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Currently, nanotechnology and nanoparticles have been quickly emerged and have gained
the attention of scientists due to their massive applications in environmental sectors.
Nanotechnology also encompasses the ability to design, characterize, manufacture, and
implement nano-sized structures. Today, metal oxide nanoparticles stand out in industrial
applications in various fields of applied nanotechnology. Amongmetal oxide nanoparticles,
iron oxide nanoparticles (FeO-NPs) are one of the widely used NPs. Green chemistry-
based nanoparticles production is one of the most interesting topics in recent years. In the
present study, we used vermicomposting leachate to synthesize FeO-NPs. First,
vermicomposting leachate (VCL) was produced and then FeO-NPs was obtained from
ferric chloride salt. FeO-NPs was characterized by scanning electron microscopy with
energy dispersive X-ray spectroscopy (SEM/EDX) and X-ray diffraction (XRD). Additionally,
the antioxidant activities of FeO-NPs synthesized from vermicomposting leachate (VCL-
FeO-NPs) were evaluated by DPPH scavenging activity. The highest DPPH activities of
VCL-FeO-NPs at 200 mg/L concentration were 93.54%. In addition, the nanoparticles
showed significant DNA nuclease activity. The antimicrobial activities of VCL-FeO-NPs
were studied in micro dilution methods and it exhibited moderate antimicrobial activity
through Gr +ve, Gr −ve, and fungi. The nanoparticles showed more effective microbial cell
inhibition activity against E. coli. Also, biofilm inhibition results were detected against S.
aureus and P. aeruginosa were 66.05% and 67.29%, respectively.

Keywords: antimicrobial activity, antioxidant activity, biofilm inhibition, iron oxide nanoparticles, microbial cell
viability, vermicomposting leachate

INTRODUCTION

Nanotechnology (NT) and nanoscience is one of the remarkable areas of science dealing with using
the structure of nanoscale (Kakakhel et al., 2021). NT is used in the medical field, pharmacology,
optics, electronics, food industry, textiles, wastewater treatment, agriculture, (Azarang et al., 2014;
Fernández et al., 2016). In addition, NT is used extensively in antimicrobial, catalysis and toxicity
science (Potbhare et al., 2019; Umekar et al., 2021; Yabalak et al., 2022). The nanoparticles (NPs) are
found in different types based on by their chemical structure. Nevertheless, some processes of
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nanoparticle’s synthesis do not accord economically with their
biological aim. Such as, till now, many methods have been used
for the synthesis of FeO-NPs. Mostly microorganisms and
chemical methods have been used to synthesize FeO-NPs;
however, the chemical methods have been considered as
ecotoxic (Arslan et al., 2022). Therefore, the present study was
aimed to choose biological methods using plant for the
fabrication of FeO-NPs. This green process for NPs synthesis
is non-toxic, eco-friendly, non-harmful for human health
(Ghotekar et al., 2021; Priya et al., 2021). So far, this
biotechnology became an important branch followed by
nanotechnology (Mohanpuria et al., 2008). Biological synthesis
is pretty cheap, an environmentally friendly and safe method
(Latha et al., 2018). In biological synthesis, bacteria, fungi, algae,
and different sources of plants can be used (Nanda, et al., 2018).
For example, Potbhare et al. (2020a) fabricated silver
nanoparticles (Ag NPs) on the surface of graphene oxide (GO)
nanosheets as a multifunctional antibacterial material by using
Pseudomonas aeruginosa biomass extract. Antibacterial action of
the synthesized Ag-GO NPs was tested against bacterial species
E. coli, Staphylococcus aureus, and Bacillus subtilis. The results
revealed that Ag-GO NPs showed effective antibacterial
performance against E. coli. In another study, Ag-NPs was
synthesized by Rhizoctonia solani (R. solani) fungi with
particle size of 10–20 nm (Potbhare et al., 2020b). AgNPs were
found as an effective antibacterial agent against S. aureus.
Chaudhary et al. (2021) demonstrated the fabrication of
uniformly decorated zinc oxide (ZnO) on reduced graphene
oxide (ZnO-rGO) nanocomposites using Sesbania bispinosa.
The nanocomposites were used as photocatalyst for methylene
blue (MB) dye-degradation and they supplied 85% dye
degradation efficiency towards MB dye under UV–Visible light
irradiation within 70 min.

