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The incidence of osteoporotic vertebral compression fractures (OVCFs) increases
gradually with age, resulting in different degrees of pain for patients, even possible
neurological damage and deformity, which can seriously affect their quality of life.
Vertebral augmentation plays an important role in the surgical treatment of OVCFs. As
the most widely used bone cement material, polymethyl methacrylate (PMMA) offers
inherent advantages, such as injectability, ease of handling, and cost-effectiveness.
However, with its application in the clinic, some disadvantages have been found,
including cytotoxicity, high polymerization temperature, high elastic modulus, and high
compressive strength. To improve the mechanical properties and the biological
performance of conventional PMMA bone cement, several studies have modified it by
adding bioceramics, bioglass, polymer materials, nanomaterials, and other materials,
which have exhibited some advantages. In addition, other alternative materials, such
as calcium phosphate, calcium sulfate, and calcium silicate cements—including their
modifications—have also been explored. In this review, we examined the existing research
on the side-effects of conventional PMMA bone cement, modified PMMA bone cement,
and other alternative materials designed to improve properties in OVCFs. An overview of
various modified bone cements can help further scientific research and clinical
applications.
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INTRODUCTION

Osteoporosis is a systemic skeletal disease with low bone mass and microarchitectural deterioration
of the bone tissue (Compston et al., 2019). Osteoporotic vertebral compression fractures (OVCFs)
comprise the most common fracture associated with skeletal fragility and cause substantial
morbidities, mortality, negatively impacting health-care costs (Kado et al., 2003; Burge et al.,
2007; Si et al., 2015; Schousboe, 2016). The prevalence of osteoporosis among postmenopausal
women is 32.1%, and among men 50 years or older is 6.9% (Linhong Wang et al., 2021). Besides, the
prevalence of vertebral fractures among those aged 80 years or older, defined on the basis of
radiographic findings, is 38.1% among women and 36.0% among men (Linhong Wang et al., 2021).
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Since OVCFs are often caused by low-energy injuries, less than
half of them are clinically recognized (Ensrud and Schousboe,
2011; Ensrud et al., 2016; Linhong Wang et al., 2021). Treatment
for OVCFs includes nonoperative treatment and surgical
treatment, with percutaneous vertebroplasty (PVP) or
percutaneous kyphoplasty (PKP) being preferred among
surgical patients due to their advanced age (Buchbinder et al.,
2009; Kallmes et al., 2009; Clark et al., 2016).

Polymethyl methacrylate (PMMA)—which is a polymer
belonging to the category of acrylic resins—is currently the
most widely used bone cement material in PVP or PKP
procedures in the clinic (Bistolfi et al., 2019). PMMA bone
cement is composed of two parts—that is, the solid phase is
composed of methyl methacrylate (MMA) polymer particles,
benzoyl peroxide (BPO), radiopaque reagents (such as
tantalum powder, tungsten, barium sulfate, or zirconia
dioxide), and the liquid phase includes MMA monomers,
N,N-dimethyl-4-methylaniline (DMT) as an activator, and a
small volume of inhibitors (usually hydroquinone). The
polymerization reaction is rapid, and exothermic, and can be
completed within 10–15 min (Milner, 2004). Moreover, there is a
mechanical interlock between the bone and cement so that
immediate fixation can be achieved (Mengran Wang et al.,
2021). PMMA bone cement offers inherent advantages such as
injectability, ease of handling, high biomechanical strength, and
cost-effectiveness (Yimin et al., 2013). Consequently, it is widely
used in the stability reconstruction of patients with OVCFs and
bone metastases (Liu et al., 2010; Li et al., 2014; Qi et al., 2018). In
addition, it can also be used as a good local drug delivery system
to deliver antibiotics or antitumor drugs—such as cisplatin or
methotrexate—to the local treatment site (Marks et al., 1976; Yan
and Gemeinhart, 2005; Draenert and Draenert, 2008).

However, some deficiencies have been found in its clinical
application. Given its shortcomings, researchers have made some
effort to research and develop new bone cement materials. In this
review, we examine the existing research on the side-effects of
conventional PMMA bone cement, modified PMMA bone
cement, and calcium-based alternative materials. We focus on
the potential clinical application value in OVCFs, and summarize
the modified methods and properties improvements, to provide
reference for further scientific research and clinical applications.

