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Uncertainty quantification (UQ) plays a major role in verification and validation for
computational engineering models and simulations, and establishes trust in the predictive
capability of computational models. In the materials science and engineering context,
where the process-structure-property-performance linkage is well known to be the only
road mapping from manufacturing to engineering performance, numerous integrated
computational materials engineering (ICME) models have been developed across a wide
spectrum of length-scales and time-scales to relieve the burden of resource-intensive
experiments. Within the structure-property linkage, crystal plasticity finite element method
(CPFEM) models have been widely used since they are one of a few ICME toolboxes
that allows numerical predictions, providing the bridge from microstructure to materials
properties and performances. Several constitutive models have been proposed in the
last few decades to capture the mechanics and plasticity behavior of materials. While
some UQ studies have been performed, the robustness and uncertainty of these
constitutive models have not been rigorously established. In this work, we apply a
stochastic collocation (SC) method, which is mathematically rigorous and has been
widely used in the field of UQ, to quantify the uncertainty of three most commonly
used constitutive models in CPFEM, namely phenomenological models (with and without
twinning), and dislocation-density-based constitutive models, for three different types of
crystal structures, namely face-centered cubic (fcc) copper (Cu), body-centered cubic
(bcc) tungsten (W), and hexagonal close packing (hcp) magnesium (Mg). Our numerical
results not only quantify the uncertainty of these constitutive models in stress-strain
curve, but also analyze the global sensitivity of the underlying constitutive parameters
with respect to the initial yield behavior, which may be helpful for robust constitutive model
calibration works in the future.

Keywords: uncertainty quantification, crystal plasticity finite element, constitutive models, stochastic collocation,
sparse grid, polynomial chaos expansion
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1 INTRODUCTION

Uncertainty quantification (UQ) has been a cornerstone in
applied mathematics to verify and validate forward models,
with application ranging from subsurface flow, climate change,
integrated computational materials engineering (ICME)
developments, advanced manufacturing, and many more. In
the context of materials design, process-structure-property-
performance relationship plays a critical role in establishing
the linkage between manufacturing and desired properties,
to which materials can be tailored for specific applications.
Across the spectrum of length- and time-scales, from quantum
to macro-scale, multiple ICME models have been developed
in the quest of accurate prediction of materials properties and
performance. Notable ICME models for deformation of metals
includes, but are not limited to, concurrent or hierarchical
couplings of density functional theory, molecular dynamics,
kinetic Monte Carlo, dislocation dynamics, crystal plasticity,
phase-field, finite element, and any sort of multi-physics and
hybrid approaches. Despite its success, there are still much
room and open questions for UQ research with respect to
microstructure-induced mechanical response in metal alloys.

The concept of ICME models is particularly important
because with the predictive capability, engineers can numerically
approximate material properties and performance under
different operating conditions, without actually performing
physical experiments. With the rise of high-performance parallel
computing, this step is often hailed as the third paradigm
of science Agrawal and Choudhary (2016), supporting prior
empirical and experimental, as well as theoretical research.
However, as in any forward computational model that relies on
deterministic calculations, there is a necessary need to quantify
the uncertainty that is associated with the numerical predictions,
in order to sufficiently enhance its fidelity and robustness. For
the case of crystal plasticity finite element method (CPFEM)
as an ICME model that bridges microstructure and materials
properties and performance, the question of uncertainty is even
more relevant because microstructures are well known to be
stochastic, high-dimensional in image or volume representations,
and may be anisotropic and heterogeneous.

Numerous UQ studies in computational solid mechanics
have been conducted over the last decade. Given the critical
importance of optimization and UQ for a wide variety of
problems in materials science, several frameworks have been
developed, see e.g., Panchal et al. (2013); McDowell (2007);
Kalidindi et al. (2016), to provide robust predictions under
uncertainty. A comprehensive review of UQ applications in
ICME-based simulations can be found in Honarmandi and
Arróyave Honarmandi and Arróyave (2020). For example,
Zhao et al. Zhao et al. (2022) incorporated measurement and
parametric uncertainty to quantify the uncertainty of critical
resolved share stress for hcp Ti alloys from nano-indentation.
Lim et al. Lim et al. (2019) investigated the mesh sensitivity and
polycrystalline representative volume element (RVE), where
initial textures, hardening models, and boundary conditions
are uncertain, and showed that an adequate polycrystalline
RVE is obtained by capturing 1,000 or more grains. Tran and

Wildey Tran andWildey (2020) applied data-consistent inversion
method to infer a distribution of microstructure features from
a distribution of yield stress, where the push-forward density
map via a heteroscedastic Gaussian process approximation
is consistent with a target yield stress density. Kotha et al.
Kotha et al. (2019a,b, 2020b,a) developed uncertainty-quantified
parametrically homogenized constitutive models to capture
uncertainty in microstructure-dependent stress-strain curve,
as well as stochastic yield surface, which has been broadly
applied for modeling multi-scale fatigue crack nucleation in
Ti alloys Ozturk et al. (2019b,a) and for single-crystal Ni-based
superalloys with support vector regression as an underlying
machine learning model Weber et al. (2020). Sedighiani et al.
Sedighiani et al. (2020, 2022) applied genetic algorithm and
polynomial approximation to various constitutive models,
including phenomenological and dislocation-density-based
models. Tran et al. Tran A. V. et al. (2019) applied stochastic
collocation (SC) method to quantify uncertainty for dendrite
morphology and growth via phase-field model. Acar et al. (2017)
proposed a linear programming approach to maximize
a mean of materials properties under the assumption of
Gaussian distribution for both inputs and outputs. Fernandez-
Zelaia et al. (2018) utilized Bayesian inference to quantify the
uncertainty in stress-strain curves, where model parameters
are treated as random variables. Tallman et al. (2019, 2020)
appliedGaussian process regression and theMaterialsKnowledge
System framework to predict a set of homogenized materials
properties with uncertainty from a distribution function for
crystallography orientations and textures. Inductive design
exploration method (IDEM) Ellis and McDowell (2017);
McDowell et al. (2009); Choi et al. (2008) has been introduced
as a materials design methodology to identify feasible
and robust design for microstructure features, which has
been broadly applied to many practical problems. From a
methodological perspective, numerous applied mathematical
UQ techniques have been developed over a few decades.
While both intrusive and non-intrusive options are available,
non-intrusive polynomial chaos expansion (PCE) Xiu and
Karniadakis (2002); Najm (2009), which is also known as non-
intrusive spectral projection PCE, is one of the most widely used
UQ methods to propagate uncertainty in physical models and
computational simulations. Global sensitivity analysis methods,
which is arguably constructed on top of the high-dimensional
model representation, have also well studied. And apparently,
numerous studies connecting PCE and global sensitivity
analysis, for example, Sudret (2008), Crestaux et al. (2009), and
Saltelli et al. (2010), have been conducted. Despite the fact that
numerous UQ application works have been carried out in the
materials literature and more specifically, in the structure-
property relationship, to the knowledge of the authors, none has
been applied to quantify the uncertainty related to the underlying
constitutive models used in CPFEM.