In recent years, researchers have used various plant extracts to
produce metal and metal oxide nanoparticles such as manganese
dioxide (MnO2) (Hashem et al., 2018), zinc oxide (ZnO) (Suresh
et al., 2015), iron oxides (FeO, Fe2O3, Fe3O4, FeOOH, Fe0

(Karunakaran et al., 2018), tin oxide (SnO2), lead oxide
(PbO2), silver (Tavaf et al., 2015), gold, copper oxide (CuO),
palladium (Kalaiselvi et al., 2015), cerium (IV) oxide, cerium
dioxide, titanium oxide, ZnCuFe nanoparticle, cobalt ferrite
(CoFe2O4), aluminum oxide (Al2O3), magnesium (Mg), and
sulfur nanoparticles (Salem et al., 2016). Iron oxide has been
one of the extensively investigated transition metal oxides due to
its important variable oxidation states, low cost, environmental
friendly nature, crystal structures, and magnetic properties (Devi
et al., 2019).

Vermicomposting leachate can be also used for synthesis of
nanoparticles. The digestion of organic material by earthworms
results in the production of vermicomposting (Chaoui et al.,
2003). Water is constantly sprayed during vermicomposting
process on account of obtain the required moisture level in
the reactor. Vermicomposting process also generates leachate
due to the delivery of water by microorganisms throughout the
separation of organic material (Gutiérrez-Miceli et al., 2008). The
surplus water that leaches out is usually familiar as
vermicomposting leachate or worm bed leachate.

Vermicomposting leachate is very valuable and can be
exploited liquid fertilizer due to its loud concentration of plant
nutrition’s and the existence of fulvic and humic acids (Gutiérrez-
Miceli et al., 2008). However, if the resulting leachate is
discharged to the environment, it may reason pollution,
exclusively if the site is close to the groundwater source
(Katheem Kiyasudeen et al., 2016). Therefore, various methods
should be developed for their evaluation.

The implementation of vermicomposting in the recycling of
organic and animal wastes has acquired admission in the last
two decades (Cambardella et al., 2003; Reynolds 2004). Studies
on utilizing vermicomposting leachate focused on their
fertilizer properties (Arancon et al., 2005; Gutiérrez-Miceli
et al., 2011; Tharmaraj et al., 2011; Vasantharaj et al., 2017;
García-Gómez et al., 2008). So far, different types of wastes
such as cow manure, cow dung and green forages, vegetable
waste have been utilized in studies of vermicomposting
leachate.

In this study, we focused on the synthesis of FeO-NPs using
the green approach and examined their DPPH activity, DNA
cleavage ability, antimicrobial activity, cell viability inhibition,
antimicrobial photodynamic therapy, and biofilm inhibition
properties. As far as our knowledge, vermicomposting leachate
has been used for the first time to synthesize FeO-NPs. The
present work has highlighted the easy to scale up method for
the fabrication of FeO-NPs and also contributed to the
development of less expensive FeO-NPs in the field of
antimicrobial activity. Moreover, the prepared FeO-NPs
from vermicomposting leachate were characterized using
SEM, EDX, and XRD.

MATERIALS AND METHODS

Materials and Chemicals
Hydrochloric acid (HCl, ACS reagent, 37%), iron (III) chloride
(FeCl3, reagent grade, 97%) and sodium hydroxide [NaOH, reagent
grade, ≥98%, pellets (anhydrous)] were purchased from Sigma
Aldrich. FeCl3 salt was utilized as the iron source. The utilized
chemicals and reagents of this research were analytical grade.
Distilled water used in all experiments was obtained from a two-
stage Millipore Direct-Q3UV purification system.

