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To improve the mechanical properties of proton exchange membranes,

consequently improving the performance of direct borohydride fuel cells,

the present study prepared sulfonated chitosan-g-sulfonated polyvinyl

alcohol/polyethylene oxide doped with sulfated zirconia composite (SCS-g-

SPVA/PEO/SZrO2) polyelectrolyte membranes. Two fabrication techniques

were followed, solution casting and electrospinning, to have the membranes

in film and fiber forms and study the effect of the different forms on the

membrane’s physicochemical properties. For the casting technique, different

concentrations of SZrO2 (1-3 wt%) were used, while the optimum

concentration of SZrO2 (3 wt%) was used in the electrospun one (SCS-g-

SPVA/PEO/SZrO2-CF). SCS-g-SPVA/PEO/SZrO2-C membranes were

prepared in a single step. The grafting and the crosslinking were carried out

using glutaraldehyde and sulfosuccinic acid as sulfonating agents for chitosan

and PVA and coupling agents simultaneously using click chemistry. On the

other hand, SCS-g-SPVA/PEO/SZrO2-CF membranes were prepared in two

steps. They were fabricated with electrospinning and then dipped into the
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coupling and crosslinking solutions. The casting membranes’ physicochemical

properties were improved by increasing the SZrO2 content. The experimental

results further show that the fabrication procedure significantly influences the

physicochemical properties of the membranes. For instance, the composite

fiber membrane demonstrated higher selectivity and higher ion exchange

capacity (IEC) than the casting membrane. Furthermore, by using the

response surface methodology model, the effects of ion exchange capacity,

water uptake, and oxidative stability were optimized as three independent

variables that affected the ionic conductivity of SCS-g-SPVA/PEO/SZrO2-3C.

The optimized ionic conductivity of the SCS-g-SPVA/PEO/SZrO2-3C

membrane was 13.6 mS cm−1, achieved at the maximum point of the

polynomial model, with an IEC of 0.74 meq g−1, ~92% water uptake, and

about 93% oxidative stability.

KEYWORDS

proton exchange membranes, polyvinyl alcohol, polyethylene oxide, chitosan,
electrospun, direct borohydride fuel cell

Introduction

A fuel cell is considered one of the most favorable energy

resources (Gouda et al., 2020a; Mohy Eldin et al., 2020; Gouda

et al., 2021a). It collects the merits of batteries and heat engines

and simultaneously avoids their disadvantages. Zero pollution

and high efficiency became achievable by a fuel cell, where

chemical energy is directly converted to electricity (Gouda

et al., 2020b; Gouda et al., 2021b; Gouda et al., 2021c). A fuel

cell can provide uninterrupted power as long as reactants are fed

to the cell, with both fuel and oxidant being stored externally.

A direct borohydride fuel cell (DBFC) is an electrochemical

device that generates electrical energy by the electroreduction of

hydrogen peroxide (as the oxidant) at the cathode and the

electrooxidation of borohydride (as the fuel) at the anode.

Compared with direct alcohol fuel cells or conventional

hydrogen-fed polymer electrolyte fuel cells, DBFCs have

suitable energy and thermodynamic characteristics (Gouda

et al., 2019a; Gouda et al., 2020c; Gouda et al., 2020d).

Proton-exchange membranes (PEM), from which Nafion® is
the current benchmarkmembrane, are an essential component of

fuel cells. They work as electron insulators and prevent fuel

crossover between electrodes (Gouda et al., 2019b). However, fuel

permeability is still an important issue due to the osmotic drag

and diffusion, which lower the power density output. Several

studies have focused on the transfer of ions or protons via

polymeric membranes and new ideas for enhancing its

qualities. Still, the high cost of the Nafion® and its fuel

permeability has not been solved yet. Therefore, to increase

the possibility of DBFCs commercialization, it would be

necessary to replace Nafion® membranes with alternative

cheap and green membranes. For this purpose, poly (vinyl

alcohol) (PVA) membranes could be an excellent choice.

PVA is a synthetic polymer, cheap, chemically stable, and

nontoxic (Gouda et al., 2021d; Gouda et al., 2021e; Gouda et al.,

2021f; Gouda et al., 2021g). In acidic media, the hydroxyl groups

of PVA and chitosan (CS) bond with aldehyde groups of

glutaraldehyde to form hemiacetal or acetal linkages (Gouda

et al., 2021f). Moreover, PVA and CS functional groups (-OH)

react with carboxylic groups of sulfosuccinic acid by esterification

reaction to crosslink and sulfonate PVA and CS simultaneously.