In this work, we adopt crystallographic textures from
Kocks et al. (1998)(cf. Table 1, Chapter 5, pg 185) and Wenk
and Van Houtte (2004)(Tables 1 and 2), Raabe et al. (2002),
Raabe and Roters (2004), Pham et al. (2017), and Mangal and
Holm (2018). We limit the scope of UQ on themicrostructure-
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TABLE 1 | Relationship between the types of Wiener-Askey polynomial chaos and their underlying random variables θ.

random variable probability density function polynomial support range

Gaussian 1
√2π

e−
θ2

2 Hermite (−∞,∞)
uniform 1

2
Legendre [−1, 1]

beta (1−θ)α(1+θ)β

2α+β+1B(α+1, β+1)
Jacobi [−1, 1]

gamma θαe−θ

Γ(α+1)
Laguerre [0,∞)

mechanical property linkage, where the crystal plasticity finite
element is widely regarded as the microstructure-aware multi-
scale ICME model, and adopt the DREAM.3D Groeber and
Jackson (2014) and DAMASK Roters et al. (2019) workflow as
previously demonstrated by Diehl et al. (2017), as well as two
constitutivemodels described in Sedighiani et al. (2020, 2022), to
perform uncertainty quantification via DAKOTA Eldred (2009);
Dalbey et al. (2021).

The rest of the paper is organized as follows. Section 2
introduces PCE and SC as the UQ backbone methodology used
in this paper. Section 3 describes the integrated UQ workflow
and how they are implemented in practice. Section 4 shows the
first case study of 5d UQ for fcc Cu using phenomenological
constitutivemodel with slipping. Section 5 shows the second case
study of 16dUQ for hcpMgusing phenomenological constitutive
model with slipping and twinning. Section 6 shows the last
case study of 7d UQ for bcc W using dislocation-density-based
constitutive model. Section 7 discusses and Section 8 concludes
the paper, respectively.

2 UNCERTAINTY QUANTIFICATION
BACKGROUND

In this section, we describe UQ background for CPFEM.
In Section 2.1, we summarize the theoretical foundation for
generalized polynomial chaos expansion as a non-intrusive
spectral projection method. In Section 2.2, we provide the
mathematical background for Smolyak sparse grid construction
for high-dimensional interpolation and integration, as well
as some comparison to full tensor grid highlighting the
computational advantage in SC method. We refer interested
readers to Babuška et al. (2007); Nobile et al. (2008); Xiu (2009)
for a more rigorous mathematical characterization of the SC
method.

2.1 Generalized Polynomial Chaos
Expansion
The generalized Wiener-Askey PCE Xiu and Karniadakis (2002)
represents the second-order random process f(θ) as

f (θ) = c0I0 +
∞

∑
i1=1

ci1I1 (ξi1 (θ))

+
∞

∑
i1=1

∞

∑
i2=1

ci1i2I2 (ξi1 (θ) ,ξi2 (θ))

+
∞

∑
i1=1

∞

∑
i2=1

∞

∑
i3=1

ci1i2i3I3 (ξi1 (θ) ,ξi2 (θ) ,ξi3 (θ)) +⋯ ,

(1)

where In(ξi1,…,ξin) denotes the Wiener-Askey polynomial chaos
of order n in terms of the random vector ξ = (ξi1,ξi2,…,ξin), and
c’s are polynomial chaos expansion coefficients to be determined.
Without loss of generality, Eq. 1 can be rewritten as

f (θ) =
∞

∑
j=0

̂fjΦj (ξ (θ)) , (2)

where there is a one-to-one correspondence between the function
In(ξi1,…,ξin) and Φj(ξ). Φj(ξ(θ)) are orthogonal polynomials in
terms of ξ ≔ {ξi(θ)}di=1, i.e.,

〈ΦiΦj〉 = 〈Φ
2
j 〉δij, (3)

where δij is the Kronecker delta and ⟨⋅, ⋅⟩ denotes the weighted-
average, which is defined as the inner product in theHilbert space
of the variable ξ with respect to the weighting function W(ξ),
described in Table 1, as

⟨ΦiΦj⟩ ≔∫θ∈Θ
Φi (ξ)Φj (ξ)W (ξ)dξ. (4)

Here, ̂fj are the coefficients to be determined. In practice, the
number of terms in (2) are truncated after a finite term P,
where P + 1 = (p+n)!

p!n!
, where p is the order of PCE, and n is the

dimensionality of the problem, resulting in an approximation for
finite PCE, as

f (θ) ≈
P

∑
j=0

̂fjΦj (ξ) . (5)

The PCE coefficients ̂fj is determined by non-intrusive spectral
projection of (5) onto the orthogonal polynomial basis {Φj} as

̂fj =
〈fΦj〉

〈Φ2
j 〉
. (6)

Table 1 describes the relationship between the types of
Wiener-Askey polynomial chaos and their corresponding
underlying random variables. For uniformly distributed variables
ξ used in this paper, the Wiener-Askey scheme Xiu and
Karniadakis (2002) requires Legendre polynomials as the
polynomial basis {Φj}.

2.2 Stochastic Collocation
Sparse grid methods Novak and Ritter (1996, 1997, 1999);
Barthelmann et al. (2000) are a cornerstone in high-dimensional
interpolation and integration that have been used in a variety
of disciplines. In concert with the generalized polynomial
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TABLE 2 | The number of collocation points used by sparse grid and full tensor grid.

Level n = 5 n = 7 n = 16

ℓ sparse full tensor sparse full tensor sparse full tensor

0 1 1 1 1 1 1
1 11 243 15 2187 33 4.3e+7
2 71 16807 127 823543 577 3.3e+13
3 351 759375 799 170859375 7105 6.5e+18
4 1391 28629151 4047 27512614111 68865 7.2e+23
5 4623 992436543 17263 3938980639167 556801 6.1e+28

chaos expansion Xiu and Karniadakis (2002) as a non-intrusive
spectral projection approach, SC methods Babuška et al. (2007);
Nobile et al. (2008); Xiu (2009) are developed to improve the
efficiency of the generalized polynomial chaos expansion
on high-dimensional problems using Smolyak sparse grids
for integration. In the nutshell, the polynomial chaos
expansion coefficients are computed based on the sparse
grid framework that significantly reduces the effect of the
curse-of-dimensionality.

Following Nobile et al. (2008), let i ≥ 1 and {ξ i1,…,ξ
i
mi
} ⊂

[−1,1] be a sequence of abscissas, we begin by introducing the
one-dimensional Lagrange interpolation operator as

U i (f ) (ξ) =
mi

∑
j=1

f (ξ ij)L
i
j (ξ) , (7)

where Li
j(ξ) are the Lagrange polynomials of degree mi − 1, i.e.