DISADVANTAGES OF CONVENTIONAL
PMMA BONE CEMENT

First, in terms of cytotoxicity, studies have found that there are
local toxic reactions, especially at the start of processing, some
components having poor histocompatibility, which can cause
serious local tissue changes (Kalteis et al., 2004). Second, several
PMMA bone cements produce a strongly exothermic reaction
when curing, studies having shown that the core temperature can
be as high as 100°C or more during the curing process, while
normal bone tissue can suffer necrosis at 50°C (Eriksson et al.,
1984; Maffezzoli et al., 1997; Gundapaneni and Goswami, 2014).
Third, previous studies have shown that the stiffness of bone
cement material is a risk factor for adjacent vertebral fractures

after vertebroplasty (Nouda et al., 2009). Most acrylic cements
have a high elastic modulus (1700–3,700 MPa) and compressive
strength (85–114 MPa), while the elastic modulus (10–900 MPa)
and compressive strength (0.1–15 MPa) of cancellous bone are
much smaller than those bone cements. This pronounced
difference can easily lead to stress concentrations in
unreinforced vertebral bodies, causing new fractures of the
adjacent vertebral body (Helgason et al., 2008; Nazarian et al.,
2008) (Figure 1). Fourth, the incidence of PMMA bone cement
leakage during vertebroplasty is reported to be 17–88% (Chu
et al., 2013; Alhashash et al., 2019; Li et al., 2021). Although most
cases are asymptomatic, some research reports that bone cement
leakage can cause severe complications such as a symptomatic
pulmonary embolism (with an incidence of approximately 5.5%)
or spinal cord injury (Chen et al., 2006; Duran et al., 2007; Kim
et al., 2009). Even with effectively assistive procedure for injecting
cement in percutaneous vertebroplasty, routine postoperative
reviews revealed that 12% had minimal cement leakage (Chu
et al., 2013).

MODIFIED PMMA BONE CEMENT

To improve the mechanical properties and biological
performance of existing PMMA bone cement, many studies
have modified it by adding bioceramics, bioglass, polymer
materials, nanomaterials, and other materials, and
demonstrated some advantages (Tsukeoka et al., 2006; Boger
et al., 2008; Abd Samad et al., 2011; Dall’Oca et al., 2014;
Khandaker et al., 2014; Robo et al., 2018a; Robo et al., 2018b;
De Mori et al., 2019; Phakatkar et al., 2020; Zapata et al., 2020;
Zhu et al., 2020; Yingjie Wang et al., 2021) (Table 1) (Figure 2).

Bioceramics or Bioglass
The porous acrylic bone cement composed of PMMA and β-
tricalcium phosphate (β-TCP) has a faster setting time
(approximately 9 min), lower polymerization temperature
(44°C), lower compressive strength (50 MPa), and lower
flexural modulus (900 MPa) (Dall’Oca et al., 2014). Moreover,
due to its microporous structure, it allows osteocytes and blood
vessels to colonize on the surface of the bone space left after
cement reabsorption, and also allows osteoblasts to uniformly
rebuild bone tissue at the bone-cement interface (Dall’Oca et al.,
2014). Bioglass can form strong chemical bonds with bone tissue
and has good biocompatibility and osteogenic induction activity
(Abd Samad et al., 2011). The peak temperature (39.1–47.2°C)
during polymerization can be substantially reduced by adding
glass-ceramic to the PMMA bone cement, an obvious apatite
coating having been found on the surface of this modified bone
cement (Abd Samad et al., 2011).

Polymer Materials
Chitosan, a linear semi-crystalline polysaccharide, is a direct
derivative of chitin, which is the second most abundant
natural polymer after cellulose (Friedman and Juneja, 2010).
Structurally, it is the main component of the bone
extracellular matrix (i.e., glycosaminoglycans), and due to its
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excellent biological properties, it can achieve more stable binding
by improving the interlocking between bone and cement
(Albanna et al., 2013). Studies have shown that adding 5–10%

chitosan can improve the mechanical properties of bone cement
and reduce the polymerization temperature (De Mori et al.,
2019). Moreover, compared with acrylic bone cement without

FIGURE 1 | New fracture of the adjacent vertebral body. This is an 89-year-old female with lower back pain and limited mobility. She developed these symptoms
after accidentally falling 1 day ago. The pain can be relieved with bed rest and is aggravated when her position changes. The preoperative magnetic resonance imaging
(A) suggests a fresh fracture of the L3 vertebral body. The patient underwent L2 vertebroplasty 3 years ago for an osteoporotic vertebral compression fracture. She
underwent L3 vertebroplasty on this occasion because of a compression fracture of the adjacent vertebral body. Her pain is relieved after surgery, and
postoperative fluoroscopy with anteroposterior (B) and lateral (C) positions indicate satisfactory bone cement filling.

TABLE 1 | Characteristics of modified PMMA bone cement.

