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The inclusion of dynamic covalent bonds in cross-linked polymer networks enables
material reprocessing towards a circular economy. Bond dynamicity in this class of
materials, called covalent adaptable networks (CANs), is characterized by a mixture of
spectroscopic chemical and bulk materials techniques. These characterization methods
illustrate the interdisciplinary nature of the field, bridging fundamental chemical insights with
engineering-driven applications. Here, we seek to describe and highlight the
complementary nature and nuances of these methods with an emphasis on practical
applications for newcomers to the field.
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1 INTRODUCTION

In recent years, researchers have introduced dynamic covalent bonds into cross-linked polymer
materials, enabling their reprocessing. These covalent cross-links become dynamic in response to
stimuli including temperature, light, or mechanical activation that facilitate bond exchange. This
results in a change to the network topology and the arrangement of crosslinks present in the material
(Maeda et al., 2009; Wojtecki et al., 2010; Victor et al., 2018; Jiang et al., 2019; Huang et al., 2020;
Samanta et al., 2021). These materials, also called covalent adaptable networks (CANs) aim to
combine the mechanical robust-ness of cross-linked materials at their service temperatures with
reprocessability previously only attributed to thermoplastics (Kloxin et al., 2010; Bowman and
Kloxin, 2012; Kloxin and Bowman, 2013; Denissen et al., 2015b; Jin et al., 2019; Podgórski et al.,
2020a; Liu et al., 2020; van Zee and Nicolaÿ, 2020; Zhang et al., 2021). Considerable academic interest
has materialized in this area, resulting in numerous comprehensive reviews focused on dynamic
bond chemistries in CANs and their mechanical properties. Additionally, undergraduate student
populations are interested in sustainability and discussion of CANs is a timely addition to the
undergraduate curriculum (Schneiderman et al., 2014; Chen et al., 2021). This mini-review aims to
serve as an overview of CAN characterization techniques and emphasize how complementary
chemical, thermal, and mechanical characterization techniques provide new insights.

Mechanistically, CANs are categorized by their exchange mechanism: dissociative or associative
as shown in Figure 1. In a dissociative mechanism, a bond or cross-link needs to break before
another one can be formed, causing an inherent decrease in cross-link density during bond exchange.
Some examples of dissociative exchange reactions include: Diels-Alder additions (Chen et al., 2002;
Peterson et al., 2010; Amato et al., 2013), boronate ester (Cromwell et al., 2015), reversible
alkoxyamines (Otsuka, 2013; Sato et al., 2014), and reversible thiol-yne reactions (van Herck
et al., 2020). Polyhydroxyurethane (Fortman et al., 2015), polyimine (Taynton et al., 2014), and
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polyimide exchanges (van Lijsebetten et al., 2021) have also been
reported. In an associative mechanism, bonds are formed before a
bond is broken, typically via the formation of an intermediate.
These networks, also known as vitrimers (Montarnal et al., 2011),
maintain cross-linking density throughout the exchange process.

Their mechanical properties are theoretically preserved
throughout bond rearrangement processes. Some chemistries
that exhibit associative exchange mechanisms are
transesterification reactions (Montarnal et al., 2011; Capelot
et al., 2012), olefin metathesis (Lu and Guan, 2012),
dioxaborolane exchange, (Röttger et al., 2017; Breuillac et al.,
2019; Caffy and Nicolaÿ, 2019), silyl ether exchange (Nishimura
et al., 2017; Tretbar et al., 2019), vinylogous urethane exchange
(Denissen et al., 2015a; Denissen et al., 2017; Tellers et al., 2019),
and thiol addition-elimination exchange (Ishibashi and Kalow,
2018; El-Zaatari et al., 2020).

2 CHEMICAL CHARACTERIZATIONS

To probe the nature of chemical bonding within CANs (e.g., bond
dynamicity, decomposition) a range of techniques have been
employed (Figure 2). These range from small molecule model
“proof of concept” demonstrations of molecular exchange
processes to bulk polymer characterization techniques.

2.1 GC-MS
Gas Chromatography-Mass Spectrometry (GC-MS) is a versatile
tool for characterizing samples containing relatively small
molecules. In GC-MS, a heated column separates compounds
present in a sample based on differences in boiling point and
subsequently identifies them via a mass spectrometer. The GC,
which can be coupled to a variety of detectors including MS and
FID, also serves as a useful quantitation tool and can identify the
concentration of components in a sample, with the aid of a
calibration curve.