Li
j(ξ) =

mi

∏
k=1,k≠j

(ξ − xik)
(ξ ij − ξ

i
k)

. The full tensor product formula is perhaps

the most straightforward, as

Um1 ⊗⋯⊗Umn (f ) (ξ) =
m1

∑
j1=1
⋯

mn

∑
jn=1

f (ξ i1j1 ,…,ξ
in
jn
) ⋅ (Li1

j1
⊗⋯⊗ Lin

jn
) ,

(8)

which requires
n

∏
i=1

mi functions evaluations. Although simple,

a major drawback of full tensor product is that the total
number of points grows very fast in high dimensions.
Numerous choices of collocation points are possible, such as
Gauss-Legendre, Clenshaw-Curtis, Leja, and Gauss-Patterson
Nobile et al. (2016). In this work, the weakly-nested Gaussian
abscissas (see Section 3.6.2 of Dalbey et al. (2021) and Eldred and
Burkardt (2009)), which are zeros of orthogonal polynomials, are
utilized for quadrature.

Let U 0 = 0 and for i ≥ 1, define

Δi = U i −U i−1, (9)

the isotropic Smolyak quadrature formula Smolyak (1963) is
given by

A (q,n) = ∑
i≤q

Δi1 ⊗⋯⊗Δin, (10)

or equivalently as,

A (q,n) = ∑
q−n+1≤|i|≤q

(−1)q−|i| ⋅ (n− 1q− |i| ) ⋅U
i1 ⊗⋯⊗U in. (11)

where q ≥ n is an integer denoting the level of the construction
Wasilkowski andWoźniakowski (1995). To compute the operator
A(q,n), one needs to evaluate f on the set of points

H (q,n) = ⋃
q−n+1≤|i|≤q

(ξ i1 ×⋯× ξ in) , (12)

where ξ i = {ξ i1,…,ξ
i
mi
} ⊂ [−1,1] is the collection of abscissas used

by the univariate interpolating operator U i. This set is a much
smaller subset of those required by the full tensor product rule. If
the sets are nested, i.e. ξ i ⊂ ξ i+1, then H(q,n) ⊂H(q+ 1,n).

To illustrate the benefits in using the Smolyak sparse grid,
compared to the full tensor grid, Table 2 compares the number
of simulations required to achieve the same level of accuracy. The
dimensionalities are chosen according to the case studies in this
paper. The equivalent number points on full tensor grid point is
computed as (2(ℓ+1) − 1)n, where ℓ is the corresponding level of
sparse grid.

2.3 Variance-Based Global Sensitivity
Analysis
Following Sudret (2008), Crestaux et al. (2009), and
Saltelli et al. (2010), we summarize the variance-based global
sensitivity analysis based on Sobol’ decomposition as follows. In
the spirit of generalized polynomial chaos expansion (i.e. Eq. 1
after finite truncation), the Sobol’ decomposition of f(ξ) into the
summands of increasing dimensions as

f (ξ1,…,ξn) = ̂f 0 +
n

∑
i=1
∑
α∈I1

̂fαΦ(ξi)

+ ∑
1≤i1<i2≤n

∑
α∈Ii1i2

̂fαΦ(ξi1,ξi2) +⋯

+ ∑
1≤i1<⋯<is≤n

∑
α∈Ii1,…,is

̂fαΦ(ξi1,…,ξis)

+⋯+ ∑
α∈I1,2,…,n

̂fαΦ(ξ1,…,ξn) .

(13)

Given a model of the form y = f(ξ1,ξ2,…,ξn), with y as a scalar,
a variance-based first order effect for a generic factor ξi can
be written as 𝕍ξi [𝔼ξ∼i [y|ξi]], where ξ∼i is the vector ξ without
the i-th element, i.e. ξ∼i = (ξ1,…,ξi−1,ξi+1,…,ξn). The main effect
sensitivity index (first-order sensitivity coefficient) is written as

Si =
𝕍ξi [𝔼ξ∼i [y|ξi]]
𝕍[y]

. (14)

It is relatively well-known that

𝔼[𝕍[y|ξ∼i]] +𝕍[𝔼[y|ξ∼i]] = 𝕍[y] , (15)

Frontiers in Materials | www.frontiersin.org 4 September 2022 | Volume 9 | Article 915254

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Tran et al. UQ for CPFEM Constitutive Models

and therefore, the total effect sensitivity index can be obtained as

Ti =
𝔼[𝕍[y|ξ∼i]]
𝕍[y]

= 1−
𝕍[𝔼[y|ξ∼i]]
𝕍[y]

. (16)

In global SA, the importance of parameter ξi is measured
by comparing its variance of the conditional expectation
𝕍ξi [𝔼ξ∼i [y|ξi]] against the total variance 𝕍[y]. Si measures the
effect of ξi by evaluating the variance contribution of the basis
function ̂fi that depends strictly on the set of variables in ξi,
while Ti measures the total effect of ξi by evaluating the variance
contribution of all basis function whose dependencies include
ξi. For mathematical and implementation details, interested
readers are referred to Tang et al. (2010), Weirs et al. (2012),
and Crestaux et al. (2009), where most of the computations are
based on Monte Carlo sampling ξ. In the context of this
manuscript, we can understand ξ as the set of parameters for the
underlying constitutivemodel, whether it is phenomenological or
dislocation-density-based, and y as the quantity of interest from
theCPFEMmodel. It should be emphasized that themethod used
in this study is the mainstream global sensitivity analysis that is
widely used in structural reliability studies.

3 UNCERTAINTY QUANTIFICATION
WORKFLOW FOR CRYSTAL PLASTICITY

In this paper, we limit the scope of the UQ studies to cases with a
unique RVE. As discussed in Section 7, relaxing this restriction
will be the subject of future work. DREAM.3D Groeber and
Jackson (2014) is used to generate polycrystalline RVE with
a specific crystallographic texture, depending on the material
considered. DAKOTAAdams et al. (2009) and Python scripts are
used to generate inputs for constitutive models, where DAMASK
Roters et al. (2019) is employed as the CPFEM forward model.
Results are collected and post-processed in DAKOTA.

Figure 1 describes the integrated framework coupling
DAKOTA uncertainty quantification code and DREAM.3D +
DAMASK workflow. Based on the sparse grid construction
specifications, such as anisotropic/isotropic, sparse grid level, as
well as other sensitivity analysis options, DAKOTA sets up a list of
input parameters to be determined and evaluated by the coupled
DREAM.3D + DAMASK workflow. The sets of simulations are
then deployed on high-performance computing systems and
evaluated in parallel to accelerate the process. Typically, for a fixed
input parameter vector, an ensemble of microstructural RVEs are
used; however, to reduce the computational cost in this study, we
limit the scope of our investigation to one microstructure RVE.
It should be noted that, if the initial microstructure is fixed, then
DAKOTA would interact directly with DAMASK, and the role
of DREAM.3D can be conveniently ignored. Figure 2 shows an
isotropic Smolyak sparse grid with Gaussian abscissas in a d = 2
problem at various sparse grid level ℓ from 1 to 5, which results
in a nested structure that can be exploited to efficient evaluate
interpolation or integration in high-dimensional spaces.

