276 ×
10−4 m2, the density ρ = 7.8 × 103 kg/m3, and the vertical
concentrated force F = 15 kN is loaded at the bottom in the
middle of the span.

The unit stiffness matrix in the local coordinate system of the
unit is expressed as

Ke � EA

L
[ 1 −1
−1 1

] (25)

where E is the elastic modulus of the unit, A is the cross-sectional
area of the unit, and L is the length of the unit.

The transformation matrix of unit stiffness matrix in local
coordinate system into that in global coordinate system can be
expressed as

S � [ cos θ sin θ 0 0
0 0 cos θ sin θ

] (26)

where θ is expressed as the rotation angle of the unit between
the local coordinate system and the global coordinate
system.

The given unit stiffness matrix and transformation matrix
under the local coordinate system of the unit, the unit stiffness
matrix under the local coordinate system can be transformed
into the unit stiffness matrix under the global coordinate
system, and the unit stiffness matrix Ke

g (4 × 4 order
matrix) under the global coordinate system can be obtained
as follows:

FIGURE 5 | Total number of freedom degrees of damage elements.

TABLE 4 | Identification values and setting values of unit damage degrees of
simply supported beam.

Damage Unit Number 2 4 8 10

Setting value 0.15 0.60 0.13 0.3
Identification value 0.15 0.60 0.13 0.3

FIGURE 6 | EL Centro seismic wave time history curve.
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FIGURE 7 | Dynamic response of displacement, velocity, and acceleration output of the original model of simply supported beam.

FIGURE 8 | Dynamic response of displacement, velocity, and acceleration output of damage model of simply supported beam.

TABLE 5 | Maximum dynamic response original model and damage model of simply supported beam.

Dynamic Response Original Model Damage Model Relative Difference (%)

Displacement/(m) 0.089 0.059 34.0
Velocity/(m/s) 0.144 0.125 13.5
Acceleration/(m/s2) 0.047 0.040 13.8
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Ke
g �

EA

L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos2 θ cos θ sin θ −cos2 θ −cos θ sin θ

cos θ sin θ sin2 θ −cos θ sin θ −sin2 θ
−cos2 θ −cos θ sin θ cos2 θ cos θ sin θ

−cos θ sin θ −sin2 θ cos θ sin θ sin2 θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(27)

In this example, the structure has 20 nodes with 40 degrees of
freedom. The association table method (He et al., 2021; Huang
and Schröder, 2021) requires an extraction matrix T4 × 40. The
matrix T extracts the degrees of freedom of different units in the
global coordinate system. The T matrix changes with the degrees
of freedom of unit and is expressed as

T �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 · · · 0 1 0 0 0 0 · · · 0
0 · · · 0 0 1 0 0 0 · · · 0
0 · · · 0 0 0 1 0 0 · · · 0
0 · · · 0 0 0 0 1 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
4×40

(28)

The unit stiffness matrix in the global coordinate system is

KE
g� TTKe

gT (29)
where KE

g is 40 × 40 order matrix.
According to Equation 2 the damage coefficient αi (0 < αi < 1)

is introduced, and the global stiffness matrix of the truss can be
expressed as

K � ∑37
i�1

(1 − αi)K i (30)

where Ki represents the i − th unit stiffness matrix in the global
coordinate system, and the subscript i represents the unit
number.

In order to obtain the static response of the structure, the
vertical concentrated force F = 15 KN is loaded at the bottom in
the middle of the span. The truss model is modeled by the
correlation table method (He et al., 2021; Huang and
Schröder, 2021). The steps of locating the position of the
stiffness matrix by the correlation table method are as follows:
assume that the node (i,j) of the unit N corresponds to the
position of the node degrees of freedom of the global stiffness
matrix as Ni(2×i-1, 2× i),Nj (2×j-1, 2×j). For example, for unit 12,
the node numbers are 3 and 13, and the position of the node
degrees of freedom corresponds to the global stiffness matrix are
5, 6, 25, and 26. Therefore, the corresponding positions of unit 12
in the global stiffness matrix are 5 rows, 6 rows, 25 rows, 26 rows,
5 columns, 6 columns, 25 columns, and 26 columns.

In order to better simulate the actual damage situation,
different damage coefficient values are set for different units of
the truss. Assuming that units 20, 26, and 27 are damaged by 15%,
60%, and 25%, that is, α20 = 0.15, α26 = 0.60, and α27 = 0.25,
Equation 3 can be used to solve the displacement values of each
node after damage, as shown in Table 6. In the table, u and v
represent horizontal and vertical displacements, respectively.