FIGURE 1 | Covalent adaptable networks undergoing dynamic bond exchanges with (A) dissociative and (B) associative mechanisms.

FIGURE 2 | Characterization methods for covalent adaptable networks
including chemical, thermal, and reprocessing techniques.
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In CAN research, GC-MS has been used to monitor exchange
reactions in small-molecule model compounds linked with the
same bonds used in CANs. By linking R-groups of different mass
and/or functionality to the dynamic bond being investigated, it is
possible to identify when bonds have successfully been made
dynamic. New compounds formed as a result of exchange
processes will possess different retention times observable via
GC-MS (Kim et al., 2021; Li et al., 2021a; Li et al., 2021b;
Hernández et al., 2022). By monitoring the concentrations of
A-A, B-B and B-A in samples subjected to a variety of conditions,
it is possible to investigate the dynamic bond exchange reaction in
great detail (Snyder et al., 2018; Li et al., 2021b). Bañales et al.
were able to use GC-MS in this way to demonstrate the presence
of a dynamic equilibrium between guanidine groups and several
small-molecule amine compounds (Melchor Bañales and Larsen,
2020). GC-MS can also be coupled to other instruments, to
analyze in more detail the byproducts of CAN degradation
processes. For example, Li et al. used a coupled TGA-GCMS
to monitor the thermal degradation products of thiourethanes in
real-time (Li et al., 2019). This allowed them to determine that the
decomposition products were primarily composed of their
feedstock compounds. GC-MS is an incredibly powerful tool
for investigating small-molecule reactions, and thus has excellent
utility in small-molecule model compound studies of CANs.

2.2 NMR
Complementary to the experiments described above, model
compound exchange can also be characterized via nuclear
magnetic resonance (NMR). While GC-MS is limited to
compounds with boiling points low enough to volatilize
(<300°C), solution NMR probes exchange in higher molecular
weight model compounds, provided that the species of interest
possess resolvable chemical shifts. In some instances, both GC-
MS and NMR model compound studies are employed to provide
evidence of bond exchange. Small molecule model studies
employing NMR have been performed to characterize and
optimize bond exchange conditions for a variety of cross-
linked systems including polyesters, polyurethanes, aminals,
and guanidines (Chakma et al., 2020; Melchor Bañales and
Larsen, 2020; Schoustra et al., 2021).

Small molecule model studies employing 1H NMR involve
truncated analogues of the functional groups used in CAN
synthesis. These are used to optimize exchange conditions (e.g.
catalyst loading, temperature, etc.) that must be further optimized
in polymer films (Melchor Bañales and Larsen, 2020).
Additionally, model compound studies can be used to
elucidate the reaction mechanism. For example, Delahaye et al.
monitor transesterification reaction kinetics via 1H NMR for
phthalate monoester compounds (Delahaye et al., 2019). Their
NMR studies enabled classification of the reaction mechanism as
associative or dissociative. Additionally, Schoustra et al.
compared the kinetics of imine exchange via transimination
and imine metathesis mechanisms for hydrocarbon and
ethylene oxide-based polymers (Schoustra et al., 2021). These
mechanistic studies led to inclusion of ethylene oxide groups in
their final dynamic polymeric system. Due to the prevalence of
variable temperature (VT) NMR instruments, a mixture of in situ

and ex situ NMR studies are possible. Exchange reactions can be
monitored in NMR tube reactions, or observed via NMR
characterization of reaction aliquots. For example, Chakma
et al. probe anilinium crosslinker dissociation equilibria at
various temperatures. Reaction aliquots were added to CDCl3
prior to characterization (Chakma et al., 2020).

Although most work on CANs employ thermally activated
exchange processes, there is growing interest in studying photo-
activated exchange processes via NMR. Photo-activated exchange
affords superior spatial control using light as the stimulus. Along
these lines, Barsoum et al. demonstrated photoswitchable internal
catalysis controlling exchange kinetics between a boronic ester
and free diol where 1H VT-NMR is used to probe exchange
kinetics (Barsoum and Kalow, 2021). These types of studies will
enable incorporation of new photo-activated dynamic
chemistries in CANs. Additionally, as in situ LED-NMR
techniques evolve (Skubi et al., 2020) we suspect that in situ
photoreactions monitoring bond exchange in model compounds
will assist in the identification and development of new dynamic
bonds that will be implemented in CANs.