Resultant crosslinked sulfonated PVA (SPVA) and sulfonated CS

(SCS) membranes are water-insoluble and suitable for proton

conduction and electronic insulation in fuel cells. Blending and

crosslinking a synthetic polymer such as PVA with a natural

polymer such as CS has a positive effect on enhancing ionic

conductivity (Yang et al., 2018). CS is a cationic polysaccharide,

nontoxic, inexpensive, natural, and biodegradable polymer

(Yang et al., 2004; Divya and Jisha, 2018). It is insoluble in

most organic solvents and water. However, it is soluble in some

weak dilute organic acids, like acetic acid.

Polyethylene oxide (PEO) is broadly used as a film-forming

synthetic polymer with flexibility, good tensile strength, and high

PVA compatibility. It can form a hydrogen bond network with

the CS and PVA matrix (Rochliadi et al., 2015; Deshmukh et al.,

2016). When ceramic inorganic acid like sulfated zirconia

(SZrO2) is calcined at 300°C, it enhances ionic conductivity

(14.5 mS cm−1), with an ion-exchange capacity of 0.54 meq g−1

and higher water uptake due to sulfate ions, the SZrO2 addition

increases the sulfate ions content inside the polymeric membrane

(Saccà et al., 2006; Navarra et al., 2008; Tominaka et al., 2010;

Giffin et al., 2012). Also, the addition of SZrO2 to the membrane

leads to additional ions within the PVA matrix (Gouda et al.,

2021a). Gouda et al. (2021f) reported that a PVA blend

membrane containing nano SZrO2 exhibited lower fuel

permeability, lower swelling, and improved mechanical

properties.

Nanofibers with average diameters <1,000 nm are

nanomaterials used in the industrial and academic research

(Yang et al., 2018). Electrospinning (Ballengee and Pintauro,
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2011; Ballengee et al., 2013; Ballengee and Pintauro, 2013; Zizhou

et al., 2021) and bubble electrospinning (Liu et al., 2021; He et al.,

2022; Qian and He, 2022) are practical and cost-effective

approaches for preparing different types of nanofibers. The

conductivity improvement in electrospun nanofiber

membranes (Box and Behnken, 1960; Dong et al., 2010; Lin

et al., 2010; Yao et al., 2011a; Yao et al., 2011b; Li et al., 2014) has

been reported. Compared to conventional polymeric

membranes, nanofiber membranes appeared to have distinct

anion and proton conductive properties. PVA/CS membranes

fabricated by casting were compared with those fabricated by

electrospinning techniques, and the performance of the two

membranes was very close (Yang et al., 2018).

To contribute to the dissemination and future

commercialization of borohydride fuel cells, we are developing

low-cost and green-prepared membranes with better oxidative

stability, tensile strength, and lower borohydride permeability than

Nafion. Herein two types of SCS-g-SPVA/PEO/SZrO2 proton

exchange membranes have been fabricated. The first one, SCS-

g-SPVA/PEO/SZrO2-C, was prepared by casting method, by

crosslinking with sulfosuccinic acid and glutaraldehyde, and

then doped with different concentrations of SZrO2 (1-3 wt%).

The second was fabricated using the electrospinning technique,

leading to composite electrospun nanofiber membranes, SCS-g-

SPVA/PEO/SZrO2-CF. The characterization of these two

membranes was studied with TGA, DSC, and FTIR. Also, water

uptake, fuel permeability, ionic conductivity, and selectivity were

measured. The aim of blending the three green polymers is to

create a network of hydrogen bonds that promotes proton

transport across the membrane. Additionally, combining the

three polymers leads to a functionalized nanomaterial that

enhances the membrane’s mechanical properties.

Materials and methods

Preparation of sulfated zirconia and SCS-
g-SPVA/PEO/SZrO2-C casting
membranes

The fabrication steps of SZrO2 were detailed in our previous

studies (Gouda et al., 2021a; Gouda et al., 2021f). The membranes

preparation was as follows: 10 wt% PVA solution was prepared

by dissolving PVA (99% hydrolysis, medium MW, Sigma-

Aldrich, United States) in water at 90°C for 2 h with vigorous

stirring to obtain a clear solution. The chitosan clear solution was

obtained by stirring 2 wt% CS (Sigma-Aldrich, United States) in

50 ml water with adding 1 ml acetic acid solution. The PEO

solution was prepared by dissolving 2 wt% of PEO (average MW:

FIGURE 1
Preparation of composite fiber membrane.