In this section, Section 3.1 briefly describes the fundamentals
of CPFEM model, whereas Section 3.2 describes the UQ work-

flow for CPFEM based on DAKOTA UQ package as the wrapper
and DREAM.3D and DAMASK as a forward ICME model.

3.1 Crystal Plasticity Model
Consider each point X in the reference configuration being
mapped to the current configuration x by a linear transformation
with the deformation gradient tensor F, where F = ∂x∂X . The
Lagrangian strain tensor is defined as

E = 1
2
(F⊤F− I) . (17)

The total deformation gradient F can be multiplicatively
decomposed into an elastic and plastic parts,

F = FeFp. (18)

The velocity gradient, which measures the deformation rate, is
defined as

L = ̇FF−1 = ̇FeF−1e + Fe ( ̇FpF−1p )F−1e = Le + FeLpF−1e , (19)

where Lp is the plastic velocity gradient evaluated in the
intermediate configuration. The second Piola-Kirchoff stress
measure S is defined as

S = ℂ ∶ Ee =
ℂ
2
(F⊤e Fe − I) , (20)

where Ee is the elastic Green-Lagrange strain tensor, andℂ is the
fourth-order stiffness tensor. The plasticity velocity gradient Lp,
driven by the second Piola-Kirchoff S, controls the evolution of
the plastic deformation gradient as

̇Fp = LpFp. (21)

Constitutive equations representing the flow stress, such
as the phenomenological slip-based hardening model and the
dislocation density-based hardening model, differ on Lp are
calculated based on a specific microstructure and a set of internal
state variables. The grain size d in the RVE is a random variable
characterized by a log-normal distribution, i.e.,

pD (d;μD,σD) =
1

dσD√2π
exp(−
(ln d − μD)

2

2σ2
D

), (22)

where μD and σD are materials-dependent parameters.

3.2 Forward Uncertainty Quantification
Problem
In this work, we consider a forward UQ problem for a fixed set
(or ensemble) ofmicrostructures using the SCmethod, where the
set of internal state variables for constitutive model parameters
are considered stochastic with some inherent uncertainty. While
the non-intrusive PCE approach allows an arbitrary probability
density of parameters, in this work, uniform distributions are
imposed on the constitutive model parameters due to lack of
prior knowledge. With the choice of uniform distributions on
bounded intervals, according to theWiener-Askey scheme shown
in Table 1, Legendre polynomials are used to approximate the
quantities of interest.
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FIGURE 1 | Integrating DAKOTA uncertainty quantification workflow to DREAM.3D and DAMASK crystal plasticity finite element simulations. In this framework,
DAKOTA queries input parameters to the DREAM.3D + DAMASK automatic workflow, and receives output(s)/quantity (quantities) of interest from DREAM.3D +
DAMASK.

FIGURE 2 | Comparison of 2D Smolyak nested sparse grids at various level
ℓ, 1 ≤ ℓ ≤ 5, with the number of abscissas varies at 5, 17, 49, 97, 161,
respectively, using Gaussian abscissas for quadrature.

In the initial yield regime, we focus on the estimated yield
strain 𝜀Y and yield stress σY. From the homogenized stress-
strain curve 𝜀vM − σvM obtained from a CPFEM simulation, the
monotonic cubic interpolation via PCHIP method Fritsch and
Butland (1984) is utilized to interpolate 𝜀vM − σvM curve. From
the approximated stress-strain curve, an estimation of modulus
of elasticity is obtained by simple linear regression. An offset at
𝜀 = 0.002with the estimatedmodulus of elasticity is drawn, where
the coordinates of the intersection are (𝜀Y,σY). Statistics of these
two quantities of interest are obtained and returned to DAKOTA
package.

To set up the UQ study, a pre-processing compilation of
constitutivemodel parameters are obtained fromDAKOTAusing
a numerical toy model. The sets of constitutive model parameters

are then appropriately parsed into DAMASK using Python
scripts, along with the output of DREAM.3D for setting up the
geometric file. With the correct setup of DAMASK simulations,
the set of DAMSASK simulations are then performed in a
massively parallel manner on a high-performance computing
cluster. The post-processing results are then collected from
DAMASK, and parsed back to DAKOTA package using a
Python interface. DAKOTA then performs theUQand sensitivity
analysis, concluding the UQ workflow for CPFEM based on
DREAM.3D and DAMASK.

4 PHENOMENOLOGICAL CONSTITUTIVE
MODEL WITH SLIPPING IN FCC CU

4.1 Constitutive Law
We adopt the summary and tabulated parameters
from Sedighiani et al. (2020, 2022) (Tables 1, 2). In the
phenomenological constitutive model, the shear on each slip
system α is modeled as

̇γα = ̇γ0 |
τα

τα0
|
n
sgn (τα) , (23)

where τ0 is the slip resistance, ̇γ0 is the reference shear rate, and
n determines the strain rate sensitivity of slip. The influence of
other slip system α′ on the hardening behavior of the slip system
α is modeled as

̇τα0 =
Ns

∑
α′=1

hαα′ | ̇γα
′

| , (24)

where hαα′ is the hardening matrix, which captures the
micromechanical interaction among different slip systems

hαα′ = qαα′ [h0(1−
τα0
τ∞
)
a

], (25)

h0, a, and τ∞ are slip hardening parameters for all 12 slip systems
in fcc materials. qαα′ is a measure for latent hardening with value
of 1.0 for coplanar slip system α and α′ and 1.4 otherwise.
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FIGURE 3 | (A) Representative volume element for Cu. (B) Copper-type of texture component with Euler angles (ϕ1, θ, ϕ2) = (90°,35°,45°).

TABLE 3 | Parameters for Cu used in this case study [cf. Table 4 Roters et al. (2019) and Tables 1, 2 Sedighiani et al. (2020, 2022)].

variable description units reference value nature distribution

C11 elastic constant GPa 168.3 deterministic –
C12 elastic constant GPa 122.1 deterministic –
C44 elastic constant GPa 75.7 deterministic –
̇γ0 reference shear rate s−1 0.003 deterministic –

τ0 slip resistance MPa 1.5 stochastic U[0.5,3.5]
τ∞ saturation stress MPa 112.5 stochastic U[80,140]
h0 slip hardening parameter MPa 240 stochastic U[200,280]
n strain rate sensitivity parameter – 83.3 stochastic U[50,120]
a slip hardening parameter – 2.0 stochastic U[1,4]

4.2 Design of Numerical Experiments
We conducted our analysis with one RVE shown in Figure 3A,
where the crystallographic texture is shown in Figure 3B.
Average grain size of 60.9467 μm is used, where an RVE of
size 256μm3 is generated. A finite element mesh of 163 is
created to approximate the microstructure RVE. In DREAM.3D,
the texture crystallography of Copper-type with Euler angles
(ϕ1,θ,ϕ2) = (90°,35°,45°) is used, the grain size parameters are
set as μD = 4.09, σD = 0.2, which results in a RVE with 182 grains,
shown in Figure 3A. For DAKOTA, we set the sparse grid level
ℓ = 3, dimensionality n = 5, which results in 351 inputs. For
each set of input parameters, a CPFEM simulation is performed,
followed by the post-process. The results are analyzed in the
following section. A uniaxial loading condition is applied in the
[100] direction with ̇ε = 10−3s−1.