Literature Modifications Advantages Commercialized

Dall’Oca et al.
2014

β-tricalcium phosphate Faster setting time, lower polymerization
temperature, lower compressive strength and
flexural modulus, bone reconstruction

Control (Mendec): commercially available;
Experimental (Porosectan): commercially
available

Abd Samad
et al. 2011

Glass-ceramic Lower polymerization temperature Control (Palacos): commercially available;
Experimental: preclinical study

De Mori et al.
2019

Chitosan and methacryloyl chitosan Promoting porosity, lower polymerization
temperature, promoting crosslinking, reducing
the quantity of monomer required for
polymerization

Control (SmartSet): commercially available;
Experimental: preclinical study

Khandaker
et al. 2014

Chitosan Lower polymerization temperature, higher
osteoblasts activity

Control (Cobalt): commercially available;
Experimental: preclinical study

Robo et al.
2018b

Polyamino acids Lower modulus Control (F20): commercially available;
Experimental (Resilience): commercially
available

Robo et al.
2018a

Linoleic acid Lower modulus Control (F20): commercially available;
Experimental: preclinical study

Robo et al.
2021

Linoleic acid Lower modulus Control (V-Steady): commercially available;
Experimental: preclinical study

Boger et al.
2008

Sodium hyaluronate Lower compressive strength and modulus Control (Vertecem): commercially available;
Experimental: preclinical study

Zapata et al.
2020

Graphene oxide Lower polymerization temperature, antibacterial
properties, prolonging setting time

Preclinical study

Yingjie Wang
et al. 2021

Mgal-layered double hydroxide Promoting porosity, lower compressive
strength, lower polymerization temperature,
osteoinductive ability

Control (non-specific product from Johnson &
Johnson): commercially available;
Experimental: preclinical study

Tsukeoka et al.
2006

Gamma-methacryloxypropyltrimethoxysilane and
calcium acetate

Enhancing the binding ability of bone cement
and bone, lower polymerization temperature

Control (Zimmers): commercially available;
Experimental: preclinical study

Zhu et al. 2020 Mineralized collagen Promoting the proliferation and differentiation of
bone marrow stromal cells

Control (Mendec): commercially available;
Experimental: preclinical study

Phakatkar et al.
2020

Hydroxyapatite nanofibers and two-dimensional
magnesium phosphate nanosheets

Improving the compressive strength, improve
the biological activity of the material, improving
the cell viability

Preclinical study

Frontiers in Materials | www.frontiersin.org June 2022 | Volume 9 | Article 9127133

Gong et al. Modified Bone Cement for OVCF

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


chitosan, the activity of osteoblasts is considerably increased
(Khandaker et al., 2014). However, with an increase in the
percentage of added chitosan, the mechanical properties of the
modified acrylic bone cement decrease to varying degrees
(Tunney et al., 2008).

Some researchers have surmised that the reason for
osteoporotic fractures around PMMA bone cement is the
higher stiffness of the filling material compared to the
surrounding bone (Baroud et al., 2006; Pflugmacher et al.,
2006; Chen et al., 2020). For example, the stiffness of the
vertebral body increased by approximately 17% after the
injection of conventional PMMA bone cement, resulting in
high-stress concentrations in the adjacent endplates (Holub
et al., 2015). In vitro model studies have found that low-
modulus PMMA could better preserve the failure strength of
augmented functional spinal units, prompting the concept of
“low-modulus bone cement” (Boger et al., 2007). This property
can be achieved by adding degradable polymer material in vivo to
increase the porosity of the PMMA bone cement matrix, thereby
reducing its modulus. In the work of Robo et al. (Robo et al.,
2018b), a commercial low-modulus bone cement (Resilience)
containing—in addition to the same components as conventional
PMMA bone cement—polyamine acids (12.9 wt%), was used. By
dissolving the cement in an aqueous solution, its elastic modulus
was considerably reduced, and reached 1,067 ± 69 MPa after
4 weeks, only slightly higher than the highest value of healthy

vertebral cancellous bone (Robo et al., 2018b; Ohman-Magi et al.,
2021).

