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Flexible NaxV2O5/rGO papers were successfully prepared via hydrothermal method
followed by vacuum filtration as a high-performance cathode for SIBs. The as-
prepared NaxV2O5/rGO combined flexibility and high conductivity that can buffer stress
and facilitate the fast transportation of electrons during the charge-discharge process. As a
result, the as-prepared NaxV2O5-rGO paper can exhibit a reversible Na-ion storage
capacity of ~197mA h g−1 at 100 mA g−1 and a good cycling performance with 81%
capacity retention for 400 cycles at a high current density of 500 mA g−1, showing great
potential in flexible energy storage devices.
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INTRODUCTION

With the increase in environmental concerns, people are eager to search for and develop safe and
green energy storage systems (ESS). (Xu et al., 2017; Li et al., 2019). In recent years lithium-ion
batteries (LIBs) have been applied to commercial electric vehicles (EVs) and provided a high energy
density for large-scale energy storage systems (Xu et al., 2013; Huang et al., 2020), but the costs of
lithium and the uneven global distribution of lithium resources gradually restrict their further
applications. (Li et al., 2014). Therefore, safe and new cheap ESS that can partially replace LIBs need
to be explored (Li et al., 2021). Among the new EES, sodium ion batteries (SIBs) have attracted
increasing attention due to the rich potential sources of raw materials and suitable redox potentials
(Jiang et al., 2014; Zhao et al., 2020). However, they have approximately 70% larger Na+ than Li+,
which can bring sluggish diffusion kinetics to the solid state electrode materials, leading to the fast
capacity decay and poor rate performance for SIBs (Liang et al., 2018; Huang et al., 2019). Thus, it is
necessary to constantly study high-performance cathode materials that can meet the demands of
both low cost and good electrochemical performance. (Wang et al., 2020). High-performance
electrode materials should have several important traits including good electrical conductivity,
abundant electrochemical active sites and desirable structure. (Lu et al., 2016; Pei et al., 2017). The
above traits should be considered when designing and preparing high-performance sodium ion
batteries.

To date, a large variety of sodium ion conductors such as pyrophosphates (Niu et al., 2019),
fluorophosphates (Lim et al., 2014), sulfates (Wu et al., 2014), sodium transition-metal oxides (Liu
et al., 2020a), polyanions (Senthilkumar et al., 2020), and the Prussian blue metalates (Liu et al.,
2020b; Huang et al., 2021) have been proposed as SIB cathodes. Among these different types of SIB
cathode materials, vanadium-based oxides have attracted significant attention due to their high Na-
storage capacities, diverse structures, and high electrochemical activity. (Córdoba et al., 2019; Jo et al.,
2020). In recent years, a variety of sodium vanadates including V2O5 polymorphs (Baddour-Hadjean
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et al., 2018), NaxVO2 (Guignard et al., 2013), NaVO3 (Venkatesh
et al., 2014), NaV3O8 (Kang et al., 2015), Na0.33V2O5 (Shang et al.,
2019), and γ-Na0.96V2O5 (Emery et al., 2018) have been
investigated as the SIB cathode materials. Given their good
electrochemical performances, people expect to design and
prepare high-performance new electrode materials for sodium
ion batteries from the various sodium vanadates. More recently,
Jingjie Feng et al. reported that NaxV2O5·nH2O/KB shows a good
electrochemical performance for SIB cathode. A high Na-storage
capacity of 239 mAh g−1 was acquired at 20 mA g−1 and a good
discharge capacity retention rate of 91% can be maintained after
90 cycles at 200 mA g−1 (Feng et al., 2018). Then, Nicolas Emery
et al. reported that the γ-Na0.96V2O5 cathode material shows a
reversible Na+ insertion/extraction behavior and can deliver a
specific capacity of 125 mAh g−1 at 0.2°C (Emery et al., 2018).
Lately, Yifan Dong et al. studied the NaV6O15 microflowers as an
SIB cathode material, which shows a reversible Na-storage
capacity of 126 mAh g−1at 100 mA g−1. It also demonstrates
good cycle stability and 87% capacity retention over 2000
cycles at 5 A g−1 (Dong et al., 2020). These studies inspired us
to develop a promising SIBs cathode material by controllable
preparation of sodium vanadates with desirable morphology,
structure and composition. A one dimensional (1D) structure
can reduce ion diffusion path and promote the full use of active
sites, which could endow cathode material with enhanced Na-ion
storage performance (Zhu et al., 2019). In addition, the high
electrochemical performance of NaxV2O5 is restricted by its low
electron conductivity and large volume change. Design of a
composite consisting of 1D NaxV2O5·nH2O nanobelts and
conductive carbon is a viable approach, which has both high
electrochemical performance and good mechanical properties
(Osman et al., 2021). Graphene, as a typical two-dimensional
carbon, can provide elastic matrix for loading cathode materials
and simultaneously acts as conductive network for strengthening
the dynamical process both of electrons and ion transportation
(Zhou et al., 2019; Qu et al., 2021). If we can controll fabrication
of the 1D NaxV2O5 composite with the reduced graphene oxide
(rGO), the freestanding NaxV2O5/rGO composite cathode with
enhanced electrochemical performance would be acquired.