Beyond model compound studies, NMR is used to
characterize polymer products. Solution 1H NMR has been
used to confirm successful polymerization of CANs from
monomers (Huang et al., 2021). Other authors perform solid
state NMR (ssNMR) experiments to confirm the successful
formation and lack of undesirable degradation of their
polymer material (Markwart et al., 2020). Additionally, ssNMR
can be used to probe exchange processes in actual films. For
example, Majumdar et al. used 31P ssNMR to probe β-hydroxyl-
mediated transesterifications of hydroxyethyl phosphate triesters
(Majumdar et al., 2021). Because bond exchange processes in
model compound systems may differ from actual films, they
probed bond exchange within actual polymer films.

2.3 FTIR
Fourier-Transform Infrared Spectroscopy (FTIR) has limited use
in characterizing the evolution of bonds in covalent adaptable
networks, but is primarily used to monitor polymer degradation.
Gamardella et al. used FTIR to identify degradation reactions that
occurred in their thiourethane CAN (Gamardella et al., 2020).
Other groups, including Taplan et al., used ATR-FTIR to affirm
that the chemical composition of their CAN did not change when
recycled (He et al., 2021; Taplan et al., 2021).

Variable Temperature FTIR (VT-FTIR) probes how bonds
present in a CAN change with temperature (Scheutz et al., 2019;
Shi et al., 2020). Bongiardina et al. utilized VT-FTIR to examine
the kinetics of bond formation in thiol-thioester reactions, by
measuring the time required for the FTIR to show bond
equilibration at a given temperature (Bongiardina et al., 2021).
Additionally, Zhang et al. used VT ATR-FTIR to quantitate the
Keq of several sterically distinct polyureas, using the Beer-Lambert
law and an inert reference peak as an internal standard (Zhang
and Rowan, 2017).

However, FTIR is only useful as a characterization technique
for CANs when the change in functional groups is strongly
detectable. This requires that the functional group change
during the exchange process, and at a high enough
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concentration to give good resolution. For associative exchange
mechanisms and some dissociative exchange mechanisms, the
functional group does not significantly change during the
exchange process. Thus, bond exchange cannot often be
characterized via FTIR. Furthermore, the number of bonds
engaged in dissociative exchange is often too low to quantitate
reliably using VT-FTIR. In addition, FTIR characterization is not
well-suited to solvent-borne exchange reactions, as the signal
from exchange compounds is often drowned out by the solvent
signal.

3 BULK MECHANICAL AND THERMAL
CHARACTERIZATIONS

Many thermal and mechanical characterization techniques are
applicable to CANs at temperatures below bond exchange
activation (Figure 2). Most of these techniques are
highlighted by Danielsen et al. (Danielsen et al., 2021). Of
noted importance to CANs, is the ability to measure the glass
transition temperature (Tg) and degradation temperature (Td)
of the bulk polymer.

3.1 Tg Measurements
For conventionally cross-linked polymer networks, Tg

represents a temperature below which the macromolecular
structure of the polymer is “locked” and exhibits glass-like
behavior. Above Tg, the polymer exhibits some mobility and is
rubber-like.

Differential Scanning Calorimetry (DSC) is a common
technique used to measure Tg’s of cross-linked polymer
networks. Using a reference and the polymer sample, DSC
monitors the amount of heat given to these two samples to find
transition points. Tg is determined via a half-height or midline
technique in the transition region. Multiple papers reporting
Tg’s of their covalent adaptable network use DSC (Luo et al.,
2018; Hao et al., 2020; Alraddadi et al., 2021; bin Rusayyis and
Torkelson, 2021; Li et al., 2021b; Pronoitis et al., 2021; Taplan
et al., 2021; Liguori and Hakkarainen, 2022). DSC has also
been utilized to calculate degree of crystallization and melting
temperature for crystalline CANs (Miao et al., 2020; Pronoitis
et al., 2021).

Dynamic mechanical analysis (DMA) can also be used to
calculate Tg in CANs (Giebler et al., 2020; Podgórski et al., 2020b;
Ishibashi et al., 2021). This method quantifies how a material
responds to an applied oscillatory force. During a temperature
ramp, DMA measures elastic (storage modulus; E′) and viscous
(loss modulus; E″) components of the polymer networks. The Tg
of the material can be calculated by the inflection point of the
storage modulus after it decreases during the temperature ramp,
or by looking at the temperature at the peak of the Tan Delta
curve. The Tan Delta represents the ratio of loss to storage
modulus.