In another study by Robo et al., low-modulus bone cement was
obtained by adding linoleic acid (LA) to conventional PMMA, an
animal model showing that adding a small amount of LA to
PMMA bone cement did not cause any additional cytotoxic
effects on the tissue surrounding the implant site. Moreover,
the modified bone cement did not differ significantly from
conventional PMMA cement in terms of tissue response at the
bone-implant interface, biocompatibility, and bone healing
(Robo et al., 2018a). However, the study found that the
amount of methyl methacrylate (MMA) released reached a
peak after 24 h, which was significantly higher than that of
traditional PMMA bone cement (Robo et al., 2018a). In
addition, in another study of low-modulus bone cement (VS-
LA) obtained by adding 12 wt% LA to commercial bone cement
(V-Steady), the early release of MMA monomers from VS-LA
was also observed, the peak of which was much higher than the
monomer level released by VS over the same period (Robo et al.,
2021). In other work, PMMA was mixed with sodium
hyaluronate solutions of different volume fractions to prepare
porous low-modulus bone cement (Boger et al., 2008). Its
compressive strength and modulus were closer to human
cancellous bone, and the addition of sodium hyaluronate did
not dramatically change its injectability, viscosity, and MMA
monomer release (Boger et al., 2008).

FIGURE 2 | Modifications for PMMA bone cement. β-TCP, β-tricalcium phosphate; MgAl-LDH, MgAl-layered double hydroxide; HA, hydroxyapatite; γ-MPS,
gamma-methacryloxypropyltrimethoxysilane.
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Nanomaterials
Graphene oxide (GO) is a nanomaterial composed of oxidized
graphene (Bhattacharya et al., 2016). It is biocompatible, and the
addition of 0.1 wt% GO or G powder to the PMMA matrix can
improve the mechanical properties of the material under static
and fatigue conditions (Paz et al., 2019). In addition, the existence
of functional groups on the surface of GO powder can improve
the dispersibility between GO and the PMMA matrix and
enhance the interface bonding between them without obvious
cytotoxicity (Paz et al., 2019). In other work, the maximum
temperature during the polymerization process was shown to
be reduced by approximately 19%, and the setting time was
prolonged, which was related to the inhibitory and delaying
effects of GO on the polymerization reaction (Zapata et al.,
2020). At the same time, it was found that the acrylic bone
cement with 0.3 wt% GO added had good antibacterial properties
(Zapata et al., 2020).

In a study by Yingjie Wang et al. (2021), 15 wt%MgAl-layered
double hydroxide (MgAl-LDH) microflakes were added to
PMMA, and a bioactive PMMA-LDH composite bone cement
was prepared. Due to the large size of LDH microplates, a certain
number of pores are formed on the surface of the PMMA, which
is conducive to bone formation. Moreover, in terms of
mechanical properties, the compressive strength of the
modified cement was 16.87% lower than that of PMMA, and
its curing time was approximately 9.8 min. Due to the excellent
thermal insulation properties of LDH, the maximum temperature
of the polymerization reaction could be reduced by
approximately 7°C compared with conventional PMMA. In
addition, the modified bone cement exhibited good
biocompatibility and promoted the differentiation of human
bone marrow mesenchymal cells into the bone by moderately
releasing magnesium ions, improving the interface bonding
between the bone and the bone cement.

Adding Multiple Materials Simultaneously
PMMA bone cement is one of the earliest and most widely used
bone defect repair materials, and there has beenmuch research on
modifications based on it (Filippiadis et al., 2017). However,
adding just a single material tends to focus on one aspect of
modification, the effect being too one-dimensional, while by
adding multiple materials simultaneously the overall
performance can be improved. Tsukeoka et al. (Tsukeoka
et al., 2006) found that by adding an appropriate amount of
gamma-methacryloxypropyltrimethoxysilane (γ-MPS) and
calcium acetate, after the modified PMMA bone cement had
been implanted, it reacted with the surrounding body fluid to
form an apatite layer, thereby enhancing the binding ability of the
bone cement and the bone. Moreover, the temperature during
polymerization was considerably reduced (to approximately
51°C), the curing time being approximately 18 min (Tsukeoka
et al., 2006). However, it inevitably led to a decrease in
compressive strength (Tsukeoka et al., 2006). Mineralized
collagen (MC)—composed of organic type I collagen and
nano-hydroxyapatite, which mimics the chemical composition
and microstructure of natural bone matrix—can also be used for
the modification of PMMA (Xu et al., 2016). MC-PMMA bone

cement has the effect of promoting the proliferation and
differentiation of bone marrow stromal cells (BMSCs) (Xu
et al., 2016). By implanting MC-PMMA into a rabbit vertebral
animal model, Zhu et al. (Zhu et al., 2020) found that after
4 weeks, there was obvious bone repair around the MC-PMMA,
and after 8 weeks, the MC had been degraded, and the effects of
remodeling lacunae and osteoblastic infiltration were evident.
After 12 weeks, the borders and some interior areas of the MC
were almost completely replaced by new bone. The research team
conducted a small-scale clinical study and confirmed that MC-
PMMA bone cement had indeed achieved good long-term
efficacy (Zhu et al., 2020). Recent studies have found that
adding hydroxyapatite (HA) nanofibers and two-dimensional
magnesium phosphate (MGP) nanosheets to PMMA bone
cement can improve the compressive strength of the bone
cement, and that adding MGP nanosheets to PMMA can
induce the formation of apatite on the material surface, which
can improve the biological activity of the material (Phakatkar
et al., 2020). Similarly, it has been established that adding HA
nanofibers and MGP nanosheets to PMMA can improve cell
viability (Phakatkar et al., 2020).