In this work, a freestanding composite (denoted as NaxV2O5/
rGO) consisting of δ-NaxV2O5 nanobelts and rGO was fabricated
by a facile hydrothermal method combined with vacuum
filtration. The freestanding composite composed of the δ-
NaxV2O5 nanobelts and rGO offers several advantages. For
instance, the bilayered δ-NaxV2O5 nanobelts with a large
interlayer spacing and 1D belt-shaped morphology can reduce
diffusion distance and provide a small diffusion for fast Na+ ion
insertion/extraction reactions (Xu et al., 2020). In addition, the
rational introduction of rGO can reduce the aggregation of
NaxV2O5 nanobelts and improve the conductivity of the whole
composite material (Ma et al., 2021), which can strengthen the
mechanical integrity of the composite, thus improving the
electrochemical performance of the electrode. Besides,
compared with the traditional cathodes, the as-prepared
freestanding electrode does not use non-conductive binders
that can further improve electron transport (Xu et al., 2020).
As a result, the as-prepared NaxV2O5/rGO electrode could exhibit

a Na-storage capacity of ~197 mA h g−1 at 100 mA g−1 and good
cycling performance with 91% of capacity retention after 150
cycles at 100 mA g−1, and high rate performance with ~91 mAh
g−1 at 500 mA g−1. Moreover, a full Na-ion battery fabricated
from the NaxV2O5/rGO cathode and hard carbon anode can
deliver a Na-storage capacity of 101 mAh g−1 at 500 mA g−1 and
good cycling stability with a capacity retention of >75% over 100
cycles.

EXPERIMENTAL DETAILS

Synthesis of the Ultra-Long NaxV2O5

Nanobelts
The NaxV2O5 was synthesized by a hydrothermal reaction as
follows: 3 mmol of sodiumiodide and 1.5 mmol of vanadium
pentoxide were put into the 40 ml of 1 mol/L sodium chloride
aqueous solution and constantly stirred for 8 h. The mixture was
put into a 40 ml Teflon-lined autoclave and placed into an electric
oven at 200°C for 24 h. Finally, the obtained products were
washed with deionized water and ethanol serval times and
dried at 80°C to obtain NaxV2O5.

