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Concrete structures are often subjected to undesirable impact loads. Impact localization in
near real time is greatly essential for providing early warnings and evaluating impact load
effects. In this article, a novel enhanced cross-correlation (ECC) algorithm enabled by a
designed concrete implantable module (CIM) is proposed for precise prediction of the
impact location on concrete structures. The stability of the ECC algorithm under the noise
condition was numerically studied. The numerical results demonstrate that the proposed
ECC algorithm has high adaptability in the low signal-to-noise ratio (SNR) condition
compared with the traditional algorithm, which provides the possibility for employing
this approach in real projects. In the experimental study, a series of impact tests on a
concrete beam specimen were conducted to verify the accuracy of the proposed method
for impact localization. The results indicate that themaximum andminimum distance errors
between the real and predicted impact positions are 54.1 and 12.5 mm, respectively. Both
the numerical and experimental studies demonstrate the feasibility of the proposed
method for the prediction of impact locations.

Keywords: concrete implantable module, spherical piezoceramic shell, enhanced cross-correlation algorithm, time
difference of arrival, time of flight, structural health monitoring

INTRODUCTION

Maintaining structural safety and providing early warning is a permanent mission for the
development of structural health monitoring (SHM) in civil engineering (Ko and Ni, 2005;
Rainieri et al., 2011; Kao and Loh, 2013; Feng et al., 2020; Fan et al., 2021a; Chen et al., 2021).
The long-term and unceasing operation of a structure will face various challenges from the internal
and external loads. Impact loads, due to their strong energy and instantaneous action, can suddenly
attack the structures; most of them have no enough time to warn and resist (De Fenza et al., 2017; Fan
et al., 2018; Tian et al., 2019). On 9 May 1980, the pier of Sunshine Skyway Bridge was collided by a
freighter with a sudden squall and collapsed into the bay (Asencio-Rhine, 2020). On 11 May 2021,
due to the Palestine–Israel conflict, a 13-storey residential tower in the Gaza strip was air stuck by a
high-speed missile and collapsed soon (Kocherla et al., 2021). The impact loads induced structural
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damages that seriously threaten human safe and economic
development. Therefore, fast and accurate localization of the
impact sources is greatly significant for the structures to warn
early and defend in time.

Acoustic emission (AE) source localization, a nondestructive
test (NDT) technique, plays a vital role in SHM (Perelli et al.,
2012; Schechinger and Vogel, 2007; Tsangouri et al., 2016; Xu
et al., 2016). The AE sources, deriving from structural internal
sudden cracking or external accidental collision, can generate
mechanical waves propagating in the structures. Meanwhile, by
implementing some sensors on these structures, their dynamic
responses can be recorded and used to quantitively analyze the
acoustic source location. Based on this, the AE source localization
technique has been widely applied in the fields of aerospace,
mining engineering, navigation, and other various structure
detection (De Simone et al., 2017; Dong et al., 2017; Zhang
et al., 2017). In civil engineering, the investigations of this
technique in metal structures such as aluminum and steel are
far more simple than those in concrete members due to their
complex material properties, such as anisotropy and nonlinearity
(Ebrahimkhanlou and Salamone, 2017; Ebrahimkhanlou and
Salamone, 2018; Sedlak et al., 2013; Wang et al., 2020).
However, concrete, the most common building material, has
many excellent characteristics in resistance of collision,
corrosion, and fire disasters (Aitcin, 2003; Hao et al., 2016;
Murthy et al., 2010). At the same time, the impact accidents
happening on concrete structures are reported very frequently
every year. Therefore, studying the impact source localization in
concrete structures is necessary and significant. Barbara et al.
studied the accuracy of the AE localization in a concrete beam
under a loading test (Schechinger and Vogel, 2007). Zhu et al.
(2017) used a smart aggregate (SA) to conduct an impact
localization experiment on a concrete column. In the most
studies, lead zirconite titanite (PZT) patches were usually
employed as the sensors to receive the structural responses
due to their performances of fast response, wide frequency
band, and low cost. However, a drawback of these PZT
patches are that the sensing direction mainly concentrates
along the patch thickness, but the impact signals can come
from random orientations, as shown in Figure 1A.
Consequently, the loss of signals from other paths can lead to
a decrease in the localization accuracy. Fortunately, with the
development of sensor technology, Kong et al. redesigned a novel
smart spherical aggregate (SSA) that replaced the traditional PZT