Vermicomposting Leachate Production
Four test beds (40 cm height × 40 cm length × 25 cm depth) were
used to obtain vermicomposting leachate. In order to protect the
vermicomposting against the sun and rain, the experimental beds
were carried out in an indoor environment with an average
temperature of 20–25°C, which does not receive direct
sunlight. Cow manure and fruit pulp were composted in a
thermophilic environment for 2 months, with mechanically
turned over every 15 days (Juarez et al., 2015). Cow dung and
fruit pulp with 80% moisture content, after a 2-month
composting period, worms (Eisenia fetida) were left in four
test beds in the composted cow manure and fruit pulp. The
composite leaks were obtained from the leachate collection tanks
during the 2-month vermicomposting process.
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Iron Oxide Nanoparticles Synthesis
The vermicomposting leachate collected from four beds was used
by filtering through a funnel with a filter paper to remove the
solids. The experimental steps for preparation of VCL-FeO-NPs
is shown in Figure 1. 0.1 M FeCl3 (400 ml) was prepared and
mixed with 100 ml vermicomposting leachate. The mixture was
incubated (Microtest MCI 120 incubator) at 70°C for 24 h and the
resulting precipitate was separated by centrifugation (Hettich
Mikro 22R) at 6,000 rpm for 5 min. NPs was washed with
double distilled water and ethanol for five times followed by
drying in oven at 80°C.

Iron Oxide Nanoparticles Characterization
The SEM-EDX technique was used to characterize the
synthesized FeO-NPs. The surface morphology of NPs was
studied using scanning electron microscopy (SEM).
(Germany’s Zeiss Supra 55). The composition of the elements
presents on FeO-NPs surfaces was quantified using energy
dispersive X-ray spectroscopy (EDX). The XRD measurements
were carried out using via X-ray diffraction device (XRD, Bruker,
D8 Venture) with 2θ scan range from 20 to 90° at a scan rate of
2°/min.

DPPH Activity
The DPPH activity was utilized to discover the antioxidant
activity of VCL-FeO-NPs and the method was applied as
previously reported by Salih Ağırtaş et al. (2015). Firstly,
250 µl of VCL-FeO-NPs prepared in five different

concentrations (range from 12.5 to 200 mg/ml) and ascorbic
acid and trolox used as standard were taken and put into test
tubes. The 1,000 µl of DPPH methanol solution was then
added to the test tubes, vortexed to form a homogeneous
mixture, and then incubated in the dark for 30 min. Later,
the absorbance was detected using spectrophotometer at
517 nm and the percent activity was calculated according to
the formula below (1).

Capacity(%) � (Abs(control) − Abs(sample)
Abs(control) ) × 100 (1)

Abscontrol: absorbance value of Ascorbic acid and Trolox,
Abssample: the absorbance value of the DPPH and test compounds.

DNA Cleavage Ability
Plasmid DNA was used to investigate the impact of newly
synthesized VCL-FeO-NPs on DNA. Evaluation of the method
was carried out by electrophoresis. The method is principally
based on treating different concentrations of VCL-FeO-NPs with
E. coli plasmid DNA. Briefly, prepared in three different
concentrations of VCL-FeO-NPs (125, 250 and 500 mg/L) and
0.1 μg/μl supercoiled plasmid DNA were mixed and incubated at
37°C for 60 min. At the end of the time, loading dye was joined to
the mixture and thoroughly blended and then the mixture was
loaded onto agarose gel. Moreover, electrophoresis process was
carried out at 120 V for 1 h. Later, the gel was lightened with UV
lamp and photographed.

FIGURE 1 | The experimental steps for VCL-FeO-NPs preparation.
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Antimicrobial Activity
The antimicrobial activity of the prepared VCL-FeO-NPs was
verified using the standard microdilution method. To investigate
the antibacterial activity of VCL-FeO-NPs, several types of Gram
−ve (Pseudomonas aeruginosa, Escherichia coli, and Legionella
pneumophila subsp. pneumophila), Gram +ve (Staphylococcus
aureus, Enterococcus faecalis, and Enterococcus hirae) bacteria
and yeast (Candida tropicalis, Candida parapisilosis) were
utilized. The strains were grown overnight before
microdilution experiment. Two-fold serial dilutions of VCL-
FeO-NPs were done for the study. Later, the strains were
added to the microplate-wells. Next plates left for 24 h
incubation at 37 ± 2 C. MIC was described as the lowest
concentration of VCL-FeO-NPs capable of inhibiting microbial
growth up to 99%.