To compare with the default parameter, a single CPFEM
simulation is performed with constitutive parameters described
in Table 3. The stress-strain equivalent curve is shown in
Figure 4. As a reference to experimental data1, modulus of
elasticity for polycrystalline Cu is reported at 110 GPa, whereas
its yield strength is reported as 33.3 MPa. Compared to the
experiment, the computed modulus and yield strength σY are on

1https://www.matweb.com/search/DataSheet.aspx?MatGUID=9aebe83845c04c1d
b5126fada6f76f7e.

the same scale, but off roughly by a factor of 1.5×, possibly due
to different processing conditions resulting in slightly different
alloys.

4.3 Numerical Results
Figure 5 shows a compilation of stress-strain curve for 351
simulations, where each corresponds to a unique set of
constitutive parameters for fcc Cu. As shown in this figure,
the constitutive model effects not only the initial yield
behavior, but also the modulus of elasticity and the hardening
behavior.

Figures 6A,B show the probability density function for 𝜀Y
and σY, respectively. The mode for 𝜀Y is approximately 0.00207,
whereas the mode for σY is approximately 11.65 MPa. It should
be noted that with the current sparse grid level ℓ = 3, the
approximation for 𝜀Y may be imprecise. One of the possible
reasons is that the elastic regime of copper is very small (as shown
in Figure 5), and therefore, a more accurate approximation may
be required to accurately capture the yield strain.

Figure 7 and Figure 8, respectively, show the Sobol’ indices
for 𝜀Y and σY. Ranking from the most influential parameters
to the least influential parameters for 𝜀Y from the Sobol
indices for main effects, Tτ0 = 0.7858, Th0 = 0.7035, Tn = 0.1922,
Ta = −0.01038, and Tτ∞ = −0.001983. Ranking from the most
influential parameters to the least influential parameters for
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FIGURE 4 | Stress-strain equivalent curve for Cu with default parameters and determination of yield point. Modulus of elasticity is estimated as 188.5919 GPa, while
(𝜀Y, σY) are estimated as (0.002052, 9.8527 MPa).

FIGURE 5 | Equivalent 𝜀vM—σvM plots for fcc Cu.

FIGURE 6 | (A) SC probability density function of 𝜀Y for fcc Cu. (B) SC probability density function of σY for fcc Cu.
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FIGURE 7 | Sobol’ indices for 𝜀Y for fcc Cu.

FIGURE 8 | Sobol’ indices for σY for fcc Cu.

σY from the Sobol indices for main effects, Tτ0 = 0.8258, Th0 =
0.4194, Tn = 0.07659, Ta = −0.01091, and Tτ∞ = −0.0009990. The
order of influential parameters for fcc Cu, regarding the initial
yield behavior, is τ0 > h0 > n > a > τ∞. Since the main scope
of this paper is about the initial yield behavior, it is not
surprising that Figure 8 agrees with Figure 7 in terms of Sobol’
indices.

5 PHENOMENOLOGICAL CONSTITUTIVE
MODELS WITH DISLOCATION SLIP AND
DEFORMATION TWINNING IN HCP MG

5.1 Constitutive Law
Firstly introduced by Hutchinson (1976) and extended for
twinning by Kalidindi (1998), the resistance on α = 1,…,Ns slip

systems evolve from ξ0 to a system-dependent saturation value
and depend on shear on slip and twin systems according to

̇ξα = hs−s0 (1+ c1 (f
tot
tw )

c2)(1+ hαint)

×[

[

Ns

∑
α′=1

| ̇γα
′

| |

|
1−

ξα
′

ξα
′

∞

|

|

a

sgn(1−
ξα
′

ξα
′

∞

)hαα
′]

]
+

Ntw

∑
β′=1

̇γβ
′

hαβ
′

,

(26)

where h denotes the components of the slip-slip and slip-twin
interaction matrices, hs−s0 , hint, c1, c2 are model-specific fitting
parameters and ξ∞ represents the saturated resistance evolution.

The resistances on the β = 1,…,Ntw twin systems evolve in a
similar way,

̇ξβ = htw−s0 (
Ns

∑
α=1
|γα|)

c3

(
Ns

∑
α′=1

| ̇γα
′

|hβα
′

)+ htw−tw0 (f
tot
tw )

c4(
Ntw

∑
β′=1

̇γβ′hββ
′

),

(27)
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FIGURE 9 | (A) Representative volume element for Mg. (B) Magnesium texture component with Euler angles (ϕ1, θ, ϕ2) = (90°,0°,0°) Mangal and Holm (2018).

TABLE 4 | Parameters for Mg used in this case study (cf. Tables 7 and 8 Sedighiani et al. (2020, 2022), Wang et al. (2014); Tromans (2011); Agnew et al. (2006)).

variable description units reference value nature distribution

c/a lattice parameter ratio – 1.635 deterministic –
C11 elastic constant GPa 59.3 deterministic –
C12 elastic constant GPa 61.5 deterministic –
C44 elastic constant GPa 16.4 deterministic –
C44 elastic constant GPa 25.7 deterministic –
C44 elastic constant GPa 21.4 deterministic –
̇γ0 twinning reference shear rate s−1 0.001 deterministic –
̇γ0 slip reference shear rate s−1 0.001 deterministic –

τ0,basal basal slip resistance MPa 10 stochastic U[5,30]
τ0,pris prismatic slip resistance MPa 55 stochastic U[30,60]
τ0,pyr⟨a⟩ pyramidal ⟨a⟩ slip resistance MPa 60 stochastic U[50,90]
τ0,pyr⟨c+ a⟩ pyramidal ⟨c+ a⟩ slip resistance MPa 60 stochastic U[50,110]
τ0,T1 tensile twin resistance MPa 45 stochastic U[35,70]
τ0,C2 compressive twin resistance MPa 80 stochastic U[60,120]
τ∞,basal basal saturation stress MPa 45 stochastic U[30,60]
τ∞,pris prismatic saturation stress MPa 135 stochastic U[100,160]
τ∞,pyr⟨a⟩ pyramidal ⟨a⟩ saturation stress MPa 150 stochastic U[120,180]
τ∞,pyr⟨c+ a⟩ pyramidal ⟨c+ a⟩ saturation stress MPa 150 stochastic U[120,180]
htw−tw0 twin-twin hardening parameter MPa 50 stochastic U[30,80]
hs−s0 slip-slip hardening parameter MPa 500 stochastic U[100,200]
htw−s0 twin-slip hardening parameter MPa 150 stochastic U[400,680]
ns slip strain rate sensitivity parameter – 10 stochastic U[15,35]
ntw twinning strain rate sensitivity parameter – 5 stochastic U[3,8]
a slip hardening parameter – 2.5 stochastic U[2,4]

where htw−s0 , htw−tw0 , c3, and c4 aremodel-specific fitting parameters.
Shear on each slip system evolves at a rate of