patch with a spherical piezoceramic shell (SPS) which can
function in omni-direction based on its radial vibration
characteristic (Wang et al., 2016; Kong et al., 2017a; Kong
et al., 2017b; Fan et al., 2021b), as shown in Figure 1B. The
optimized SPS is able to sense the structural responses from
random directions and provide the possibility of omni-
directional detection. The functionality and performance of a
single SPS have been investigated. However, to comprehensively
understand a structural state, multiple sensors are usually
required to be implemented on the host structure to capture
the structural responses. The received signals of these
collaborated sensors are used to quantify the structural
damages and locate the damage/impact positions. The
functional characteristic of multiple SPSs in SHM has not
been investigated yet.

Over the past years, many efficient methods for localization of
the impact source have been reported. Shrestha et al. (2017)
developed an error outlier-based impact localization algorithm to
study low-velocity impacts on a composite wing structure. De
Simone et al. (2017) proposed a novel algorithm without the
known material property to achieve impact source localization in
aerospace composite structures. Among these existing researches,
the time difference of arrival (TDOA) technique is one of the
most popular and mature methods that have been applied in
underwater, aircraft, highway, and tunnel for various AE
localization (Chen et al., 2011; Hu et al., 2017; Hao et al.,
2020; Wen et al., 2020). The key step of the TDOA technique
is to precisely estimate the time-difference of the source signal to
two receivers, which is highly affected by environmental noise,
dispersion and attenuation of waves, and sensitivity of the
sensors. The cross-correlation (CC) function, by measuring the
similarity of two time series, is widely used for the calculation of
TDOA (Benesty et al., 2004; Du et al., 2018). In addition, in 1976,
Knapp and Carter (1976) proposed a generalized cross-
correlation (GCC) function to optimize the traditional CC for
accurate estimation of the TDOA. However, the applications of
these methods are highly limited by experimental noise and signal
frequency bandwidth.

To improve the accuracy of the estimation of TDOA for source
localization, this article proposes an enhanced cross-correlation
(ECC) algorithm enabled by a designed concrete implantable
module (CIM). The CIM can be implanted into a concrete
structure for SHM and also be pulled out for transducer
updating. The design procedures of the CIM are introduced in
detail. The principle of localization of the impact source and the
proposed ECC algorithm for estimation of TDOA are
theoretically interpreted. For precise estimation of a TDOA
value, first, according to two received signals in an impact
event, a cross-power spectrum and auto-power spectrum can
be calculated, respectively, to enhance the signal-to-noise ratio
(SNR) of the received signals. Subsequently, the two spectra
correlate with a weight factor for estimation of the TDOA
between the two signals. To validate the stability of the ECC
algorithm under the noise condition, a numerical study was
conducted. Finally, a series of impact tests on a concrete beam
specimen were investigated to verify the accuracy of the proposed
method for impact localization. The results show that using the

FIGURE 1 | Principle of receiving signals from different PZT elements. (A)
PZT patch. (B) Spherical piezoceramic shell.
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designed CIM to receive signals and the ECC algorithm to
estimate the stress wave velocity and TDOA values, the impact
locations can be predicted with an acceptable error. The proposed
method exhibits a promising potential in SHM.

CIM AND LOCALIZATION PRINCIPLE

Introduction for the CIM
Motivated by the need to develop a novel practical device for
SHM, the authors recently designed a CIM for SHM of concrete
structures. In this article, the CIM is used to locate the impact
source position based on the internal embedded sensing
elements. Figure 2 gives the detailed design procedures of
the CIM. Spherical piezoceramic shell (SPS) with an excellent
three-dimensional sensing ability was employed as the sensing
element to receive the impact signals. Four waterproof resin-
coated SPSs were arranged in a diamond array and encapsulated
by a high-strength cement-based grouting material (CGM). A
socket with a male aviation connector was attached to the
module surface. The wires of SPSs were welded on the
connector to communicate with the monitoring system.
Figure 3 presents a fabricated CIM with the dimensions of

25, 55, and 65 mm in three directions, respectively. To drive the
CIM, a female aviation connector with four wires corresponding
to the four SPSs was designed and inserted into the socket. The
CIM can be implanted into a concrete structure with a reserved
slot to monitor the structural dynamic responses, as shown in
Figure 4.