Bacterial Viability Inhibition Test and
Antimicrobial Photodynamic Therapy
Cell viability inhibition and antimicrobial photodynamic
therapy study was also performed to evaluate the inhibition
activity of cellular viability of newly synthesized VCL-FeO-
NPs. The strain used for this was a Gr −ve E. coli (ATCC
10536) strain. The preliminary preparation stage for the test
procedure of E. coli was explained in detail in our previous
study (Gonca et al., 2021). The prepared E. coli to be used in
both bacterial viability inhibition and antibacterial
photodynamic therapy studies. The prepared E. coli was
treated with VCL-FeO-NPs. Then it was allowed to incubate
for 60 min and when the incubation was finished, the dilution
step and the cultivation step were performed and incubated at
37°C for 24 h. Finally, the colonies were counted. Finally,
Inhibition percentages were calculated according to the Eq.
2 below by counting the colonies. In addition, in the
antimicrobial photodynamic therapy study, the method in
the microbial cell viability study was applied after the
compounds were exposed to LED light for 20 min.
Ultimately, the colonies were counted and the inhibition
activity computed utilizing with Eq. 2.

%Cell viability inhibition � [(Acontrol − Asample)/Acontrol] × 100

(2)

Inhibition Activity of Biofilm Formation
Biofilm inhibition study was performed as another parameter
to evaluate the antimicrobial activity of newly synthesized
VCL-FeO-NPs. S. aureus (Gr +ve) and P. aeruginosa (Gr
−ve) were used in the biofilm inhibition study. The details
of the study are given in our previous study (Gonca et al.,
2021). In summary, VCL-FeO-NPs was prepared at three
different concentrations into a 24 well plate and then, the
microorganisms were inoculated into the respective wells and
incubated. The wells without VCL-FeO-NPs were used as a
positive control wells. When incubation time was expired the
wells were drained and washed distilled water. Afterwards, the
plate was kept in an oven until dry. After the wells dried,

crystal violet (CV) dye was added and left for 60 min. The CV
was then removed and the plates were gently washed.
Afterwards, ethanol was added to the wells and absorbance
values were measured. Biofilm inhibition activity was
computed in accordance with the Eq. 3 shown below

Biofilm Inhibition(%) � (Abs(control) − Abs(sample)
Abs(control) ) × 100

(3)

RESULTS AND DISCUSSION

Characterization of Iron Oxide
Nanoparticles
Morphological properties of FeO-NPs obtained from
vermicomposting leachate are examined using SEM
microscopy. It was observed that FeO-NPs induced are
highly agglomerated with distinct particle sizes. The results
also showed that FeO-NPs were an irregular and nonuniform
semi-spherical shape (Figure 2). The rougher surface was
observed, as well as an apparent sticking behavior due to
the capping agent on the surface. SEM analysis depicted
that FeO-NPs were smaller than 100 nm. It can be clearly
seen that the peak of Fe was prominent among another element
which indicates the presence of Fe in the NPs (Figure 3). Other
elements like oxygen, carbon, and chlorine were also observed
which indicated the effective role of organic materials as a
capping agent. Similar results were reported by Aisida et al.
(2021).

XRD technique was also exploited to obtain more detailed
information about FeO-NPs crystallography. A series of
predominant peaks observed in XRD were indexing the purity
and crystalline nature of the synthesized FeO-NPs (Figure 4).
The reflections in the given XRD pattern were identified as iron
oxide. The XRD patterns matched with that of Fe-NPs
synthesized using avocado fruit rind aqueous extract (Kamaraj
et al., 2019).

FIGURE 2 | SEM images of synthesized FeO-NPs.
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DPPH Radical Scavenging Activity
As it is known, free radicals are necessary to kill microorganisms,
activate enzymes and hormones, and produce energy. However,
overproduction of free radicals causes many diseases related to
oxidative stress such as oxidative stress-related neurological
disorder, cardiac arrest, and cancer cell growth in humans.
Antioxidants, which are called radical scavengers, normally
regulate free radicals in the human body (Stephen Inbaraj and
Chen, 2020). In this study, the DPPH method was used to
investigate the free radical scavenging activity of FeO-NPs
produced using compost leachate. The DPPH method is a
commonly used technique for determining antioxidant
activity. The color of the DPPH solution, which has a purple
color, changes towards yellow in the presence of antioxidant
substances in the environment. The DPPH activity results of
VCL-FeO-NPs and also of ascorbic acid and trolox used as