TABLE 1 Level of various independent variables at coded values of
response surface methodology experimental design.

Symbol Independent variables Coded levels

−1 0 1

A IEC/meq g−1 0.4 0.6 0.8

B water uptake/% 10 60 110

C oxidative stability/RW% 80 90 100
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900,000 g mol−1, Acros Organics, United States) in 50 ml of

water: ethanol (50:50 vol%) mixture at room temperature. CS

and PEO were then added to the PVA solution to form a blend of

the PVA/CS/PEO solution by stirring for 2 h. The wt% in the

PVA:CS:PEO blend is ca. 70:15:15.

For casting membrane preparation, the polymeric blend was

crosslinked and sulfonated by adding 10 ml of sulfosuccinic acid

(99.9 wt% in H2O, Sigma-Aldrich, United States) and 0.5 ml of

glutaraldehyde (GA) (50 wt% inH2O, Alfa Aesar, United States) in

10 ml of acetone and thorough stirring for 4 h at 40°C, followed by

adding different concentrations of SZrO2 (1–3 wt% with respect to

PVA) in the form of a suspension in few drops of water. The

membranes formed were named SCS-g-SPVA/PEO/SZrO2-1C,

SCS-g-SPVA/PEO/SZrO2-2C, and SCS-g-SPVA/PEO/SZrO2-3C,

relative to the SZrO2 wt%. The mixture solution was poured into

Petri dishes and dried overnight at 70°C in a vacuum oven.

Preparation of SCS-g-SPVA/PEO/SZrO2-
CF composite nanofiber membranes

The preparation of SCS-g-SPVA/PEO/SZrO2-CF composite

nanofiber membranes involved the following steps: 1) the SCS-g-

SPVA/PEO/SZrO2-F electrospun nanofiber was first prepared

with 3 wt% of SZrO2, then 2) SCS-g-SPVA/PEO/SZrO2-F was

crosslinked by the same crosslinkers of glutaraldehyde and

sulfosuccinic acid, finally 3) SCS-g-SPVA/PEO/SZrO2-F was

dipped into the crosslinked SCS-g-SPVA/PEO/SZrO2-3 solution.

For comparison purposes, the SCS-g-SPVA/PEO/SZrO2-3C

membrane was fabricated in nanofiber shape because this casting

membrane realized the best physicochemical properties in terms

of fuel permeability, water uptake, and ionic conductivity. The

SCS-g-SPVA//PEO/SZrO2-3C solution (without crosslinkers)

was injected in a 10 ml syringe, and the voltage applied was

20 kV. The distance between the syringe needle and the fixed

collector was 15 cm. To fill the macro-voids between fibers and

crosslink the nanofiber membrane (to enhance mechanical

strength), the prepared SCS-g-SPVA/PEO/SZrO2-3F nanofiber

membrane was dipped in the crosslinked SCS-g-SPVA/PEO/

SZrO2-3C solution for a few minutes, then dried overnight at

70°C in a vacuum oven to obtain SPVA/PEO/SZrO2-3CF, as

shown in Figure 1.

Membrane characterization

The prepared membranes’ thermal properties and functional

groups were evaluated with TGA (Shimadzu TGA-50, Japan) and

FTIR (Shimadzu FTIR-8400 S- Japan). The morphologies of

electrospun SCS-g-SPVA/PEO/SZrO2-3F membrane and SCS-

g-SPVA/PEO/SZrO2-3C were observed with SEM (JEOL Jsm

6360LA-Japan). ImageJ software evaluated the diameter

distribution of the SCS-g-SPVA/PEO/SZrO2-3F electrospun

nanofibers. The physicochemical and electrochemical tests

measured tensile strength, water uptake, ion exchange capacity

(IEC), swelling ratio, borohydride permeability, oxidative

FIGURE 2
(A) TGA curves and (B) FTIR spectra of the nanocomposite membranes.

TABLE 2 The melting point of membranes formed from DSC.