Principle of the Impact Localization Based
on the Diamond Array
When an impact event occurs at a random point on the concrete
structure, the impact signals spread around in the form of stress
waves, as shown in Figure 5. The implanted CIM can sense the
structural dynamic responses and receive the impact signals

FIGURE 2 | Design procedures of the CIM. (A) SPS. (B) SPS array. (C) Assembly. (D) CIM.

FIGURE 3 | Fabricated CIM model.

FIGURE 4 | Implanting the CIM into a concrete structure.

FIGURE 5 | Detection of the impact signals.
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relying on the SPS diamond array. The received signals can be
used to determine the impact location based on the time-
difference of each pair of SPSs, which is interpreted in detail
as follows:

As shown in Figure 6, first, we assume that an impact event is
located at r0. For the ith (i = 1, 2, 3, and 4) SPS at ri, its distance to
the impact point can be denoted as r0,i. The distance-difference of
the impact location to the two SPSs can be represented as:
����drij���� �

�����(r0 − ri) − (r0 − rj)
����� �

����r0,i − r0,j
���� � (τ0,i − τ0,j)ν, (1)

where τ0, i and τ0,j represent the time of flight (TOF) of the
impact signals from the impact location to the ith SPS and jth
SPS, respectively; v is the stress wave velocity in concrete
structures. In general, v is estimated by the experiment. Let us
define dτij as the signal TDOA between the ith SPS and jth SPS:

dτij � τ0,i − τ0,j. (2)
It should be noted that, when the impact signals are unknown, the
TOF of τ0,i and τ0,j cannot be directly obtained. However, dτij
can be estimated without knowing impact signals with the help of
ECC algorithm, which is explained in the next section. According
to this, Eq. 1 can be rewritten as:

χij�
����drij���� − dτ̂ij · ν̂, (3)

where χij represents the residual caused by the estimation of dτ̂ij
and ]̂. Ideally, when dτ̂ij � dτij and ]̂ � ], the residual χij � 0.

By summing up the residuals between any two SPSs, the total
impact localization residual η can be defined as:

η ≜ ∑
1≤ i< j≤N

χij, (4)

where N is the number of SPSs. By searching the minimum value
of η, the impact location r0 can be evaluated.

ECC Algorithm for Estimation of TDOA
The traditional CC and GCC algorithms have been widely used for
estimation of the TDOA between two receivers (Benesty et al., 2004;
Meng et al., 2015; Du et al., 2018). However, the applications of these
methods are highly limited by experimental noise and signal
frequency bandwidth. To depress the noise and improve the
accuracy of the estimated TDOA, this article proposes an ECC
algorithm; the TDOA estimated by this algorithm will be used to
localize the impact source in a concrete structure. The ECC
algorithm can be explained as follows:

First, the signal received by the ith (i = 1, 2, 3, 4) SPS can be
described as:

xi(t) � s0(t) ⊗ h0,i(t) + ni(t), (5)
where “⊗” represents the convolution operation, s0(t) is the
impact source signal, h0,i(t) is the channel impulse response
from the impact location to the ith SPS, and ni(t)means the noise
from the environment. In addition, assuming only one impact
source in the structure, h0,i(t) can be expressed as:

h0,i(t) � α0,iδ(t − τ0,i), (6)
where α0,i is an amplitude decay factor, δ(t) is the Dirac function,
and τ0,i represents the TOF from the impact location to the ith
SPS. Substituting Eq. 6 into Eq. 5, xi(t) can be written as:

xi(t) � α0,is0(t − τ0,i) + ni(t). (7)
To estimate the TDOA between the ith SPS and jth SPS, their
received signals xi(t) and xj(t) were used to calculate the cross-
correlation and auto-correlation functions as two enhanced
signals to improve SNR, respectively. The cross-correlation
function Rxixj(τ) can be represented as:

Rxixj(τ) ≜ ∫∞

−∞
xp
i (t)xj(t + τ)dt,

� ∫∞

−∞
[αp

0,is
p
0(t − τ0,i) + npi (t)][α0,js0(t − τ0,j + τ) + nj(t)]dt,

� ∫∞

−∞
[αp

0,iα0,js
p
0(t − τ0,i)s0(t − τ0,j + τ) + αp

0,is
p
0(t − τ0,i)nj(t)

+ α0,js0(t − τ0,j + τ)npi (t) + npi (t)nj(t)]dt,
(8)

where (·)p denotes a complex conjugation. Assuming that the
experimental noise is a white Gaussian noise and irrelevant to the
impact signals, Eq. 8 can be simplified as:

Rxixj(τ) � αp0,iα0,j ∫
∞

−∞
sp0(t − τ0,i)s0(t − τ0,j + τ)dt. (9)

Expressing the impact source signal as a frequency form, Rxixj(τ)
can be rewritten as:

Rxixj(τ) � αp
0,iα0,j ∫

∞

−∞
Sp0(f)S0(f)ej2πf(τ−τ0,i−τ0,j)df,

� αp
0,iα0,j

����S0(f)����2δ(τ − τ0,i − τ0,j),
(10)

FIGURE 6 | Principle of the impact localization based on the
diamond array.
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where S0(f) is the Fourier transform pair of s0(t). Notably, in Eq.
10, Rxixj(τ) is still a time-domain expression. We can take the
Fourier transform to Rxixj(τ)
Rxixj(f) � F{Rxixj(τ)}

� αp0,iα0,j

����S0(f)����2 ∫
∞

−∞
δ(τ − τ0,i − τ0,j)e−j2πfτdτ,

� αp0,iα0,j

����S0(f)����2e−j2πf(τ0,i+τ0,j). (11)
Actually, theRxixj(f) is the cross-power spectrumofxi(t) andxj(t).

In the same way, the auto-power spectrum Rxixi(f) of the
xi(t) can be represented as:

Rxixi(f) �
����α0,i

����2����S0(f)����2e−j4πfτ0,i . (12)
Subsequently, a cross-correlation function is established between
the power spectra of Rxixj(f) and Rxixi(f) to obtain the final
TDOA as follows:

RRxixj(τ) ≜ ∫∞

−∞
Ψ(f)Rp

xixj
(f)Rxixi(f)ej2πfτdf, (13)

whereΨ(f) is a weight factor that represents the phase transform
(PATH). The Ψ(f) can be defined as:

Ψ(f) ≜ 1�����Rp
xixj

(f)Rxixi(f)
�����
. (14)

Substituting Eq. 14 into Eq. 13, RRxixj(τ) can be described as:

RRxixj(τ) � ∫∞

−∞

Rp
xixj

(f)Rxixi(f)�����Rp
xixj

(f)Rxixi(f)
�����
ej2πfτdf. (15)

Notably,

Rp
xixj

(f)Rxixi(f)�����Rp
xixj

(f)Rxixi(f)
�����
� α0,iαp0,j

����S(f)����2���α0,i
���2����S(f)����2ej2πf(τ0,j−τ0,i)����α0,iαp

0,j

����S(f)����2���α0,i���2����S(f)����2����
� ej2πf(τ0,j−τ0,i).

