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Sports and physical fitness play important roles in people’s daily life. By sticking to
exercise we can better enjoy a healthy life. Scientific and accurate monitoring of sports
training and individual physical condition is important. However, many challenges still
need to be solved, such as the complex design of measurement devices, the external
power supplies, inaccurate measurement data, and unscientific measurement methods.
Recently, the TENG-based self-powered real-time measurement sensors have attracted
much more attention due to their unique advantages such as wearable features, simple
construction, a wide choice of materials, and operation without external power supply.
They can measure a wide range of real-time data such as haptics, velocity, pressure, and
dynamic movement. In addition, they can also be made into a human–machine interactive
device to provide athletes with a scientific approach to training. In this review, the working
principle of TENGs is summarized and clarified. Moreover, the applications of the TENG
in the areas of tactical strategy in sports, individual sports training, and physical state
monitoring are also reviewed. Finally, the challenges and development opportunities faced
by the TENG are also discussed and summarized.

Keywords: sports, TENG, physical fitness, human–machine interactive, energy harvesting

1 INTRODUCTION

With the gradual improvement in the quality of life, many electronic devices have replaced human
labor, so the negative effect of this is that people are exercising less and even losing their physical
fitness. With this background, a better tool model for judgment and analysis for real-time human
movement monitoring is required in the physical state monitoring and sports training field. Many
traditional monitoring methods have been used for human movement monitoring. They mostly
worked based on optics (Leber et al., 2018), thermal (Ge et al., 2019), resistive (Yamada et al., 2011),
magnetic (Wang Y. et al., 2015), and chemical characteristics (Wiorek et al., 2020). Optical methods
typically monitor signals by sensing changes in the intensity and frequency of light, which provides
excellent accuracy and temporal resolution, but the fiber optic material is rigid and allows only
small deformations. The capacitive method is to monitor the motion signal by detecting the
change in capacitance. Although its sensitivity is very high, its structure is usually not very
flexible. The resistance method is to monitor the human movement signal by investigating the
change in resistivity, and it has high durability and fast response time, but it is usually not very
flexible in structure either. The magnetic method is by sensing the change in the magnetic field,
but it is generally not very stable. The chemical method monitors physiological data by sensing
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changes in temperature, pH, etc., but it usually has a slow
response rate. The electromagnetic method is to monitor the
signal by electromagnetic induction; it has the advantages of
long life, high efficiency at high frequency, high sensitivity, and
high durability, but it also has some disadvantages such as high
density, inflexibility, heaviness, and high cost. The electrostatic
method is tomonitor the signal by electrostatic induction and has
the advantage of lightweight, but it also has the problem of low
output and the need for pre-charging. The piezoelectric method
is to sense the signal by piezoelectric effect and electrostatic
induction; it is easy to make a fine structure, but its efficiency and
output are relatively low. Most of the methods mentioned earlier
have complex structures, usually require external power supplies,
and are relatively costly. To solve these problems, prof. Zhonglin
Wang and his co-workers proposed the concept of TENG in 2012
(Fan et al., 2012), which works based on the coupling effect of
contact electrostatic and electrostatic induction (Wang, 2017).
It has four different modes of operation (Wang S. et al., 2015),
namely, the lateral sliding mode, vertical contact-separation
mode, freestanding triboelectric-layer mode, and the single-
electrode mode, respectively, which are displayed in Figure 1.

(1) The lateral sliding mode is exhibited in Figure 1A. It starts
from the same state of contact, with separation occurring in
the in-plane direction by interlayer sliding. The relative sliding
between these two surfaces generates triboelectric charges on
both surfaces, which creates a lateral polarization along the
sliding direction. In order to balance the electric field generated
by the triboelectric charges, the inductive potential will drive
the flow of electrons on the top and bottom electrodes. (2)
The vertical contact-separation mode is shown in Figure 1B,
where two triboelectric layers can come into contact with each
other under the pressure of an external movement, resulting in
oppositely charged surfaces. Subsequently, on release, a small
gap in a vertical plane direction separates these two surfaces,
creating a potential drop at both electrodes that drives the flow
of electrons through the connected load. (3) The freestanding
triboelectric-layer model is shown in Figure 1C, In this case, the
freestanding triboelectric layers will alternately approach either
of the two electrodes so that the induced potential difference will
be reversed periodically. The AC output will drive an external
load. (4) The single-electrode mode, shown in Figure 1D,
changes the local electric field distribution as the top object