Figure 10 shows the deformation diagram of the truss. In the
figure, the dotted lines present the original structure, and the solid
lines present the deformed structure.

3.2.2 Truss Damage Identification
Table 6 can be used to calculate the node displacement value as
the known value for structural damage identification.

According to Equation 5, the force residual vector P is
obtained, which is listed in Table 7. In the table, ua and va are
the horizontal and vertical vectors of the premier node of the unit,
respectively, while ub and vb are the horizontal and vertical
vectors of the second node of the unit.

Figure 11 represents a distribution and arrangement diagram
of the force residual vector P.

Figure 11A presents the distribution of force residual vector P.
The abscissa represents the sequential number of the horizontal
and vertical degrees of freedom of both nodes for each unit. The
ordinate corresponds to the force residual vector of
corresponding units. Figure 11B shows the arrangement of
the absolute values of P in descending order. The abscissa
represents the cumulative values of the number of the
horizontal and vertical degrees of freedom of both nodes for
each unit (the total number of degrees of freedom of unit nodes,
including vertical degrees of freedom and corner degrees of
freedom).

For the arranged absolute value sequence in Figure 11B, by
dividing the previous element by the next element, we obtain the
positioning diagram shown in Figure 12. The vertical coordinate
of Figure 12 is expressed as the ratio of the absolute value P of the
residual force vector corresponding to the first displacement and
the third displacement in the element. Themaximum ratio, which
represents the total number of degrees of freedom of the damage
units, is located at 12. Since each unit corresponds to 4 degrees of
freedom in the local coordinate system, it can be seen that three
units in the truss have been damaged, which is consistent with the
set number of damaged units.

In Table 7, the truss units 20, 26, and 27, whose ratios of the
residual stress vector value P corresponding to the first
displacement and the third displacement of the element are -1,

FIGURE 9 | Sketch of truss model.
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TABLE 6 | Displacement values of unit nodes (mm).

Displacement Node

1 2 3 4 5 6 7 8 9 10

U 0.000 2.225 2.137 1.962 1.698 1.347 0.995 0.731 0.556 0.468
V 0.000 −3.196 −6.247 −8.790 −10.629 −11.531 −10.705 −8.941 −6.131 −3.120

Displacement Node

11 12 13 14 15 16 17 18 19 20
U 2.636 0.088 0.264 0.527 0.879 1.318 1.757 2.109 2.373 2.548
V 0.000 −3.245 −6.297 −8.839 −10.678 −11.630 −10.754 −8.991 −6.181 −3.169

FIGURE 10 | Deformation diagram of truss.

TABLE 7 | Values of force residual vector P (N).

Displacement Unit

1 2 3 4 5 6 7 8

ua 0 0 −1765 0 0 0 0 15000
va 0 0 −1324 0 0 0 0 −11250
ub 0 −1765 0 0 0 0 15000 3333
vb 0 −1324 0 0 0 0 −11250 −2500

Displacement Unit

9 10 11 12 13 14 15 16

ua 3333 0 0 −1765 0 0 0 0
va −2500 0 0 −1324 0 0 0 0
ub 0 0 1765 0 0 0 0 0
vb 0 0 1324 0 0 0 0 0

Displacement Unit

17 18 19 20 21 22 23 24
ua 15,000 3333 0 −1765 0 0 0 0
va −11250 −2500 0 −1324 0 0 0 0
ub 0 −15000 −3333 1765 0 0 0 0
vb 0 11250 2500 1324 0 0 0 0

Displacement Unit

25 26 27 28 29 30 31 32
ua 0 15000 3333 0 1765 0 0 0
va 0 −11250 −2500 0 1324 0 0 0
ub 0 −15000 −3333 1765 0 0 0 0
vb 0 11250 2500 1324 0 0 0 0

Displacement Unit

33 34 35 36 37 — — —

ua 0 0 0 −15000 −3333 — — —

va 0 0 0 11250 2500 — — —

ub 0 0 −15000 −3333 0 — — —

vb 0 0 11250 2500 0 — — —
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are the damaged units, and the damaged units located are the
same as the set damaged units.

The identification values of damage degrees are obtained by
solving damage degrees using Equation 6, and the setting values
of the corresponding units are listed in Table 8.

It can be seen from Table 8 that all the identification values of
damage degrees are completely consistent with the corresponding
setting values. It can be concluded that the force residual vector
method can be used to locate the damage position and identify the
damage degree of the truss structure.

Eraky et al. (2016), Abdo (2012) used the dynamic test
method to obtain the eigenvalues and eigenvectors of the
structure and combined it with the residual force vector
method to identify the damage of the structure. In this

article, the static displacement parameters are obtained by
the static test method. The static displacement parameters
are easier to obtain than the dynamic parameters, and the
accuracy of the results is more accurate. In addition, this
article uses the intelligent force residual vector algorithm to
obtain more accurate results and faster damage identification.