NON-PMMAALTERNATIVE BONECEMENT

In addition to PMMA bone cement and other modifications
based on it, many scholars have explored alternative materials,
such as calcium phosphate cement (CPC), calcium sulfate cement
(CSC), calcium silicate cement (CSiC), and other materials
(Nilsson et al., 2004; Huan and Chang, 2007; Yu et al., 2013;
El-Fiqi et al., 2015; Liu et al., 2015; Gong et al., 2016; Maenz et al.,
2017; Shie et al., 2017; Xu et al., 2018; Yang et al., 2018; Zhang
et al., 2018; Lu et al., 2019; Luo et al., 2019; de Lacerda Schickert
et al., 2020; Miao et al., 2020; Wu et al., 2020; Yang et al., 2020;
Ding et al., 2021) (Table 2).

Calcium Phosphate Cement
Calcium phosphate cement is a paste-like mixture that can be
arbitrarily shaped after mixing calcium phosphate powder (solid
phase) with low-concentration phosphoric acid or phosphate
solution (liquid phase) in a certain proportion (Canal and
Ginebra, 2011). Depending on the Ca/P ratio, solubility, and
pH of the initial calcium-phosphorus compound, two
products—namely, hydroxyapatite or brushite—are finally
formed (Ginebra et al., 2010). Although the composition
formula is diverse, it can usually be divided into apatite bone
cement and brushite bone cement based on the final product
(Bohner et al., 2000). Moreover, because the structure is similar to
natural bone, it has good biocompatibility compared with acrylic
bone cement, having the characteristics of curing at low
temperature and no exothermic effect during curing, thereby
avoiding thermal damage to surrounding bone cells. This allows it
to be used as a carrier to deliver drugs without destroying their
activity (Ginebra et al., 2010; Ginebra et al., 2012).

Brushite bone cement has the characteristics of fast
degradation, low strength—its highest compressive strength
being 41.8–52 MPa—fast setting, and poor injectability
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TABLE 2 | Characteristics of inorganic bone cement and its modifications.

Category Advantages Disadvantages Literatures Modification Results Commercialized

Calcium
phosphate
cement

Biocompatibility, no
exothermic effect during
curing

Poor injectability, low
viscidity
Brushite: low strength

Maenz et al.,
2017

PLGA Promoting new bone
formation, reinforcing the
mechanical properties

Control (JectOS):
commercially available;
Experimental: preclinical
study

Luo et al. 2019 PVA Improving the tensile
strength

Preclinical study

de Lacerda
Schickert et al.
2020

PVA + CMC Improving the injectability
and viscidity

Preclinical study

Kucko et al.
2019

PLGA + CMC Improving the injectability Preclinical study

Lu et al., 2019 Gelatinized starch Moderate strength,
injectable, high viscosity

Control (Mendec):
commercially available;
Experimental: preclinical
study

Yu et al. 2013 BG Better injectability and
mechanical properties,
improving osteoinductive
ability

Preclinical study

El-Fiqi et al.
2015

mBGn Increasing compressive
strength, better injectability
and mechanical properties,
improving washout
resistance, protein
adsorption capacity,
enhancing degradability

Preclinical study

Hasan et al.
2019

bioglass
microspheres

Higher osteogenic activity Preclinical study

Yuan et al.
2021

Sr Increasing compressive
strength and mechanical
properties, enhancing
osteogenic capacity

Preclinical study

Knabe et al.
2019

Sodium
magnesium
silicate

higher osteogenic activity Preclinical study

Xu et al. 2021 Silk fibroin Increasing compressive
strength, Shorter setting
time, higher osteogenic
activity

Preclinical study

Fan et al. 2021 γ-glutamic acid +
BG + wheat
gluten

Increasing compressive
strength and mechanical
properties, better
injectability

Preclinical study

Calcium
sulfate
cement

Completely absorbable, no
exothermic effect during
curing, biocompatibility, ability
to induce osteogenesis

Poor washout
resistance, low
compressive strength,
longer setting time

Zhang et al.
2018

Silk fibroin Improving the washout
resistance, increasing
compressive strength

Preclinical study

Huan and
Chang 2007

C3S Enhancing compressive
strength, prolonging the
degradation rate, enhancing
osteoinductivity