(16)
Therefore,

RRxixj(τ) � ∫∞

−∞
ej2πf(τ+τ0,j−τ0,i)df � δ(τ + τ0,j − τ0,i). (17)

Substituting Eq. 2 into Eq. 17, RRxixj(τ) can be described as:

RRxixj(τ) � δ(τ − dτij). (18)
The dτ̂ij can be estimated by searching the maximum value of
RRxixj(τ)as follows:

dτ̂ij � argmaxRRxixj(τ). (19)

STABILITY ANALYSIS OF THE ECC
ALGORITHM

In localization of a sound source, it is greatly significant to
precisely estimate the time difference of two signals, which is
highly affected by the environmental noise, signal frequency
bandwidth, and other adverse factors. To validate the stability of
the proposed ECC algorithm in noise suppression, a numerical
study was carried out. A CIM model was established by
ABAQUS software (in Figure 7); three different impacts
acted on the CIM surfaces. The special locations of the
internal SPSs and the impacts are listed in Table 1. The
impact behaviors were simulated by inputting a burst force
on the CIM surfaces. The embedded SPSs could individually
sense the structural responses and transform them into the
potential signals to output. The inputting signal and outputting
signals of each SPS were calculated along with their TOFs
between the impact location and each SPS, respectively,
based on the ECC algorithm. To investigate the stability of
the algorithm, for each SPS, the received signals were manually
added with white Gaussian noises with SNR of 10, 5, 0, -5, and
-10 dB to simulate different levels of background noises. These
noise-added signals successively calculated the TOFs; the
percent errors of these noise-added TOFs relative to the

FIGURE 7 | CIM numerical model.

TABLE 1 | SPS and impact locations.

Subject Location (mm)

SPS1 (12.5, 27.5, 52.5)
SPS2 (12.5, 42.5, 32.5)
SPS3 (12.5, 12.5, 32.5)
SPS4 (12.5, 27.5, 12.5)
Impact1 (0, 42.5, 12.5)
Impact2 (12.5, 0, 22.5)
Impact3 (12.5, 12.5, 65)
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corresponding original TOFs were selected as the index to
describe the results. In addition, to contrastingly analyze the
results, the traditional CC algorithm was used to calculate the

TOFs and the percent errors following the aforementioned
steps. The TOF errors using the ECC and CC algorithms are
shown in Figure 8.

FIGURE 8 | TOF percent errors using ECC and CC algorithms. (A) Location 1. (B) Location 2. (C) Location 3.

Frontiers in Materials | www.frontiersin.org June 2022 | Volume 9 | Article 9090066

Chen et al. Impact Localization on Concrete Structures

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


It can be seen that, when the SNR is high, the TOF errors from
ECC and CC algorithms are much close to 0. With the reduction
of SNR, the TOF errors based on the CC algorithm perform
obvious fluctuation. Conversely, the errors from the ECC
algorithm remain with excellent stability. When the SNR
reduces to −10 dB, the TOF errors from both the ECC and
CC algorithms show sharp deviation. It can be concluded that,
when the SNR > −10 dB, the ECC algorithm presents a stronger
amticapability than the CC algorithm, which provides the
possibility for employing this approach in real concrete
structures.

EXPERIMENTAL STUDY

Experimental Setup
To verify the accuracy of the proposed method for localization of
the impact sources, a series of impact tests were experimentally
conducted on a concrete beam specimen. The specimen has a
length, width, and height of 700, 120, and 180 mm, respectively.
Two rectangular slots, of same size to the CIM, were reserved
during the casting concrete process. In this study, the localization
of single impact source was investigated and only the slot on the
right side of the specimen was to install the CIM. To enhance the
interface compatibility between the CIM and the beam specimen,
proper ultrasonic coupling agent was used to fill the gap.

The experimental setup is shown in Figure 9. In addition to the
concrete beam specimen, an oscilloscope as a multichannel data
acquisition system was used to record the SPS signals; the
oscilloscope was triggered by a voltage at the level of 2 mV; the
sample frequency was set at 12.5MHz. PCB piezotronics is a signal
conditioner that can output the impact mechanical signals generated
by the hammer. As can be seen in Eqs 3, 4, the estimation of the
stress wave velocity and the estimation of TDOA values of each pair
of the SPSs are two key steps for the localization of the impact
sources. The subsequent studies will concentrate on the two steps.