Synthesis of the Free-Standing NaxV2O5/
rGO Paper
The free-standing NaxV2O5/rGO paper was prepared as follows:
120 mg of the NaxV2O5 was synthesized by hydrothermal method
and 60 mg of graphene oxide (GO) was synthesized via the
modified Hummer’s method. The mixture of NaxV2O5 and
GO was ultrasonicated for 2 h followed by constantly stirring
overnight until it became homogeneous. The mixed solution of
NaxV2O5 and GO was put into the Teflon-lined autoclave and
placed at 180°C for 24 h. After the hydrothermal reaction, the
product was re-dispersed in deionized water and subsequent
vacuum filtration. The paper-like product via peeling was
dried at 80°C for 24 h to obtain the free-standing NaxV2O5/
rGO composite. The mass loading of the NaxV2O5/rGO
electrodes is ~3 mg/cm2.

Electrochemical Measurements
Fabrication of the Sodium Metal- NaxV2O5/rGO Half
Cell
The NaxV2O5/rGO paper was directly cut into a round electrode
with a diameter of 1 cm as the cathode and the active mass is
~1.2 mg. The homemade sodium sheets were used both as
counter electrodes and reference electrodes. Whatman glass
microfiber filters (GF/D) were used as the separator and 1 M
NaClO4 in ethylene carbonate (EC): propylene carbonate (PC) (1:
1 by v/v) with 5.0% fluoroethylene carbonate (FEC) as the
electrolyte.

Assembly of the Hard Carbon- NaxV2O5/rGO Full Cell
The Na-ion full battery was fabricated in an argon-filled glove box
composed of NaxV2O5/rGO cathode and hard carbon anode. The
hard carbon anode was prepared by mixing hard carbon, Super P,
and polyvinylidene difluoride (8:1:1 wt%) in
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N-Methylpyrrolidone, and then the slurry was spread onto Cu
foil. We controlled the negative capacity/positive capacity ratio,
which was ~1.1 to guarantee cell balance. The anode was firstly
cycled between 0.01 and 1.5 V in a SIB half cell before preparing
the full SIB cell.

RESULTS AND DISCUSSION

Figure 1 schematically illustrates the synthesis procedure of the
NaxV2O5/rGO paper. The mixture of the NaxV2O5 and rGO was
prepared by hydrothermal treatment of the NaxV2O5 and GO.
Then, the freestanding NaxV2O5/rGO paper was obtained by
facile vacuum filtration. The crystal structures of the as-
synthesized samples (NaxV2O5 and NaxV2O5/rGO) are
characterized by X-Ray diffraction (XRD). As shown in
Figure 2, the XRD patterns of the synthesized NaxV2O5 can
be matched with a pure bilayer δ-NaxV2O5 phase, which is

consistent with previously reported results (Feng et al., 2018).
NaxV2O5/rGO exhibits similar diffraction patterns compared to
that of the NaxV2O5 sample, indicating NaxV2O5 still exhibits
high phase purity and GO has no effect on the formation of
NaxV2O5·nH2O after the GO is added into the hydrothermal
process. Then, the sodium to vanadium ratio was determined for
the as-synthesized NaxV2O5 sample by use of inductively coupled
plasma optical emission spectroscopy (ICP-OES). The Na to V
ratios in NaxV2O5 samples were determined to be 0.16. When the
vanadium level in each formula is set equal to 2.0, the
corresponding sodium level in the NaxV2O5 samples equals
0.32. (Supplementary Table S1). To confirm the morphology,
SEM and TEM images were recorded on the as-synthesized
NaxV2O5 and NaxV2O5/rGO paper. As shown in Figure 3A,
one can see that the as-prepared NaxV2O5 shows a long nanobelt
morphology with a smooth surface and tens of micrometers in
length and about 100–200 nm in width. The detailed crystal
structures of NaxV2O5 nanobelts were further characterized by
a transmission electron microscope (TEM) (Figures 3B,C). The
low-magnification TEM image (Figure 3B) further confirmed
that the as-synthesized NaxV2O5 nanobelts have a nanobelt
structure, which is consistent with the observation in the SEM
images. The high resolution (HR) TEM image demonstrates that
these nanobelts are single crystals with an interplanar spacing of
0.36 nm, which corresponds to the (110) plane of the monoclinic
phase NaxV2O5 (Figure 3C). A typical scanning TEM image of a
single NaxV2O5 nanobelt and the corresponding element
mapping images are recorded to further investigate the
elemental distribution of the NaxV2O5 nanobelt (Figure 3D).
The elements Na, V, and O are homogeneously dispersed in the
NaxV2O5 nanobelt. Figures 3E,F exhibit the typical SEM images
of NaxV2O5/rGO paper. The interconnected NaxV2O5 and rGO
networks were observed, indicating the uniform intimate contact
between NaxV2O5 and rGO, which could increase the mechanical
strength of freestanding NaxV2O5/rGO hybrid paper to enhance
cycling performance. Figures 3G–I shows optical images of
freestanding NaxV2O5/rGO paper, which can exhibit the
excellent flexibility of NaxV2O5/rGO paper and no
obvious cracks were observed at the different bending
states. Interestingly, based on the practical requirement, the