Preclinical study

Ding et al.
2021

C3S + GDL Shorter setting time, higher
compressive strength,
osteogenic activity,
moderate degradation rate

Preclinical study

Yang et al.
2020

Hydroxyapatite Prolonging the degradation
rate, enhancing
osteoinductivity

(Ezechbone):
commercially available

Miao et al.
2020

Chitosan + Sr Prolonging the degradation
rate, stimulating
angiogenesis, enhancing
osteogenic capacity

Preclinical study

Yang et al.
2018

Tricalcium
phosphate

Shorter setting time,
prolonging the degradation
rate, enhancing osteogenic
capacity

Preclinical study

(Continued on following page)
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(Hofmann et al., 2009; Engstrand et al., 2014). The main reason
for its fast degradation rate is that it has greater solubility at the
physiological pH, which enables degradation by passive
dissolution in addition to active resorption. The degradation of
brushite-based cement is also related to its disintegration
(Grossardt et al., 2010). The degradation rate of brushite bone
cement is most rapid at the initial stage of implantation, gradually
stabilizing after a few weeks (Bohner et al., 2003). However, its
injectability is poor. The solidification time of dicalcium
phosphate (DCP) bone cement is about 7 min. Subsequently,
the dehydrated DCP cement rapidly solidifies within 2–3 min,
and cannot be discharged from the syringe after 2 min, restricting
its application in surgical operations being unable to adequately
fill irregular fractures or bone defects (Huan and Chang, 2009;
Alshemary et al., 2021). Apatite bone cement is superior in
compressive strength, tensile strength, and shear strength
compared with brushite bone cement, reaching up to 80, 3.5,
and 9.8 MPa, respectively (Charriere et al., 2001; Gbureck et al.,
2005). However, its injectability is still not completely
satisfactory, and the curing time cannot reach the clinically
recommended 8–15 min (Alshemary et al., 2021). Using
commercial apatite bone cement (HydroSet) to fill the bone
defects of the femoral condyle of rabbits, the residual bone
cement still amounted to 91.9 ± 4.9% after 26 weeks (An
et al., 2016). In a clinical study, PKP was performed on 26

vertebral bodies in 21 patients with Calcibon apatite bone
cement, the average bone cement absorption rate at a 10-year
follow-up being approximately 22.9%, with just two vertebral
bodies having absorption rates above 50% (Maestretti et al.,
2014).

Given the insufficient performance of CPC, the modification is
mainly carried out in the following ways.

1) Added fiber polymers—such as PLGA (poly (l-lactide-co-
glycolide) acid)—can be used as degradable fibers to
improve the performance of CPC. Studies have shown that
PLGA fibers can promote new bone formation and reinforce
the mechanical properties of CPC (Maenz et al., 2017).

2) Another study added low-degradable polyvinyl alcohol (PVA)
fibers to α-tricalcium phosphate, which substantially
improved the tensile strength of the bone cement (by
approximately 9.2 MPa) (Luo et al., 2019). In addition to
PVA, by adding carboxymethyl cellulose (CMC), the final
setting time of CPC could be increased to more than 10 min,
improving its injection performance and inherent brittleness
(de Lacerda Schickert et al., 2020). At the same time, it was
found that CMC acted as a viscosifying agent, which could
keep the new bone cement within the confines of the bone
defect without leaking into the surrounding bone (de Lacerda
Schickert et al., 2020).

TABLE 2 | (Continued) Characteristics of inorganic bone cement and its modifications.

Category Advantages Disadvantages Literatures Modification Results Commercialized

Calcium
silicate
cement

Excellent ability to induce
osteogenesis, moderate
degradation rate, a small
amount of exotherm during
the polymerization reaction

Longer setting time,
poor washout
resistance, low
compressive strength

Xu et al. 2018 SA Improving washout
resistance and compressive
strength

Preclinical study

Zhang et al.
2021

calcium
polyphosphate
+ PVA

Improving compressive
strength, enhancing
osteogenic capacity,
moderate degradation rate

Preclinical study

Wu et al. 2020 Gelatin Improving washout
resistance and tensile
strength

Preclinical study

Ji et al. 2019 SA + CS Shorter setting time,
enhancing osteogenic
capacity, moderate
degradation rate

Preclinical study

Huang et al.
2019

Sr Enhancing osteogenic
capacity, Extended setting
time within clinically
acceptable limits

Preclinical study

Liu et al. 2015 Magnesium
phosphate

Increasing compressive
strength, shorter setting
time, good biological activity

Preclinical study

Shie et al.
2017

Graphene Increasing the modulus,
stimulating angiogenesis,
enhancing osteogenic
capacity