Sample Melting point/°C

SCS-g-SPVA/PEO 225 ± 3

SCS-g-SPVA/PEO/SZrO2-1C 219 ± 2

SCS-g-SPVA/PEO/SZrO2-2C 216 ± 2

SCS-g-SPVA/PEO/SZrO2-3C 212 ± 2

SCS-g-SPVA/PEO/SZrO2-3CF 210 ± 2
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stability, ionic conductivity, and selectivity. The procedures and

devices are detailed in our previous study (Gouda et al., 2019b;

Gouda et al., 2020d) and in the Supplementary Material.

Optimizing membrane properties and
their effect on ionic conductivity

Design-Expert, 13.0.9.0 program from STAT-EASE, INC was

used for the experimental design, model construction, and data

analysis. The Box Behnken design (Elessawy et al., 2020) with three

variables were used to determine the response pattern and create a

model. Because distinct variables are typically expressed in

different units and have varying limitations, the significance of

their impacts on response can only be compared once they have

been coded. In this study, the effects of three independent

variables, A (ion exchange capacity), B (water uptake), and C

(oxidative stability), at three levels were chosen as three

independent variables that affected the ionic conductivity of

SCS-g-SPVA/PEO/SZrO2-3C (Y). The range and values of these

three independent variables, presented in Table 1, were based on

data from preliminary experiments. Furthermore, the developed

polynomial models were statistically validated using analysis of

variance (ANOVA), with the F-test used to check their statistical

significance. The coefficient of determination R2 was used to check

their fitting quality (Ming Yang and Chih Chiu, 2012).

Results and discussion

Characterization of different membranes

As shown in Figure 2A, three stages of weight loss appeared

for PVA-based composites with TGA (Gouda et al., 2021f). The

FIGURE 3
TEM images of (A) SZrO2, the SEM image of (B) SCS-g-SPVA/PEO/SZrO2-3C and (C) SCS-g-SPVA/PEO/SZrO2-3F, and (D) average diameter
distribution of SPVA/PEO/SZrO2-3F.
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first is due to moisture evaporation around (50–150°C), while the

second concerns the functional groups’ degradation (ca.

150–250°C), and the last stage is due to polymers backbone

degradation (250–450°C). It can also be noted that the thermal

degradation temperature shifted to higher temperatures as the

SZrO2 content increased. That means the thermal stability is

improved in SPVA/PEO/SZrO2-3C and SPVA/PEO/SZrO2-3CF

membranes due to the presence of sulfated zirconia with

optimum content, which supports the membranes by

increasing the hydrogen bond network. As illustrated in

Table 2, the melting point of the membranes decreased with

the increasing SZrO2 content. The decrease in the melting point

of membranes is due to hydrogen bonds formed between sulfated

zirconia and polymers’ functional groups, which reduces the

crystallinity of the membranes (Gouda et al., 2021f; Gouda et al.,

2021g). All functional groups in the membrane matrix can be

confirmed from the FTIR spectrum, as shown in Figure 2B. The

broad peaks at 3,250–3,500 cm−1 refer to–OH groups of PVA and

CS, and those at about 1,415 and 1,085 cm−1 are attributed to–C-

O groups (Yang and Su, 2011). The peak at 1,580 cm−1 is due to

the NH2 group in pure chitosan (Osman and Arof, 2003;

Mauricio-Sánchez et al., 2018). The peaks between 900 and

1,200 cm−1 refer to the sulfate group in the doping agent and

crosslinker, while the Zr-O bond was found at 470 cm−1.

TEM micrographs of SZrO2 demonstrate that the sulfated

zirconia was fabricated in an irregular shape with a nanosize scale

(Figure 3A). The surface of the casting membrane, SCS-g-SPVA/

PEO/SZrO2-3C, appeared without agglomeration or pores

(Figure 3B). In contrast, SCS-g-SPVA/PEO/SZrO2-3F membranes

appeared in the fiber shape (Figure 3C). The average diameter

distribution of SPVA/PEO/SZrO2-3F nanofibers is presented in

Figure 3D, with the diameters ranging between 20 and 280 nm.

Physicochemical and electrochemical
properties of membranes

It can be noted from Figure 4 and Supplementary Table S6 in

Supplementary Materials that all the fabricated membranes have

hydrophilic nature because all contact angles were <90° (Gouda
et al., 2020d). In addition, the thickness of membranes increased

with the doping agent content. Also, the water uptake and the

swelling ratio dramatically decreased with increasing SZrO2

because it filled all membrane voids and converted the

FIGURE 4
Physicochemical properties of the prepared membranes and Nafion®117.
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FIGURE 5
Ion exchange capacity, ionic conductivity, borohydride permeability, and selectivity of the prepared membranes and Nafion®117.