standard are shown in the Figure 5. DPPH activity results of
newly synthesized VCL-FeO-NPs were 38.88%, 48.49%, 61.83%,
86.51%, and 93.54% at 12.5, 25, 50, 100, and 200 mg/L
concentrations, respectively. DPPH activity results of Ascorbic
acid and Trolox at the same concentrations were in the range
from 84.12% to 100.00% and 86.39%–100.00%, respectively. Also,
as can be clearly seen in the Figure 5, the free radical scavenging
activity increased in parallel with the concentration. The free radical
scavenging activity of the surface reaction between DPPH radical
andVCL-FeO-NPsmight be due to an electron shift in oxygen at the
radical’s surface (Mirza et al., 2018). Antioxidant activities of FeO-
NPs were also investigated in studies conducted by different
researchers. Some of these studies are as follows. Chavan et al.
(2020) synthesized FeO-NPs using Blumea eriantha DC extract
(BEDC). They studied that of BEDC-FeO-NPs DPPH activity and
reported that it was showed scavenging activity as 17.25 ± 1.19% at

FIGURE 3 | SEM-EDX images of synthesized FeO-NPs.

FIGURE 4 | XRD pattern of FeO-NPs.
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50 μgml−1 concentration. Dowlath et al. (2021) synthesized FeO-
NPs in two ways including GS (green synthesis) and CS (chemical
synthesis) and investigated the antioxidant activity of both FeO-NPs
by DPPH method. They found that GS FeO-NPs and CS FeO-NPs
showed 79.99 ± 0.92% and 15.11 ± 0.65% DPPH inhibition activity
at 100 μg/ml concentration, respectively. Singh et al. (2020) used
Coriandrum sativum leaf extract to synthesize iron oxide
nanoparticles and reported that it showed DPPH activity with
ranged from 32.54 to 84.28% at different concentrations
(50–250 µg). Kumar et al. (2020) synthesized Citrus paradisi peel
extract-mediated FeO-NPs and reported that scavenging activity of
the CPPE-FeO-NPs was 26.52% at 100 μg the quantity of FeO-NPs.
DPPH activity results obtained in the presented study were found to
have better results compared to the above-mentioned studies.
Therefore, FeO-NPs synthesized using compost leachate seem to
be the good candidate for be antioxidant agent because of its good
antioxidant potential.

DNA Cleavage Ability
The bio-efficiency of most antimicrobial and anticancer agents
is frequently connected to its capability to interact with DNA.
Such compounds can cause damage to the structure of DNA in
cancer and microbial cells as well as induce cellular death by
apoptosis/necrosis (El-ghamry et al., 2021) and these DNA
damages may have been caused by single oxygen radicals
(Chouke et al., 2022). One of the studies carried out in the
presented study was the DNA cleavage study. For this, the effect
of VCL-FeO-NPs on E. coli pBR 322 plasmid DNA was
investigated by agarose gel electrophoresis method. To
investigate the effect of VCL-FeO-NPs on plasmid DNA,
DNA was treated with 3 different (125, 250, and 500 mg/L)
concentrations of NPs. The results of the DNA cleavage study
are given in the Figure 6. Possible results in DNA cleavage study
are as follows; 1) Single strand break in plasmid DNA and
transition from Form I to Form II. 2) Occurrence of double
strand break in plasmid DNA and transition from Form I to
Form III. 3) Another expected situation is the complete
degradation of DNA by exposure to the substances (VCL-
FeO-NPs for this study). When faced with the situation in
the 3rd option, no band is observed in the gel because the
DNA is divided into small pieces. In the presented study, there is
no band in the Figure 6 because the DNA was completely
fragmented. That is, the synthesized nanoparticle is highly
effective on DNA and its effect on DNA is a very valuable
result when considered from a pharmacological point of view. It
has also been shown by studies that nanoparticles cause damage
to DNA. El-ghamry et al. (2021) studied on nanoparticle-size
metal complexes and showed its DNA cleavage ability. Gur et al.
(2022) synthesized that biogenic zinc oxide nanoparticles and
they showed that its DNA damage increases depending on the
concentration. As a result, newly synthesized VCL-FeO-NPs
can be used as a chemical nuclease agent after further studies.