Preclinical study

Gong et al.
2016

Monocalcium
phosphate

Shorter setting time,
enhancing osteogenic
capacity

Preclinical study

PLGA, poly(l-lactide-co-glycolide) acid; PVA, polyvinyl alcohol; CMC, carboxymethyl cellulose; BG, bioactive glass; mBGn, mesoporous bioactive glass nanoparticles; C3S, tricalcium
silicate; GDL, glucono-delta-lactone; SA, sodium alginate; CS, sulfate hemihydrate.
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3) Lu et al. added gelatinized starch to calcium phosphate
granules to form calcium phosphate-based nanocomposite
(CPN) cement, which was found to be moderate in strength,
injectable, and degradable in a vertebroplasty model,
benefiting from its semi-solid and high viscosity
characteristics, significantly reducing the extravasation of
bone cement (Lu et al., 2019).

4) Bioactive glass (BG) is known for its unique binding activity
and ability to promote bone growth (Jones, 2013). Studies
have shown that after adding BG or mesoporous bioactive
glass nanoparticles (mBGn) to CPC, the cement formulation
has good biocompatibility, improved compressive strength
(20 wt% CPC-BG compressive strength can reach 40 MPa,
10% mBGn/CPC can reach 26 MPa) and injectability.
Moreover, it was found that its degradation rate and
osteoinductive ability were significantly improved (Yu
et al., 2013; El-Fiqi et al., 2015) (Figure 3).

Calcium Sulfate Cement
As a commonly used implant material, CSC is mainly composed
of calcium sulfate hemihydrate (CSH)—which is finally converted
into calcium sulfate dihydrate (CSD) through rehydration and
recrystallization (Thomas and Puleo, 2009). It can be completely
absorbed, has good compatibility with the surrounding
physiological environment, and has better injectability than
CPC (Dadkhah et al., 2017). The compressive strength of pure
CSC is approximately 15.8–37.9 MPa, its final setting time being
approximately 20–37 min (Dadkhah et al., 2017; Hall et al., 2021).
By culturing BMSCs on CPC, the results have shown that after
2 days of culture, BMSCs could not only attach and spread on the
bone cement but also bind well to the material surface through
many prosthetic feet, proving that it could provide good cell
adhesion, migration, and proliferation as a scaffold (Chen et al.,
2013). At the same time, in an animal model of filling the

mandibular defects of rabbits using CPC, it was established
that CSH exhibited good bone repairability, making it
beneficial in the repair of bone defects (Chen et al., 2013).
However, its resistance to washout was poor, making it
difficult to maintain its original form when soaked in solution
(Zhang et al., 2018). Moreover, its degradation rate was rapid.
Based on the literature, when calcium sulfate samples were soaked
in Ringer’s solution, the degradation rate was found to be as high
as 90% after 1 week (Huan and Chang, 2007). In a retrospective
study that followed 28 patients who used CSC bone cement in
vertebroplasty procedures, it was found that the CPC took
approximately 43 days to completely resorb in the body, the
rapid resorption of CSC bone cement potentially leading to
the occupation of bone defects by vascular fibrous tissue and
affecting new bone formation which could be associated with
difficulties such as nonunion and “vacuum disc” complications
(Bu et al., 2015). In addition, the fast degradation rate limits its
role in weight-bearing. Consequently, it is used mainly for filling
bone defects in non-weight-bearing areas or as a drug carrier (Luo
et al., 2016).

The modification of CPC includes the following aspects:

1) After adding silk fibroin (SF) to CSH, the compressive
strength can reach up to approximately 32.7 MPa under
the optimal ratio, and the washout resistance of CPC is
improved (Zhang et al., 2018).

2) In another study, the researchers prepared a bone cement
composed of tricalcium silicate (C3S), glucono-delta-lactone
(GDL), and CSD, which had a self-setting time of less than
15 min, the highest compressive strength after 1 h being
approximately 5 MPa, and its self-degradation rate being
up to approximately 58% after 12 weeks. Moreover, its
degradation rate could be adjusted by adjusting the content
of calcium sulfate (Ding et al., 2021). At the same time, it

FIGURE 3 | Disadvantages of CPC and its modifications. CPC, calcium phosphate cement; CMC, carboxymethyl cellulose; PLGA, poly (l-lactide-co-
glycolide) acid.
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exhibited good osteogenic activity. In vitro cell tests
demonstrated that it could effectively promote the
proliferation and differentiation of bone marrow
mesenchymal cells (Ding et al., 2021) (Figure 4).