Slight differences in obtained Tg values between DSC and
DMA have commonly been attributed to the difference in what
each technique measures. While the DMAmeasurement pertains
to changes in mechanical relaxation, DSC is sensitive to the

material’s heat capacity changes. Thus, it is recommended that
Tg values from both techniques be obtained if possible.

3.2 Td Measurements
Since many dynamic bonds in CANs are thermally activated, it
is important to measure their degradation temperatures (Td)
(Taplan et al., 2021; van Lijsebetten et al., 2021). Td is the
temperature above which an irreversible change to the
macromolecular structure of the polymer occurs (Danielsen
et al., 2021). It is important that the operating temperature for
CANs remains below Td to prevent chemical degradation of
the material. Thermogravimetric Analysis (TGA) is used to
determine Td by measuring change in mass as a function of
increasing temperature under a controlled atmosphere. For
neat (solvent-free) polymer networks, the temperature at
which the network loses 5% mass is considered its thermal
degradation temperature.

3.3 Assessing Recyclability
3.3.1 DMA vs. Rheology
Both DMA and rheology measure viscoelastic properties in
polymer networks. The main difference between both
instruments is that DMA utilizes compressive forces while
rheology uses shear forces during testing (Meyvis et al., 2002).
If the sample can be easily sheared (i.e., a material that has
prominent viscous behavior to it), oscillatory shear rheology is
a suitable technique since the sample can be sheared in
between parallel plates without slippage. In cases where the
sample has a more elastic behavior to it, where the sample
cannot be easily sheared without fear of slippage or
deformation, DMA is recommended.

3.3.2 Stress Relaxation
Stress relaxation experiments are rheological characterization
experiments in which a polymer sample is subject to constant
strain. The resulting stress is monitored over time via
observation of the relaxation modulus (G(t)). During a
stress relaxation event, G(t) decreases from an initial value,
G0, to a lower plateau value, G∞. In many cases, stress
relaxation is directly related to energy dissipation within a
polymer. An observed decrease in stress often correlates with a
topological reorganization of the cross-linked polymer and is
an effective measure of bond dynamicity. In CANs, the
relaxation behavior of the polymer can thus quantify both
reprocessing ability and bulk exchange kinetics. In other
words, the faster a polymer is able to dissipate energy when
a constant strain is applied, the faster its theoretical
reprocessing speed. The speed of the relaxation process can
be defined in terms of a critical time constant known as the
relaxation time, τ. In its simplest definition, τ is the time
needed for the relaxation modulus (G(t)) to decrease to 1/e of
the initial value (G0) (Chakma et al., 2020). This assumption is
only valid if a material is considered Maxwellian, meaning it
has a single relaxation process, which most CANs have been
assumed to follow (Parada and Zhao, 2018). This assumption
follows that the energy dissipation of the material can be traced
back to a single relaxation event through activated bond
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exchange as the sole cause for network rearrangement. In such
materials, τ can furthermore be related to the flow activation
energy (Ea) of the polymer through an Arrhenius-type
relationship (Brutman et al., 2014):

τ � A exp(Ea

RT
)

where R is the ideal gas constant, T is the temperature (in Kelvin),
and A is a pre-exponential factor. The flow activation energy
represents the energy required for polymer chain segment
mobility and is used to assess the degree of difficulty with
respect to material flow and informs on feasibility of
reprocessability (Lou et al., 2019). Calculating both τ and Ea
through stress relaxation experiments are critical to
understanding flow behavior of CANs. Ea can be obtained by
performing a linear regression to the plot of ln(τ) as a function of
inverse temperature. The slope of this line equals Ea/R. It should
be noted however, that if the CAN cannot be explained by a single
Maxwell element, stress relaxation of these materials can be fitted
to a Kohlrausch− Williams−Watts (KWW) which is a stretched
exponential decay (Li et al., 2018).

Finally, creep measurements can be performed on CAN
samples in order to assess their ability to permanently deform
under applied mechanical stress These measurements typically
take place through tension-film geometries and are loaded with
constant stress, followed by sample length measurements after a
certain amount of time (Li et al., 2018; bin Rusayyis and
Torkelson, 2021).