Antimicrobial Activity
In the present study, the antimicrobial capability of the
synthesized VCL-FeO-NPs were investigated through
microdilution processes. The antimicrobial activity results are
given in Table 1. Ampicillin and Flucozanole used as controls for
bacterial and fungal strains, respectively. VCL-FeO-NPs
demonstrated lower antimicrobial activity than controls.
Accordingly, the MIC values of the nanoparticle are 128 μg/ml
against E. hirae and S. aureus and 256 μg/ml against E. coli, P.

FIGURE 5 | DPPH scavenging activity.

FIGURE 6 | DNA cleavage of iron oxide nanoparticle. Lane 1, pBR 322
DNA + 125 mg/L of Fe nanoparticle; Lane 2, pBR 322 DNA + 250 mg/L Fe
nanoparticle; Lane 3, pBR 322 DNA + 500 mg/L of Fe nanoparticle; Lane 4,
pBR 322 DNA.

TABLE 1 | The minimum inhibition concentration (MIC) of test microorganisms.

Microorganisms VCL-FeNPs* Ampicillin Fluconazole

E. coli 256 0.5 —

P. aeruginosa 256 0.5 —

L. pneumophila pneumophila 256 0.5 —

E. hirae 128 0.5 —

E. fecalis 256 1 —

S. aureus 128 1 —

C. parapisilosis 256 — 0.5
C. tropicalis 256 — 0.5

*µg/ml.
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aeruginosa, L. pneumophila subsp. pneumophila, E. fecalis, C.
parapisilosis, and C. tropicalis. According to our antimicrobial
activity results, Gr +ve bacteria including E. hirae and S. aureus
were found to bemore sensitive to FeO-NPs. This situation can be
explained as follows; because of that in Gr +ve bacteria formed of
a thick peptidoglycan layer comparison to the Gram −ve bacteria
is perhaps an effective degree of contact between nanoparticles
and organisms due to its small size (Vitta et al., 2020). Previous
reports also showed that higher antimicrobial activity of FeO-NPs
on Gram +ve bacteria as compared to Gram −ve ones (Shaker
Ardakani et al., 2021). Moreover, antimicrobial activities of iron
nanoparticles against different microorganisms have been
reported in various studies. Some of these studies are as
follows; Salem et al. (2019) biosynthesized Fe3O4 NPs using
aqueous extracts of seaweed Colpomenia sinuosa and
Pterocladia capillacea and they reported that synthesized
Fe3O4 NPs exhibited wide spectrum of antibacterial potency
against the growth of Gram −ve and Gram +ve. Chavan et al.
(2020) synthesized FeO-NPs using alcoholic Blumea erianthaDC
plant extract, and they found that it showed antibacterial
activity against S. aureus, B. subtilis, B. cereus and E. coli.
Vasantharaj et al. (2019) synthesized FeO-NPs using Ruellia
tuberosa leaf aqueous extract and studied their antimicrobial
activity. They finally reported that while it exhibited better
antimicrobial activity against E. coli and Klebsiella

pneumoniae, it was less active against S. aureus. According
to our antimicrobial activity results, it is seen that the
synthesized NPs has an antimicrobial effect on the strains
studied. Therefore, we think that it can be used in various
fields as an antimicrobial active substance after further
studies.

Biofilm Inhibition Activity
Multidrug resistance of microorganisms results is not only from
structure transformation or gene changing of planktonic bacteria,
but also from their ability to form biofilms. Combating biofilm
formation is one of the important strategies in the development of
new antibacterial agents (Srinivasan et al., 2021; Li et al., 2020). In
this respect, nanoparticles may emerge as promising new effective
substances. In the study, the biofilm inhibition activity of VCL-
FeO-NPs was also investigated against S. aureus and P.
aeruginosa. Biofilm inhibition activity results are given in
Figure 7. Accordingly, as the concentration of VCL-FeO-NPs
increased against both bacteria, the biofilm inhibition also
increased. Biofilm inhibition activity results were 33.81%,
53.66%, and 66.05% for S. aureus and 41.11%, 55.50%, and
67.29% for P. aeruginosa at 125 mg/L, 250 mg/L, and 500 mg/
L concentrations, respectively. The antimicrobial activity of metal
and metal oxide NPs is thought to be mediated by the release of
reactive oxygen species (ROS) and effective metal-ions from and