̇γα = (1− f tottw ) ̇γ0α |
τα

ξα
|
n
sgn (τα) . (28)

where slip due to mechanical twinning accounting for the
unidirectional character of twin formation is computed slightly
differently,

̇γ = (1− f tottw ) ̇γ0 |
τ
ξ
|
n
H (τ) , (29)

where H is the Heaviside step function. The total twin volume is
calculated as

f tottw =max(1.0,
Ntw

∑
β=1

γβ

γβchar
), (30)

where γchar is the characteristic shear due to mechanical twinning
and depends on the twin system. Interested readers are referred
to Section 6.2.2 from Roters et al. (2019).

5.2 Design of Numerical Experiments
Similar to the previous section we restrict the scope to one RVE
shown in Figure 9A, where the crystallographic texture is shown
in Figure 9B. Average grain size of 204.037 μm is used, where
an RVE of size 2048μm3 is generated. A mesh of 643 is created
to approximate the microstructure RVE. In DREAM.3D, the
texture crystallography with Euler angles (ϕ1,θ,ϕ2) = (90°,0°,0°)
is used, the grain size parameters are set as μD = 5.2983, σD = 0.2,
which results in a RVE with 1706 grains, shown in Figure 9A.
For DAKOTA, we set the sparse grid level ℓ = 2, dimensionality
n = 16, which results in 577 inputs. For each set of input
parameters, a CPFEM simulation is performed, followed by the
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post-processing steps. The results are analyzed in the following
section. A uniaxial loading condition is applied in the [100]
direction with ̇ε = 10−3s−1.

To compare with the default parameter, a single CPFEM
simulation is performed with constitutive parameters
described in Table 4. The stress-strain equivalent curve
is shown in Figure 10. As a reference to experimental
data2, the modulus of elasticity for polycrystalline Mg is
reported at 44 GPa, whereas its yield strength is reported as
90–105 MPa. Compared to the experiment, the computed
modulus and yield strength σY are well calibrated, as the
computational results agree very well with the experimental
data.

5.3 Numerical Results
Figure 11 shows a compilation of stress-strain curves for
577 simulations, where each corresponds to a unique set of
constitutive parameters for hcp Mg. As shown in this figure, the
constitutive model has a minor effect on the effective modulus of
elasticity, and more profound effect on the yield stress σY.

Figures 12A,B, respectively, show the probability density
function for 𝜀Y and σY. The mode for 𝜀Y is approximately
0.0054, whereas the mode for σY is approximately 99 MPa. The
uncertainty explained in σY reasonably agree with experimental
data.

Figure 13 and Figure 14, respectively, show the Sobol’ indices
for 𝜀Y and σY. Ranking from the most influential parameters
to the least influential parameters for 𝜀Y from the Sobol
indices for main effects, Tτ0,basal = 0.5668, Tτ0,C2 = 0.4772, Tntw =
0.2439, Ths−s0

= 0.1021, Tτ∞,basal = 0.07249, Tτ0,pyr⟨a⟩ = 0.6131, Tns =
0.02082, Tτ∞,pyr⟨a⟩ = 0.01091. Ranking from the most influential
parameters to the least influential parameters for σY from
the Sobol indices for main effects, Tτ0,C2 = 0.3729 Tntw = 0.3684,
Tτ0,basal = 0.3566, Tτ0,pyr⟨a⟩ = 0.1181, Tτ∞,basal = 0.1064, Ths−s0

= 0.1061,
Tτ0,pris = 0.03861. Compared to Sedighiani et al. (2020, 2022), our
analysis shows some agreements, but mostly differ in the set
of sensitive parameters. Possible explanations are due to (1)
different quantities of interest and (2) methodological approach:
Sedighiani et al. (2020, 2022) studies are conducted based on
ANOVA, whereas our approach relies on global sensitivity
analysis with Sobol’ indices.

6 DISLOCATION-DENSITY-BASED
CONSTITUTIVE MODEL FOR BCC W

6.1 Constitutive Law
For the sake of completeness, we adopt the dislocation-density-
based constitutive law description from Cereceda et al. (2016,
2015), Stukowski et al. (2015), and summarize it here. Interested
readers are further referred to Cereceda et al. (2016, 2015, 2013),
Stukowski et al. (2015), especially Cereceda et al. (2016) for a
complete formulation.

2https://www.matweb.com/search/DataSheet.aspx?MatGUID=7b49605d472d40d
393ffe87ea224980c.

It is assumed that all the plastic deformation is due to
dislocation slip, i.e.

Lp =∑
a
̇γαPα

S (31)

where α is a slip system, mα and nα are unit vectors in the
normalized slip direction and the normal to the slip plane of
the system α, respectively, Pα

S =m
α ⊗nα is a Schmid geometric

projection tensor. The resolved shear stress of slip system α
include both Schmid and non-Schmid factors as

τα = Pα
total ∶ σ = (P

α
S +P

α
T/AT +P

α
ng) ∶ σ , (32)

where Pα
T/AT = a1m

α ⊗nα
1 is a non-Schmid tensor representing

twinning and anti-twinning asymmetry and the effects due
to non-glide stress components, Pα

ng = a2(nα ⊗mα) ⊗𝕟α +
a3(n

α
1 ⊗m

α) ⊗nα
1 . n

α
1 forms an angle of−60°with the reference slip

plane defined by nα and changes sign with the direction of slip
on each glide plane Koester et al. (2012). a1,a2,a3 are calibrated
material-dependent constants. The shear rate ̇γα is given by the
Orowan equation

̇γα = bραvs (τ
α,T) , (33)

where b = a0√3/2 is themagnitude of the Burgers vector, a0 is the
lattice parameter, T is the absolute temperature, ρα is the density
of mobile screw dislocations in slip system α, and vs(τα,T) is the
screw dislocation velocity, which captures the thermally activated
character of dislocation motion.

Under the assumption that kink relaxation is significantly
faster than kink-pair nucleation, the total time tt required for
a kink pair to form and sweep a rectilinear screw dislocation
segment of length λα is

tt = tn + tk = J (τα,T)−1 +
λα −w

2vk (τα,T)
, (34)

where tn is the mean time to nucleate a kink pair, tk is the time
needed for a kink to sweep half a segment length, J is the kink-
pair nucleation rate, w is the kink-pair separation, vk is the kink
velocity.