FIGURE 1 | Schematic illustration of the as-prepared NaxV2O5/rGO film.

FIGURE 2 | XRD patterns of as-synthesized NaxV2O5 powder and
NaxV2O5/rGO film.
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as-fabricated NaxV2O5/rGO paper can be easily cut into the
desired shapes to be directly used as the electrode of flexible SIBs.

To study the electrochemical performance of NaxV2O5/rGO
paper as cathode material for SIBs, the cyclic voltammetry (CV)
test of NaxV2O5/rGO nanocomposite electrode was first assessed
during the initial three cycles at 0.1 mV s−1 (Figure 4A). The CV
curves of NaxV2O5/rGO are overlapping, suggesting the highly
reversible electrochemical behaviors. The slightly different shape
between the first CV curve and subsequent CV curves may be
caused by the electrode polarization. Furthermore, It exhibits six
main anodic current peaks around 1.91, 2.75, 2.82, 3.01, 3.15, and
3.65 V (vs. Na+/Na), respectively, and six cathodic peaks around
1.65, 2.75, 2.91, 3.12, and 3.50 V (vs. Na+/Na). The multiple redox
peaks correspond to the multi-step insertion/extraction of Na+ in
the different available locations with energy differences. Two
oxidation peaks (1.91 and 3.65 V) and reduction peaks (1.65 and
3.50 V) with high peak current demonstrate high Na + diffusion
kinetics of the NaxV2O5/rGO paper electrode. The cycling
profiles of the NaxV2O5/rGO electrode at 100 mA g−1 in the
voltage range of 1.5–4.1 V are depicted in Figure 4B. The
NaxV2O5/rGO paper electrode shows analogous profiles
corresponding well to the redox peaks of CV curves,

indicating the good reversibility of the as-fabricated electrode.
The dominated discharge/charge plateaus at about 3.6 V
attributed to the reduction of V5+ to V4+ indicate a high
electrochemical activity of V4+/V5+(He et al., 2016; Feng et al.,
2018).

The cycling performance of NaxV2O5/rGO paper as cathode
materials for SIBs is further studied, as shown in Figure 4C. The
cyclability of the NaxV2O5/rGO paper electrode was first tested at
a low current density of 100 mA g−1 (Figure 4C). It can deliver an
initial charge/discharge capacity of 84 mAh g−1/197 mAh g−1. In
the second and third cycles, the discharge capacity was almost no
decay, demonstrating good Na-storage reversibility. After 150
cycles, a discharge specific capacity of 181 mAh g−1 was retained
with a high capacity retention of 91% compared with that in the
1st cycle (Figure 4C). On the contrary, the NaxV2O5 electrode
exhibit degraded electrochemical performance. The first
discharge capacity of the NaxV2O5 electrode could reach
185 mAh g−1, but the discharge capacity was only retained at
131 mAh g−1 after 150 cycles with a capacity retention of 70%. EIS
tests are investigated to study the electrode reaction kinetics.
Supplementary Figures S1A,B, the semicircle in high frequency
(interfacial impedance, Rf) and middle frequency (charge transfer