Estimation of the Stress Wave Velocity
It is of importance to precisely estimate the velocity of the stress
waves propagating in the specimen for an accurate localization.
However, the wave velocity is highly affected by the real material
properties of Young’s modulus and Poisson’s ratio and density. It is
not reasonable to estimate it only using some theoretical formulas.
To precisely estimate the stress wave velocity, an experimental

measurement was conducted. The measurement method can be
described as follows: as shown in Figure 10, first, we can select a
point to impact it, and meanwhile, the mechanical signals generated
by the hammer. Then, the SPS-received signals can be extracted
using the oscilloscope. Subsequently, by using the known impact
source signals and its location, the TOFs between the impact point
and each SPS can be calculated based on the ECC algorithm. Finally,
according to the TOF values and their corresponding propagation
distances, the stress wave velocity can be estimated. There, the
projection of the CIM center on the side of the beam was
selected as the impact point. To improve the accuracy, a total of
five impacts were conducted for an average value. Figure 11 shows
the hammer-generated mechanical signals and the SPS-received
signals in an impact measurement. Table 2 lists the five test
results of each SPS for the estimation of the stress wave velocity.

Impact Tests and Calculation of the TDOA
To verify the accuracy of the proposed method for localization of
the impact sources, a total of eight impact tests, where the impact

FIGURE 9 | Experimental setup.
FIGURE 10 | Measurement method for the estimation of stress wave
velocity.

FIGURE 11 | Hammer-generated mechanical signals and SPS-received
signals. (A) Hammer-generated mechanical signals. (B) Four SPS-received
signals.
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locations were from the bottom and back surfaces of the concrete
beam specimen corresponding to tests 1 to 8, were conducted.
Notably, in these tests, the hammer-generated mechanical signals

and impact locations were both unknown. The signals received by
the four SPSs were extracted to calculate their TDOA values based
on the ECC algorithm. Figure 12 presents the CIM-received

TABLE 2 | Estimation of the stress wave velocity.

SPS Location (mm) Distance to impact point
(mm)

TOF (ms) Estimated average velocity
(m/s)Test 1 Test 2 Test 3 Test 4 Test 5

SPS1 (62.5, 92.5, 110) 65.62 0.0290 0.0270 0.0246 0.0241 0.0230 2552
SPS2 (62.5, 77.5, 90) 64.27 0.0290 0.0225 0.0226 0.0249 0.0272
SPS3 (62.5, 107.5, 90) 64.27 0.0277 0.0275 0.0277 0.0326 0.0247
SPS4 (62.5, 92.5, 70) 65.62 0.0230 0.0269 0.0237 0.0252 0.0219

FIGURE 12 | Time-domain signals received by the CIM in test 1

FIGURE 13 | Real and predicted impact locations and their projections on the beam surfaces. (A) Back surface. (B) Bottom surface.
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signals in test 1. The TDOA values of dτ12, dτ13, and dτ14 were
estimated as 0.00696, 0.00544, and 0.008 ms, respectively. For the
other dτij, they can be converted with the three values. After
estimating the stress wave velocity and TDOA values, the impact
locations can be predicted by Eq. 4. Since Eq. 4 is an
overdetermined nonlinear set of equations, a least square
method was used to search the optimal solution. In addition,
the impact events can only occur on the beam surfaces, so the
predicted locations were restrained on the surfaces.

Localization Results
According to the CIM-received signals under the eight tests, they
were successively used to predict the impact locations based on
the proposed method. The real and predicted impact locations
and their projections on the corresponding beam surface are
presented in Figure 13. Table 3 lists the three-dimensional
coordinates of each real and predicted impact locations. To
quantify the accuracy of the predicted results, the distances
between the real and corresponding predicted locations are
calculated. It can be seen that the maximum distance error
appearing in Test 4 is nearly 54.1 mm and the minimum
distance error appearing in Test 1 is 12.5 mm. Relative to the
large beam specimen sizes, the predicted locations from eight
tests performed acceptable accuracy. It should be noted that, since
the four SPSs arrange in a plane, as if a mirror, for each impact
test, the predicted locations theoretically appear in pairs and
symmetrically distribute on both sides of the mirror. However,
due to the manufacturing defect on the CIM, the four SPSs are
difficult to exactly arrange in the same plane; the mirror
symmetrical locations do not exist.