3.3.3 Frequency Sweeps
Under small amplitude oscillatory shear, the storage (G′) and
loss (G″) moduli are frequency dependent where they
characterize the solid-like elastic and liquid-like viscous
material responses respectively. At higher frequencies, the
storage modulus dominates where G′ is greater than G″.
This observation implies that the deformation energies are
stored elastically over short time scales. As the frequency
decreases, G″ approaches G′ until it reaches a crossover
frequency, ωc, where G′(ωc) = G″(ωc). Beyond this crossover
frequency, the loss modulus dominates where G″ is greater
than G′ suggesting viscous storage of deformation energy. In
an ideal Maxwell material, the relaxation time, τ, is inversely
proportional to ωc

ωc � 1
τ

It is recommended that τ be calculated using both stress
relaxation and frequency sweep measurements to ensure
accuracy in quantifying flow behavior and recycling ability
of CANs.

3.3.4 Dilatometry
Dilatometry takes advantage of the differences in volume
occupied by a cross-linked thermoset material and a CAN
with thermally activated dynamic bonds. Since permanently
cross-linked networks occupy lower volumes than CANs, their

expansion coefficient should be lower. Thus, changes in the
expansion coefficient in CANs over a range of temperatures
can indicate the temperature at which bond rearrangement is
taking place. For CANs that undergo associative bond exchanges
(i.e. vitrimers), a second temperature can be seen via dilatometry
as the topology freezing transition temperature (Tv) (Yang et al.,
2016; Liu et al., 2018). Below Tv, a polymer is mostly unaffected by
the exchange reaction. Above Tv, the exchange reaction is favored
and the polymer is able to be reprocessed and recycled. Tv can
hence be considered as the minimum temperature required for
reprocessing vitrimers. Methods for accurately measuring Tv are
in the process of being determined within the field (Yang et al.,
2019; Kaiser et al., 2020; Hubbard et al., 2021).

3.4 Reprocessing Techniques and
Characterization
The ability to reprocess CANs while maintaining key physical
properties of the virgin polymer sample is a defining feature of
these materials (Figure 2). Typically, reprocessing is examined
through compression molding, welding, and/or extrusion.
After reprocessing is complete, the mechanical properties of
the CAN before and after reprocessing are assessed via FTIR or
Raman spectroscopy (van Herck et al., 2020) and/or DMA/
rheology (Ishibashi and Kalow, 2018). Comparing stress-strain
plots before and after multi-cycle reprocessing is furthermore
recommended (Zheng et al., 2018; Song et al., 2021; Zeng et al.,
2021).

3.4.1 Compression Molding
During compression molding (Snyder et al., 2018), CANs are
cut into small pieces and placed in a mold. Next, the samples
are placed between two plates in a hot press at controlled
temperature and pressure. The chosen temperature for
reprocessing has to be high enough to activate dynamic
bond chemistry, but low enough to avoid degradation
temperatures (Td). Once the sample has reached the desired
temperature, it is compressed between the plates at high
pressures. After a certain amount of time, which is usually
correlated with the relaxation time, τ, the sample is released,
cooled down, and removed at room temperature.

3.4.2 Welding
During welding (Yu et al., 2016; He et al., 2018), two
independent CAN films are typically overlapped and gently
pressed together. The samples are then heated at a temperature
below the degradation temperature. The bond exchange
reaction occurs at the interface through chain crossing
between the two films, causing the welding of the two films
into one.

3.4.3 Extrusion
Extrusion of polymers is a highly utilized manufacturing
process to shape plastics for their desired end application
while simultaneously enriching them with additives if
required. In this process, the material is melted and formed
continuously. Most examples of extrusion molding of CANs
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have involved small scale molding through a mini extruder or a
twin-screw extruder at high temperatures (Yue et al., 2019;
Sheppard et al., 2020; Swartz et al., 2021).

4 CONCLUSION AND OUTLOOK

Cross-linked polymer networks are ubiquitous to daily life but are
impeded by our inability to repair or recycle these materials. This
has contributed to a global environmental crisis. The utility of
dynamic bonds in polymer networks is emerging as an essential
combatant to plastic waste, revolutionizing the way traditional
polymers are viewed. This mini-review focuses on techniques
used to characterize properties of covalent adaptable networks
which contain dynamic bonds on the chemical, thermal,
mechanical, and reprocessing levels. While all characterization
techniques could not be covered, we hope that this review will
serve as a starting point for students, academics, and scientists
eager to develop their understanding of these unique class of
materials.
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