FIGURE 3 | (A) SEM of as-synthesized NaxV2O5 powder;(B) TEM; (C) SAED; (D) EDS spectrum and Na, V, and O concentration in the NaxV2O5 nanobelts. (E,F)
SEM images of NaxV2O5/rGO film; (G–I) Optical images of NaxV2O5/rGO film at different bending states.
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impedance, Rct) become larger after 10 cycles for NaxV2O5 and
NaxV2O5/rGO. An equivalent circuit model was established, as
shown in Supplementary Figure S1, where Rs is the internal
resistance, Rf is the interfacial impedance, Rct represents the
charge transfer resistance. As listed in Supplementary Table S2,
the cycled NaxV2O5/rGO shows lower Rf and Rct than those of
NaxV2O5, indicating faster reaction kinetics of NaxV2O5/rGO.

From the above results, the NaxV2O5/rGO paper
electrochemical showed superior cycling stability and
strengthened reaction kinetics compared with the rare
NaxV2O5 electrodes. The rate performance of the NaxV2O5/
rGO paper at different current densities is shown in
Figure 4D. The NaxV2O5/rGO paper cathodes could exhibit

average specific discharge capacities of 200, 163, 129, 92, and
65 mAh g−1 at current densities of 100, 200, 500, 1000, and
2000 mA g−1, respectively. When the current density comes
back to 100 mA g−1, an average specific discharge capacity of
187 mAh g−1 could be preserved, showing the excellent
electrochemical performance of the NaxV2O5/rGO paper
electrode at the different current densities. Considering the
high reversibility of the as-prepared NaxV2O5/rGO paper
electrodes, we further evaluated the NaxV2O5/rGO electrode at
500 mA g−1 for 400 cycles as shown in Figure 4E. A specific
discharge capacity of 91 mAh g−1 was retained after 400 cycles
with a capacity retention of 81%. Therefore, we believe the as-
prepared NaxV2O5/rGO paper electrodes exhibited a high rate

FIGURE 4 | (A) The initial three CV curves of the NaxV2O5/rGO electrode at a scanning rate of 0.1 mV s−1; (B) Initial three charge/discharge curves of the NaxV2O5/
rGO electrode at a current density of 100 mA g−1. The electrochemical performance of NaxV2O5/rGO electrode: (C) cycling performance; and (D) rate capability. (E)
Cycling performance of NaxV2O5/rGO electrode at a current density of 500 mAg−1.
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performance and good cycling stability, indicating the enhanced
electrochemical performance of the freestanding electrodes in the
present work. To confirm the benefits of the NaxV2O5/rGO
paper, a comparison of the Na-storage performance between
the as-prepared NaxV2O5/rGO and other vanadium-based
cathode materials is listed in Table 1. The electrochemical
performance of our synthesized NaxV2O5/rGO is superior to
the vanadium-based cathode materials of SIBs recently reported.
The good electrochemical performance of our NaxV2O5/rGO
films may be due to the following reasons: first, the bilayered
NaxV2O5 nanobelts with a large interlayer spacing and 1D belt-
shaped morphology can reduce diffusion distance and provide a
small diffusion for fast Na+ ion insertion/extraction reactions.

The other is that the presence of rGO can reduce the aggregation
of NaxV2O5 nanobelts and improve the conductivity of the whole
composite material, which can strengthen the mechanical
integrity of the composite and thus improve the cycling
stability of the electrode.