The kink-pair nucleation rate is modeled by an Arrhenius
formulation as

J (τα,T) =
v0 (λα −w)

b
exp(−

ΔHkp (τα)
kT
), (35)

where v0 is an attempt frequency, ΔHkp is the activation enthalpy
of a kink pair stress τα, k is Boltzmann’s constant.Thekink velocity
is modeled as

vk (τ
α,T) = bτα

B (T)
, (36)

where B is simplified to a constant. The dislocation velocity can
be modeled as

vs =
h
tt
= h
tn + tk
=

2bhταv0 (λα −w)exp(−
ΔHkp

kT
)

2b2τα + v0B (λα −w)2 exp(−
ΔHkp

kT
)
, (37)
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FIGURE 10 | Stress-strain equivalent curve for Mg with default parameters and determination of yield point. Modulus of elasticity is estimated as 45.1172 GPa,
while (𝜀Y, σY) are estimated as (0.004375, 107.2 MPa).

FIGURE 11 | Equivalent 𝜀vM—σvM plots for hcp Mg.

FIGURE 12 | (A) SC probability density function of 𝜀Y for hcp Mg. (B) SC probability density function of σY for hcp Mg.
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FIGURE 13 | Sobol’ indices for 𝜀Y for hcp Mg.

FIGURE 14 | Sobol’ indices for σY for hcp Mg.

where h = a0√6/3 is the distance between two consecutive Peierls
valleys. When tk ≪ tn, v0B(λα −w)2 exp(−

ΔHkp

kT
) → 0, and the

common diffusive velocity expression is recovered

vs = v0h
(λα −w)

b
exp(−

ΔHkp (τα)
kT
) sgn (τα) . (38)

It is further elaborated in Sedighiani et al. (2020) that

ΔHkp (τα) = ΔHkp[1−(
ταT
τ∗0
)
p

]
q

, (39)

where p and q determine the shape of the short-range activation
energy.

Following the Kocks-Mecking family of dislocation density
evolution models Mecking and Kocks (1981), the mobile
dislocation density on slip system α evolves in time is

modeled as

̇ρα = ρ̇αmult + ρ̇
α
ann, (40)

with the initial dislocation density ρα(t = 0) = ρα0 . Dislocation
multiplication is proportional to the inverse mean free
path of the dislocation λα and the plastic strain rate,
as

ρ̇αmult =
̇γα

bλα
. (41)

λα is defined as

1
λα
= 1
dg
+
√ραf
c
, (42)
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where dg is the grain size, c is a hardening constant, ραf is the forest
dislocation density and calculated as

ραf =∑
β
ρβ|nα ⋅mβ| (43)

Dislocation annihilation occurs spontaneously when dipoles
approach within a spacing of dedge

̇ραann = −
2dedge
b

ρα | ̇γα| . (44)

The resolved shear stress τα is corrected by replacing with τα
′

and
accounting for the latent and self-hardening as

τα
′

= τα − τh = P
α
tot ∶ σ − μb√∑

α′
ξαα′ρα

′ , (45)

where τh is the hardening stress, ξαα′ are the coefficients of the
interaction matrix between slip system α and α′, respectively,
as six possible independent interactions: self, coplanar, collinear,
orthogonal, glissile, and sessile.

6.2 Design of Numerical Experiments
For dislocation-density-based CPFEM simulations, we used an
RVE shown in Figure 15A, with the crystallographic texture
shown in Figure 15B and Euler angles (ϕ1,θ,ϕ2) = (0,0,45).
Average grain size of 3.0339 μm is used, where an RVE of size
32μm3 is generated. A mesh of 323 is created to approximate the
microstructure RVE. In DREAM.3D, the texture crystallography
with Euler angles (ϕ1,θ,ϕ2) = (0°,0°,45°) is used, the grain size
parameters are set as μD = 1.0986, σD = 0.15, which results in
a RVE with 2089 grains, shown in Figure 15A. For DAKOTA,
we set the sparse grid level ℓ = 3, dimensionality n = 17, which
results in 799 inputs. For each set of input parameters, a CPFEM
simulation is performed, followed by the post-process. The
results are analyzed in the following section. A uniaxial loading
condition is applied in the [100] direction with ̇ε = 10−3s−1.

To compare with the default parameter, a single CPFEM
simulation is performed with constitutive parameters described
in Table 5. The stress-strain equivalent curve is shown in
Figure 16. As a reference to experimental data3, the modulus of
elasticity for polycrystallineW is reported at 400 GPa, whereas its
yield strength is reported as approximately 750 MPa. Compared
to the experiment, the computed modulus agrees very well, but
the yield strength σY differs, possibly due to the constitutivemodel
is calibrated for single crystal W, whereas the experimental data
is reported for polycrystalline W.

6.3 Numerical Results
Figure 17 shows a compilation of stress-strain curves for
799 simulations, where each corresponds to a unique set of
constitutive parameters for bcc W. As shown in this figure, the
constitutive model has a minor effect on the effective modulus of
elasticity, and more profound effect on the yield stress σY.

3http://www.matweb.com/search/DataSheet.aspx?MatGUID=41e0851d2f3c417ba
69ea0188fa570e3.

Figures 18A,B shows the probability density function for
𝜀Y and σY, respectively. The mode for 𝜀Y is approximately
0.01010,whereas themode for σY is approximately 3350 MPa.The
uncertainty explained in σY reasonably agree with experimental
data. For experimental data with σY ≈ 750 MPa, fairly a few set of
parameters can reproduce and calibrate accordingly, as shown in
Figure 17.

Figure 19 and Figure 20, respectively, show the Sobol’ indices
for 𝜀Y and σY. Ranking from themost influential parameters to the
least influential parameters for 𝜀Y from the Sobol indices formain
effects, Tp = 0.7356, TΔH0

= 0.212, TCλ
= 0.2089, Tq = 0.1942,

Tρα0
= 0.1556, TτPeierls = 0.05712, Tν0 = −0.03444. Ranking from the

most influential parameters to the least influential parameters for
σY from the Sobol indices for main effects, Tp = 0.5668, TΔH0

=
0.2095, TCλ

= 0.2079, Tq = 0.1795, Tρα0
= 0.1560, TτPeierls = 0.06172,

Tν0 = −0.03663. Since the ranking does not change when the
quantity of interest changes from 𝜀Y to σY, we conclude that the
importance of parameters is p > ΔH0 > Cλ > q > ρ

α
0 > τPeierls > ν0.