FIGURE 7 | Biofilm inhibition.
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its increased surface-to-volume ratios (Khalid et al., 2019).
Antibiofilm effect of nanoparticles against various
microorganisms has been demonstrated in many studies. Some
of these studies are as follows; Salari et al. (2018) reported that
Fe3O4-NPs inhibited biofilm formation of Candida spp. Kamble
and Shinde (2018) reported that synthesized AgNPs using
Curcuma longa showed potent anti-biofilm activity against S.
aureus and S. pneumoniae. Pham et al. (2019) reported that
synthesized and characterized iron NPs inhibited of biofilm
formation of P. aeruginosa and this inhibition raised as the
FeOOH-NP concentration increased. It seems that, these
results ensure to anti-biofilm activity of a new synthesized
VCL-FeO-NPs, contributing to the research for an efficient
material to fight S. aureus and P. aeruginosa infections
resulted from biofilm generation.

Bacterial Viability Effect and Antimicrobial
Photodynamic Therapy
In the study, another method used to investigate the
antimicrobial activity of CT-FeO-NPs were cell viability
inhibition. E. coli bacteria were used for this in the method.
The results of cell viability inhibition study are shown in the
Figure 8. As seen Figure 8, cell viability inhibition results of VCL-

FeO-NPs were 94.3%, 98.7%, and 99.99% at 125 mg/L, 250 mg/L,
and 500 mg/L concentrations, respectively. According to our
results, we think that the possible antimicrobial activity is
similar to that of Fe2O3NPs. The Fe2O3 NPs breaks the
bacterial cell membrane and consequently the potential of
membrane turn into unsteady and the active transport
collapsed. Contemporaneously, Fe2O3 NPs enter via the
impaired membrane and inactivate the enzyme as well as
disrupt the DNA, which conduces to death of the bacterial
cell. (Ahmad et al., 2020). Also, antimicrobial photodynamic
therapy study was performed by exposing the compounds
prepared as mentioned above to LED light for 20 min
(Figure 9). As a result, inhibition rates of antimicrobial
photodynamic therapy were determined as 99.99%, 100%, and
100% at 125, 250, and 500 mg/L, respectively. The production of
ROS, which damages the protein and DNA of bacteria, is another
possible mechanism for the antimicrobial activity of iron NPs,
and after exposure to light the antimicrobial effect may have
occurred as mentioned (Vasantharaj et al., 2019; Vitta et al.,
2020). In addition to these, it is well known that metal oxide
nanoparticles can create the formation of ROS in microbial cells.
These ROS molecules especially can cause deterioration of the
membrane structure (Chaudhary et al., 2019). According to cell
viability and antimicrobial photodynamic therapy results, newly

FIGURE 8 | Cell viability inhibition.

Frontiers in Materials | www.frontiersin.org June 2022 | Volume 9 | Article 9120668

Arslan et al. Iron Oxide Nanoparticles Synthesis

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


synthesized FeO-NPs seems to be quite effective on E. coli
bacteria. After further studies, we can say that NPs can be
used as antimicrobial agent.

CONCLUSION

Vermicomposting leachate was used to synthesize FeO-NPs.
The highest DPPH activities of VCL-FeO-NPs at 200 mg/L
concentration were 93.54%. In addition, the nanoparticle
showed significant DNA nuclease activity. The
antimicrobial activity of VCL-FeO-NPs showed moderate
antimicrobial activity against Gram positive, Gram
negative, and fungi. However, the nanoparticles showed
more effective microbial cell inhibition activity against
E. coli. Also, biofilm inhibition results were detected
against S. aureus and P. aeruginosa were 66.05% and
67.29%, respectively. It clearly indicated that green
synthesized FeO-NPs showed good biological properties,
which could be used to produce and formulate new drug
and biomedical applications. In addition, we hope that the
results of our study will inspire readers to explore new

avenues for the synthesis of FeO-NPs of various
morphologies for future antimicrobial applications in
nanomedicine. Overall, these results suggest that green
synthesis of FeO-NPs has potential as an operative, low-
cost, and beneficial process for many scientific and
technical applications in future, including environmental
applications.
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