Calcium Silicate Cement
CSiC—a bioactive material containing silicon—comprises
primarily mineral trioxide aggregate (MTA) (Santiago et al.,
2021), which is composed of C3S, dicalcium silicate (C2S),
tricalcium aluminate (TCA), tetracalcium aluminoferrite, and
uses bismuth oxide as a radiopaque additive (Roberts et al.,
2008). When all components are mixed with water, they can
form a paste that can be implanted in place and shaped. Several
previous studies have shown that when CSiC is exposed to a
simulated body fluid (SBF) solution, it forms calcium phosphate
and apatite precipitate on its surface by releasing silicon ions,
which exhibits good mineralization induction of bone-like apatite
(Zhao et al., 2005). In a femoral defect model study in rabbits, it
was found that C3S could be well bound by bone tissue, with new
mineralized bone tissue being deposited on the binding surface
without any signs of fibrosis and inflammation (Lin et al., 2021).
Its compressive strength is related to the setting pressure, up to
approximately 70 MPa (Nekoofar et al., 2007). It has a moderate
degradation rate and lower heat release during hydration than
CPC and has a certain promotion effect on cell proliferation
(Zhao et al., 2005). However, its curing time can be long, with
research showing its final setting time to be approximately
170 min (Gandolfi et al., 2009). Moreover, its washout
resistance is poor. CSiC is prone to disintegration after being
soaked in deionized water, which inevitably limits its application
in orthopedics (Xu et al., 2018). More recently, a commercially

available bone cement VK100 (BonWRX, Phoenix, Arizona,
United States) was applied in vertebral augmentation. This
dual-paste cement contains dimethyl methylvinyl siloxanes,
barium sulfate powder, platinum catalyst, and methylhydrogen
siloxane cross linker in the component. After setting, the
structure is not completely rigid and provides a certain
amount of compressibility, which is hypothesized that with
this feature it could prevent the adjacent segment fractures
commonly seen at PVP and PKP procedures (Neyisci et al., 2018).

The shortcomings of the low fracture strength and long curing
time of CSiC materials can be resolved by preparing bioactive
materials combined with organic polymers.

1) It was found that by adding sodium alginate (SA) to C3S, its
washout resistance and compressive strength could be
improved (1 wt% C3S/SA, its maximum compressive
strength being approximately 54.05 MPa), having no
obvious effect on biocompatibility (Xu et al., 2018).
However, it could increase the curing time by varying
degrees. When the mass percentage was 2%, the final
setting time increased to 153 min (Xu et al., 2018).

2) By adding 5% gelatin, its washout resistance could be
improved, its tensile strength increasing from 2.4 MPa to
approximately 3.4 MPa. Moreover, it was found that the
CSiC could inhibit osteoclasts more effectively than CPC,
which may be related to the slow release of silicon ions (Wu
et al., 2020).

3) After adding magnesium phosphate to the C3S powder, the
mechanical properties of the bone cement could be
significantly improved, the compressive strength reaching
as much as 86 MPa (Liu et al., 2015). With different mass

FIGURE 4 | Disadvantages of CSC and CSiC and their modifications. CSC, calcium sulfate cement; CSiC, calcium silicate cement; C3S, tricalcium silicate; GDL,
glucono-delta-lactone.
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percentages of C3S, the curing time could be controlled within
3–29 min, all showing good biological activity (Liu et al.,
2015).

4) Changing the composition ratio of the TCA in MTA could
significantly shorten the setting time—that is, when the
addition of TCA reached 15%, the final setting time was
approximately 31 min (Liu et al., 2012). However, TCA
affects its compressive strength. For example, the
maximum strength of MTA without TCA was
approximately 55 MPa, and when 15% TCA was added, the
maximum strength was approximately 40 MPa (Liu et al.,
2012) (Figure 4).

CONCLUSION

The ideal bone cement should be used as a non-toxic plastic
scaffold to fill bone defects, provide stable mechanical support
for the bone based on human biomechanics, and promote the
growth of new bone—which will eventually be resorbed—to
achieve the complete healing of bone defects. As a long-
established standard material, PMMA is widely used in the
repair of bone defects in vertebral body augmentation, although
many deficiencies have been exposed with its use. Scholars have
used various modification methods to improve the
performance, more in line with the purpose and
requirements of clinical treatment. However, existing
modified bone cements remain unable to overcome all their

inherent shortcomings. The research and development of new
materials are gradually being explored, but their rapid
production and perfecting is challenging. Moreover, the long-
term efficacy of various materials needs to be observed and
improved in the future. Currently, bone cement materials
offering specific advantages can be selected based on a
patient’s needs for individualized treatment.
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