FIGURE 11 | Distribution and arrangement of residual vector values of
truss. (A) Distribution diagram of the residual vector values (B) Arrangement
diagram of the absolute value of residual vector.

FIGURE 12 | Total number of freedom degrees of damage units.

TABLE 8 | Identification values and setting values of unit damage degrees of truss.

Damage Unit Number 20 26 27

Setting value 0.15 0.60 0.25
Identification value 0.15 0.60 0.25

FIGURE 13 | EL Centro seismic wave time history curve.
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3.2.3 Dynamic Response Analysis of Truss
Using the state space theory to simulate and analyze the
dynamic response of the original truss model and damage
model under the action of the El Centro seismic wave can
verify the dynamic response degree of the structure under the
seismic conditions of the original model and damage model,

and predict whether the structure will be damaged under
seismic load. Parameter setting of dynamic response analysis
in this example: sampling frequency Fs = 50 Hz, sampling
interval △t = 1/Fs = 0.01 s, number of generated samples N =
2500. Figure 13 shows the time history curve of El Centro
seismic excitation applied to the model. Figure 14 shows the

FIGURE 14 | Dynamic response of displacement, velocity, and acceleration output of original truss model.

FIGURE 15 | Dynamic response of displacement, velocity, and acceleration output of damage truss model.
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dynamic response of the displacement, velocity, and
acceleration output of the original model of the truss.
Figure 15 shows the dynamic responses of the
displacement, velocity, and acceleration output of the
damage model of the truss, and the peak value of the
dynamic response in Figures 14 and 15 is the maximum
value of the dynamic response of the displacement, velocity,
and acceleration output.

It can be seen from Figure 14 that under the excitation of
seismic wave, the displacement, velocity, and acceleration time
history curve of the original model begins to decay freely around
2.50 s, the peak value of displacement is at 2.58 s, the peak value
of velocity is at 2.22 s, and the peak value of acceleration is
applied at 2.48 s. It can be seen from Figure 15 that under the
excitation of seismic wave, the displacement, velocity, and
acceleration time history curve of the original model begin to
decay freely around 2.50 s, the peak value of displacement is at
2.46 s, the peak value of velocity is at 2.56 s, and the peak value of
acceleration is at 2.52 s.

The extracted dynamic response peaks of displacement,
velocity, and acceleration of the original model of truss and
the damage model of truss are shown in Figures 14 and 15,
and the relative difference between the dynamic response values
of displacement, velocity, and acceleration of the original model
and the damage model is calculated.

It can be seen from Table 9 that under the selected El Centro
seismic wave excitation, the displacement response peak of the
damage model exceeds the displacement response peak of the
original model by 53.6%, the velocity response peak of the
damage model exceeds the velocity response peak of the
original model by 50.5%, and the acceleration response peak
of the damage model exceeds the acceleration response peak of
the original model by 38.1%. Considering the long-term use of the
structure and the impact on the environment, the structural
stiffness is bound to decay. The dynamic response analysis
results of different stiffness models are quite different, which
shows that the original model cannot effectively reflect the
dynamic characteristics of the structure, so it is necessary to
identify the damage of the original model. The model after
damage identification under earthquake will not cause
misjudgment of structural resistance, which further verifies the
necessity of damage identification.

4 CONCLUSION

Based on the existing research results of the residual force vector
method, a new structural damage identification method based on the
force residual vector is proposed in this article. Through the
identification analysis of some units of the simply supported beam
numerical model and the truss numerical model under different
damage degrees at the same time, it is shown that this method uses
the arrangement of force residual vector elements to intelligently obtain
the location of damage recognition, the number of damaged elements,
and the degree of damage. It only needs the displacement information
under static load and does not need complex modal analysis. In
addition, because of the addition of substructure, the solution of the
system will not be complicated; the damage identification result is
faster, and the calculation speed has a great advantage.

The dynamic responses of the original model and the damaged
truss model are simulated and compared by using the state space
theory. Under the excitation of the El Centro seismic wave, the
dynamic response peak of displacement, velocity, and acceleration of
the damage model is much larger than that of the original model,
and the original model cannot effectively reflect the dynamic
characteristics of the structure. Therefore, it is necessary to
identify the damage of the original model, and the model after
damage identification will not have the problem of misjudgment of
structural resistance under seismic excitation. It can better reflect the
potential safety hazards caused by excessive amplitude, velocity, and
acceleration of the actual structure under seismic dynamic excitation.
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