TABLE 3 The Box-Behnken design matrix and results for the three variables that influence the ionic conductivity of the SCS-g-SPVA/PEO/SZrO2-3C
membrane.

Trial IEC (A; meq g−1) Water uptake (B; %) Oxidative
stability (C; %)

Ionic conductivity (mS cm−1)

Measured Curve fitted values

1 0.8 60 100 16.0 15.7

2 0.8 60 80 15.2 15.1

3 0.4 110 90 11.0 11.1

4 0.4 60 100 13.0 13.1

5 0.6 60 90 13.8 13.9

6 0.6 110 80 12.9 12.5

7 0.4 10 90 14.0 13.5

8 0.4 60 80 12.6 12.9

9 0.6 10 80 14.9 15.1

10 0.6 110 100 12.8 12.6

11 0.6 60 90 14.1 13.9

12 0.6 10 100 15.3 15.7

13 0.8 10 90 16.3 16.2

14 0.8 110 90 12.5 13.0

15 0.6 60 90 13.8 13.9

16 0.6 60 90 13.8 13.9

17 0.6 60 90 13.8 13.9
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membranes into compact and denser structures (Gouda et al.,

2021f). Fenton’s reagent test evaluated the oxidative stability of

the membranes. The SCS-g-SPVA/PEO membrane appeared to

have the lowest oxidative stability, with the addition of SZrO2

enhancing the resistance of the membrane to radical attack. SCS-

g-SPVA/PEO/SZrO2-3C and SCS-g-SPVA/PEO/SZrO2-3CF

membranes appeared the complete stability nearly intact (RW

99 and 98.5%), which demonstrates that SZrO2 increases the

chemical stability of the polymeric structure (Gouda et al.,

2021a). The tensile strength increased with increasing SZrO2

due to increasing the bonds in the matrix, such as the hydrogen

bonds (Gouda et al., 2021a; Gouda et al., 2021f). SCS-g-SPVA/

FIGURE 6
(A,C,E) 3D surface plots and (B,D,F) 2D surface plots of the interactive effects of IEC, oxidative stability, and water uptake on the ionic
conductivity of the SCS-g-SPVA/PEO/SZrO2-3C membrane.
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PEO/SZrO2-3C and SCS-g-SPVA/PEO/SZrO2-3CF membranes

presented a tensile strength of 27 and 26.5 MPa, respectively,

which is higher than that of Nafion®117 (25 MPa).

In Figure 5 and Supplementary Table S7 of Supplementary

Material, it can be noted that increasing SZrO2 concentration as a

doping agent in the membranes not only decreases the

borohydride permeability but also increases the ionic

conductivity and selectivity. SCS-g-SPVA/PEO/SZrO2-3C and

SCS-g-SPVA/PEO/SZrO2-3CF achieved a BH4
− permeability of

3.8 × 10–7 and 2.3 × 10–7 cm2 s−1, respectively, which were lower

than Nafion®117 (4 × 10–7 cm2 s−1). That may owe to SZrO2

nanoparticles acting as blocks to the migration of borohydride

ions through the membrane (Shaari et al., 2018). Furthermore,

when SZrO2 is doped into the polymer matrix, hydrogen bonds

are formed between the polymer chains’ oxygenated and OH−

groups and SZrO2. Moreover, the membrane matrix is

compressed and strengthened due to the increased number of

proton delivery sites provided by the hydrogen bonds, which are

present in the sulfate radicals from the nanocomposite’s

structure. This limits excessive water absorption and swelling

and improves the membrane ion-conducting properties (Shaari

et al., 2018; Gouda et al., 2021f). SCS-g-SPVA/PEO/SZrO2-3C

and SCS-g-SPVA/PEO/SZrO2-3CF attained the same ionic

conductivity (16 mS cm−1). On the other hand, SCS-g-SPVA/

PEO/SZrO2-3CF achieved the best selectivity (0.69 ×

105 S cm−3 s), which means it can be a potential candidate for

DBFCs. In addition, it is substantially less expensive than Nafion,

which costs around 90 $ m−2, while SCS-g-SPVA/PEO/SZrO2-

3CF cost is about 40 $ m−2.