7 DISCUSSION

In this paper, we conducted several UQ studies for constitutive
models in CPFEM with a single microstructure RVE for each
case study. Three case studies are performed with different
crystal structures, namely fcc, hcp, and bcc, for Cu, Mg, and W,
respectively. In this paper, three materials systems with different
crystal structures (fcc, bcc, and hcp) are studied. Depending
on the crystal structure, there may be different slipping and
twinning systems in terms of slipping and twinning directions
in plastic deformation, leading to interesting materials behaviors
and mechanisms. The quantities of interest are selected as
the initial yield strain 𝜀Y and the initial yield stress σY. For
fcc Cu, parameter τ0 is the most influential parameter for
the initial yield behavior. For hcp Mg, all τ0,basal, τ0,C2, and
ntw parameters are influential for the initial yield behavior.
For bcc W, p parameter in the short-range activation energy
model is the most influential parameter for the initial yield
behavior.

UQ studies, such as those described in this manuscript,
play an important role in constitutive model calibration for
unknown material system in the future. Since there are only a
limited number of physical constitutive models, it is important
to conduct a UQ study to observe the range of quantities of
interest, and to numerically rank the influence of constitutive
model parameters. Based on the stress-strain compilation
curve conducted for various constitutive model parameters, the
material behaviors can be rigorously quantified.The obtainedUQ
results provide a foundational step for further constitutive model
calibration for future works, mostly conducted via digital image
correlation techniques Turner et al. (2015); Reu et al. (2018,
2021).

Compared to polynomial approximation with full
tensor grid, sparse grid approaches have a significant
computational advantages, where this advantage grows with
increasing dimensionality thanks to a slower growth rate
Nobile et al. (2008). In the context ofconstitutive models, the
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FIGURE 15 | (A) Representative volume element for W. (B). Rotated Cube type of texture component with Euler angles (ϕ1, θ, ϕ2) = (0°,0°,45°).

TABLE 5 | Parameters for W used in this case study (cf. Tables 2 and 3 in Cereceda et al. Cereceda et al. (2016, 2015), Section 6.2.4 Roters et al. (2019)). Bounds for
τPeierls are devised based on Samolyuk et al. Samolyuk et al. (2012) and Cereceda et al. Cereceda et al. (2016).

variable description units reference value nature distribution

C11 elastic constant GPa 523.0 deterministic –
C12 elastic constant GPa 202.0 deterministic –
C44 elastic constant GPa 161.0 deterministic –
b Burgers vector nm 0.272 deterministic –

ν0 initial dislocation glide velocity m/s 1.0 × 10–4 stochastic U[10−3, ⋅10−5]
ρα0 initial dislocation density m/m3 1.0 × 1012 stochastic U [1010,5 ⋅1012

τPeierls Peierls stress GPa 2.03 stochastic U[1.64,2.42]
p p-exponent in glide velocity, 0 < p ≤ 1 – 0.32 stochastic U[0.1,1.0]
q q-exponent in glide velocity, 1 ≤ q ≤ 2 – 1.46 stochastic U[1.0,2.0]
ΔH0 activation energy for dislocation glide J 2.725 × 10–19 stochastic U[1.5,3.5] ⋅ 10−19

Cλ dislocation mean free path parameter – 10 stochastic U[5,20]

FIGURE 16 | Stress-strain equivalent curve for W with default parameters and determination of yield point. Modulus of elasticity is estimated as 411.3528 GPa,
while (𝜀Y, σY) are estimated as (0.01098, 3695 MPa).

computational reduction is mostly profound in the case of
hcp system (as opposed to bcc and fcc), such as Mg and
Ti, and in the case of dislocation-density-based constitutive
model (as opposed to phenomenological model), where many
parameters require careful calibration to obtain a sufficient
agreement with experiments. For simple system with a relatively

simple phenomenological constitutive model, the computational
reduction is less severe. It is noteworthy that the level of the
Smolyak sparse grid in this study has a little effect on the
resulting probability density function of QoIs. This implies
that the underlying function is perhaps mostly low-order. This
observation can also be confirmed by the Sobol’ indices, where
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FIGURE 17 | Equivalent 𝜀vM −σvM plots for bcc W.

FIGURE 18 | (A) SC probability density function of 𝜀Y for bcc W. (B) SC probability density function of σY for bcc W.

FIGURE 19 | Sobol’ indices for 𝜀Y for bcc W.
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FIGURE 20 | Sobol’ indices for σY for bcc W.

the first-order Sobol’ indices aremuchmore dominant, compared
to higher-order Sobol’ indices.

To construct the response surface model, stochastic
collocation provides a significant advantage for reducing the
curse of dimensionality. However, when it comes to accuracy,
Gaussian process regression, which is also the underlying
surrogate model for Bayesian optimization, is arguably one of
the best approaches in shallow machine learning. The direction
of couplingBayesian optimization, e.g., Tran A. et al. (2019, 2020,
2021); Tran (2019); Tran et al. (2022), for robust constitutive
model calibration remains open for future research.

The scope of thismanuscript is to quantify themicrostructure-
sensitive uncertainty. Obviously, it can be expanded to account
for the entire stress-strain curve. However, due to the number
of parameters involved in each constitutive model, there are
hundreds to thousands of runs needed for a singlemicrostructure
RVE. Such computationally expensive numerical experiments
require careful planning and execution, and therefore, remain
a potential topic for future studies. It is important to point
out that by restricting to one RVE per case study, this work
does not address microstructure-sensitive uncertainty that either
is related or induced by the underlying stochastic nature of
microstructures. The direction of investigating a microstructure
ensemble with many RVEs remain open for future work.

8 CONCLUSION

In this paper, we applied SC to quantify uncertainty associated
with the initial yield behavior, mainly the estimated yield
strain 𝜀Y and the estimated yield stress σY for fcc Cu, hcp
Mg, and bcc W. A variety of constitutive models are used,
resulting with different parameterization and dimensionalities
for the constitutive models considered. To mitigate the curse
of dimensionality, Smolyak sparse grid is employed for high-
dimensional integration to evaluate the PCE coefficients.

Variance-based global sensitivity analysis is used to study the
sensitivity analysis of the constitutive model parameters.

In light of the computational results presented in previous
sections, there are several influential parameters that may
have a significant effect on the initial yield behavior. For the
phenomenological constitutive model, the slip resistance τ0,
the slip hardening parameter h0, and the strain rate sensitivity
parameter n are the most influential parameters, ranking in
descending order. For the dislocation-density-based constitutive
model, the p-exponent in glide velocity is the most influential
parameter, followed by the activation energy for dislocation
glide ΔH0, the dislocation mean free path parameter Cλ,
the q-exponent in glide velocity, and the initial dislocation
density ρα0 . We conclude that in both constitutive models
considered in this study, i.e. phenomenological (with andwithout
twinning) and dislocation-density-based constitutive models,
regarding the initial yield behavior, some parameters may have
a profound effect on the QoI, while some others may not have a
significant effect. The observation could potentially pave way for
dimensionality reduction in constitutive model calibration in the
future.
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