Facing the predicted errors, several possible reasons are
discussed. First, the SPSs own 7 mm radius that is neglected in
the experiment by assuming as a point. The neglected radius is
not small enough to the distance error. Second, the stress wave
velocity is regarded as an isotropic constant in all paths. However,
the multiphase composite concrete material can induce the stress
wave velocity, which is anisotropic in the detected space; the
estimated average velocity can be inaccurate in some paths. Third,
when determining the SPSs’ coordinates, the influence of the gap
between the CIM and beam slot and the manufacturing defect on
the CIM is not considered.

To further analyze the relationship between the impact
positions and the localization accuracy, the x-coordinates of
the impact positions and the corresponding distance errors are
estimated as shown in Figure 14. From the line chart, with the

impact positions away from the CIM, the distance errors almost
rise monotonically. A possible reason is that the incremental
travelling path of the stress waves in concrete could lead to a
complex dispersion and mode-conversion, which obviously
changes the stress wave velocity.

DISCUSSION

The possible reasons of the predicted errors have been analyzed in
the last section and can be summarized as the manufacturing
defect, SPS size, stress wave velocity, and existing gaps between
the CIM and beam slot. To overcome these drawbacks and
improve the localization accuracy, more precise and deeper
investigations are needed to be conducted.

Because the beam component is nearly a one-dimensional
object, the arrangement of the SPSs is adopted as a diamond array
in a plane whose normal line is along the length of the beam. For
other different types of components, the shape of the CIM and the
distribution and orientation of the internal SPSs can be optimized
according to the detected goals. In addition, this technique
requires a small slot reserved on the structure. The slot size

TABLE 3 | Localization results.

Test Real point (mm) Estimated point (mm) Distance error (mm)

Back Test 1 (50, 0, 90) (62.5, 0, 90.0) 12.5
Test 2 (150, 0, 90) (136.7, 0, 89.8) 13.3
Test 3 (250, 0, 90) (266.8, 0, 79.5) 19.8
Test 4 (350, 0, 90) (403.5, 0, 81.9) 54.1

Bottom Test 5 (50, 60, 0) (62.5, 64.1, 0) 13.2
Test 6 (150, 60, 0) (147.4, 36.8, 0) 23.3
Test 7 (250, 60, 0) (232.5, 61.9, 0) 17.6
Test 8 (350, 60, 0) (321.8, 56.6, 0) 28.4

FIGURE 14 | Relationship between the impact locations and the
distance errors.
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and location should minimize the negative effects on the
structural load-bearing capacity.

The proposed method for localization of a single impact was
validated using one CIM and a hammer generating an impact
load. To localize several impact sources simultaneously, multiple
CIMs with different orientations should be employed to collect
impact-induced stress wave signals. Meanwhile, the current
algorithm should be optimized to adapt for the identification
of multiple impact loads using CIMs, which will be further
investigated. In an impact event, except for prediction of the
impact position, estimation of the impact energy is also
significant to access the degree of structural damage and the
residual structural load-bearing capacity. Since the attention
coefficient of the stress waves propagating in the concrete
medium can be measured, according to the SPS-received
signals, the impact energy can be approximately estimated,
which will be deeply investigated in future.

CONCLUSION

This article proposes an ECC algorithm for localization of the
single impact source in concrete structures using a CIM that can
be implanted into a concrete structure to sense the structural
responses caused by an impact event. A CIM contains a SPS
diamond array as the sensing element and an encapsulated layer
to protect the fragile SPSs; its detailed design procedures were
introduced. The numerical study demonstrates that when used
for the estimation of the TOF values, the ECC algorithm has
higher stability than the traditional CC algorithm under the
interference of noises and provides the possibility for

employing this method in concrete structures. In the
experimental study, eight impact tests were conducted on a
concrete beam specimen. By estimating the stress wave
velocity and the TDOA values of each pair of SPSs based on
the proposed ECC algorithm, the impact positions were
predicted. The results validate the accuracy of the proposed
method for localization of the impact sources. For adapting to
different concrete components, the CIM shape and the SPSs’
distribution and orientation can be optimized. In the future,
improvement of the localization accuracy and estimation of the
impact energy will both be investigated.
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