Due to the high chemical activity of Na metal, the metallic Na
anode would be highly dangerous in practical application. Na-ion
full batteries based on hard carbon and NaxV2O5/rGO paper as
the anode and cathode electrodes, respectively, were assembled to
further study the electrochemical behavior of full SIBs. Figure 5A
depicts the typical voltage profiles of the hard carbon anode and
NaxV2O5/rGO paper cathode measured in the Na half-cell.
Both the NaxV2O5/rGO and hard carbon could achieve

TABLE 1 | Comparison of the electrochemical performance of the electrode materials between this work and previous reports.

Materials Operating voltage (V) Initial discharge capacity
(mAh g−1)

Capacity retention Reference

NaxV2O5/rGO 1.5–4.1 197 at 100 mA g−1 91% (150 cycles)
(this work) 113 at 500 mA g−1 81% (400 cycles)
NaV3O8 1.5–4.0 128 at 80 mA g−1 77% (60 cycles) (Kang et al., 2015)
NaxV2O5/KB 1.5–4.0 109 at 200 mA g−1 91% (100 cycles) (Feng et al., 2018)
γ-Na0.96V2O5 1.75–4.0 125 at 0.2°C 89% (50 cycles) (Emery et al., 2018)
rGO/NaV6O15 1.5–3.8 150 at 100 mA g−1 72% (50 cycles) (Shang et al., 2019)
NaV6O15 1.5–4.0 126 at 100 mA g−1 98% (100 cycles) (Dong et al., 2020)

FIGURE 5 | Demonstration of SIBs based on NaxV2O5/rGO || hard carbon configuration. (A) Typical charge–discharge curves of NaxV2O5/rGO film || Na and hard
carbon || Na in a half-cell configuration; (B) Electrochemical charge–discharge voltage profiles of SIBs, cycled at a current rate of 500 mA g−1; (C)Cycling performance of
SIBs at a constant current of 500 mA g−1; (D) Rate capability of SIBs at different current rates, increasing from 50 mA g−1 to 2A g−1.
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reversible Na-ion transport from their respective skeleton
structures. Figure 5B shows the charge–discharge profiles of
the full battery at 500 mA g−1 with cut-off voltages of 3.8 and
1.0 V. The initial discharge-specific capacities could attain
109 mAh g−1. Charge-discharge specific capacities could also
retain 134/135 mAh g−1 with a high Coulombic efficiency of
99% in the second cycle. As shown in Figure 5C, after 100
cycles, the full Na-ion battery retained a discharge specific
capacity of 101 mAh g−1 with a capacity retention of >75%,
showing the good cycling performance of SIBs based on
NaxV2O5/rGO paper electrode and hard carbon electrode.
Importantly, the average Coulombic efficiency was higher than
98% during the 100 cycles, suggesting the highly reversible Na-
ion storage behavior for the full Na-ion battery. Besides the high
capacity retention, the full Na-ion battery also exhibited a good
rate of performance. As shown in Figure 5D, the full Na-ion
battery delivered average specific discharge capacities of 218, 197,
172, 137, 113, and 97 mAh g−1 at constant current densities of 50,
100, 200, 500, 1000, and 2000 mA g−1 respectively. When the
current density was recovered to 50 mA g−1, the reversible
capacity came back to 193 mAh g−1, indicating a good
tolerance for the rapid Na-ion insertion/extraction cycles. The
current work shows that the NaxV2O5/rGO has great potential as
the freestanding cathode material for stable sodium ion batteries.

CONCLUSION

In summary, a flexible NaxV2O5/rGO paper was successfully
prepared via the hydrothermal method followed by vacuum
filtration as a high-performance cathode for SIBs. The as-
prepared NaxV2O5/rGO possessed flexibility and high
conductivity that can buffer stress and facilitate the fast
transportation of electrons during the charge-discharge
process. As a result, the as-prepared NaxV2O5-rGO paper can

deliver a reversible Na-ion storage capacity of ~197 mA h g−1 at
100 mA g−1 and showed a good cycling performance with 81%
capacity retention for 400 cycles at a high current density of
500 mA g−1, showing great potentials in flexible energy storage
devices.
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