Optimizing the ionic conductivity of the
SCS-g-SPVA/PEO/SZrO2-3C membrane

In this study, we conduct an optimization step to ensure the

optimum effect of the IEC, water uptake, and oxidative stability

on the ionic conductivity of the SCS-g-SPVA/PEO/SZrO2-3C

membrane, which in turn increases the overall DBFC

performance. To the best of our knowledge, only a few

publications have addressed the optimization of PEMs in fuel

cells using RSM. For instance, Shaari and Kamarudin studied the

optimal content of SGO and glycerol as an additive on the

selectivity of sodium alginate-based biomembrane (Shaari and

Kamarudin, 2018). The actual design of this study is presented in

Table 3. 3D and 2D contour plots, as shown in Figure 6, illustrate

the interactive effects of the three independent variables most

affecting the ionic conductivity of the SCS-g-SPVA/PEO/SZrO2-

3C membrane. The response variable was fitted with a quadratic

equation that describes the process:

Y(ionicconductivity)=13.86+1.18A−1.41B+0.1875C−0.2AB+

0.1AC −0.125BC −0.0925A2 −0.3175B2 + 0.4325C2

The ANOVA analysis of variance is well-known for

determining the statistical significance of the quadratic

response surface model. As shown in Table 4, the quadratic

model is suitable for attaining a high coefficient of determination

R2 (0.9586). The F-value of 18.03 implies that the model is

significant (Shaari and Kamarudin, 2018; Elessawy et al.,

2022). There is only a 0.05% chance that an F-value this large

could occur due to noise. p-values less than 0.0500 indicate model

terms are significant. There is only a 0.62% chance that a Lack of

TABLE 4 ANOVA analysis for response function Y (ionic conductivity/mS cm−1).

Source Sum of squares df Mean square F-value p-value

Model 28.74 9 3.19 18.03 0.0005

A-IEC 11.05 1 11.05 62.38 <0.0001
B-Water uptake 15.96 1 15.96 90.14 <0.0001
C-oxidative stability 0.28 1 0.28 1.59 0.25

AB 0.16 1 0.16 0.90 0.37

AC 0.04 1 0.04 0.23 0.65

BC 0.06 1 0.06 0.35 0.57

A2 0.04 1 0.04 0.20 0.67

B2 0.42 1 0.42 2.4 0.17

C2 0.79 1 0.79 4.45 0.07

Residual 1.24 7 0.18

Lack of Fit 1.17 3 0.39 21.62 0.006

Pure Error 0.072 4 0.018

Cor Total 29.98 16

Std. Dev 0.4208 R2 0.9586

Mean 13.87 Adjusted R2 0.9055

C.V.% 3.03 Predicted R2 0.3731

Adeq Precision 16.0347
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Fit F-value this large could occur due to noise. A deq precision

measures the signal-to-noise ratio. A ratio greater than 4 is

desirable. The ratio of 16.035 indicates an adequate signal.

This model can be used to navigate the design space. The

optimal levels of the three components at the maximum point

of the polynomial model were 0.74 meq g−1 for IEC, ~92% water

uptake, and about 93% oxidative stability. This leads to about

13.6 mS cm−1 for the optimized ionic conductivity of the SCS-

gSPVA/PEO/SZrO2-3C membrane, with good mechanical

properties compared to Nafion®117.

Conclusion

This study prepared SCS-g-SPVA/PEO/SZrO2 membranes

by casting and electrospinning methods. The electrospun

membrane was dipped in crosslinked polymeric casting

solution to form a composite nanofiber membrane. By

comparing the physicochemical properties of the two types of

membranes, it was found that the BH4
− permeability of the

composite fiber membrane (2.3 × 10–7 cm2 s−1) was lower than

the casting one (3.8 × 10–7 cm2 s−1). The ionic conductivity was

the same for the two membrane types (16 mS cm−1). Both the

composite fiber and the casting membranes achieved lower

fuel permeability, higher tensile strength, and better oxidative

stability than Nafion®117. The composite fiber membrane

demonstrated higher selectivity than the casting membrane,

meaning that the fabrication method has a significant

effect on the physicochemical properties of the membranes.

Using RSM, the SCS-g-SPVA/PEO/SZrO2-3C membrane’s

optimal ionic conductivity was 13.6 mS cm−1, which was

attained at the polynomial model’s maximum point of

0.74 meq g−1 for IEC, 92% water absorption, and almost

93% oxidative stability. The cost estimation for the

prepared membranes is much lower than Nafion, which

costs about 90 $ m−2, whereas the cost of the prepared

membranes would not exceed 40 $ m−2.
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