FIGURE 1 | Working principal of the TENG: (A) lateral sliding mode; (B) vertical contact-separation mode; (C) freestanding triboelectric-layer mode; and (D)
single-electrode mode.
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approaches or leaves the electrode, causing an exchange of
electrons between the bottom electrode and the reference
electrode or ground, maintaining the potential balance between
them. This is an area where mechanical energy is efficiently
converted into electrical energy and signals using Maxwell’s
displacement current as a driving force. Its most basic physical
model is available inMaxwell’s set of equations (Wang, 2020) and
will not be expanded upon this content here.

Through extensive research it has been shown that
the TENG has the unique advantages of high efficiency
(Wang Z. L. et al., 2015; Liu W. et al., 2019; Hinchet et al., 2019),
simple construction (Chandrashekar et al., 2015; Wang Z. L. et 
al., 2015; Parida et al., 2019), high accuracy (Wang Z. et al., 2020),
low cost (Fan et al., 2015), wide choice of materials
(Chandrashekar et al., 2015; Pu et al., 2017b), light weight
(Seung et al., 2015), high durability (Lee et al., 2013), being
scalable (Pu et al., 2017b), requiring no external power
supply (Cheng et al., 2017), being self-powered for tactile
sensing (Meng et al., 2013), velocity (Tang et al., 2021), pressure
(Lee et al., 2016), angle (Wang Z. et al., 2020), and dynamic
motion (Pu et al., 2017a) sensing measurements, providing an
excellent method of real-time monitoring for physical education
and training. There are many types of sports, such as basketball,
table tennis, athletics, swimming, fighting, and skiing, as shown
in Table 1. Physical fitness monitoring includes the height and
weight test, step test, lung function test, sprint, long-distance
running, standing long jump, grip index, sit-ups, sit-and-reach
test, and pull-ups, as shown in Table 2. These items currently
suffer from various problems such as insensitive detection
mechanisms, inaccurate data, and unscientific measurement
methods. Due to the potential applications of TENGs in this
area, this article reviews the use of TENGs in three areas: the
tactical strategy in sport, individual sports training, and physical
fitness testing and looks at the challenges and opportunities for
TENG in the future.

2 TENG FOR TACTICAL STRATEGY IN
SPORTING COMPETITIONS

Sporting competition is a very important characteristic for
individuals, teams, and even countries. Sports competition
requires the guidance of tactical strategies to improve the
performance of athletes and provide impartial refereeing of
referees. Different sports have different ways to collect data and
contents, as shown inTable 1. Here, the sports are divided into six
projects, which are basketball, table tennis, athletics, swimming,
fighting, and skiing, respectively. During the basketball games, we
can collect signals through the floor, basketball, and basketball
shoes, which can monitor athletes’ movement data, basketball
pressure on the floor, and the contact angle and power of the
basketball to the rim. For table tennis, we can track signals
through table tennis tables and rackets, which can judge the
landing point of the ball and the strength of the blow. Athletics
can use the finish floor to collect signals and determine the arrival
time. In the sports of swimming, the signals can be picked up
through the swimming pool and swimwear; then, the athlete’s

swimming stance and speed can be monitored. During fighting
sports, the signals can be collected through gloves and sandbags
to monitor the strength of the athlete, while signals can be
collected from tracks and skateboards to monitor the speed at
different places during skiing games. In order to monitor the
movement data during sports, different types of TENGs have
been designed through different monitoring elements, which are
described as follows.

In sports, position sensing is important, and the TENG has
many applications in this area. To determine the landing position
of a ping pong ball, Luo et al. developed an auto dynamic
drop distribution statistics system and an edge ball judgment
system (Luo et al., 2019), shown inFigure 2A, to provide training
guidance and real-time assistance to athletes and referees. In
order to determine the position of volleyball striking at the limb,
Shi et al. invented a triboelectric nanogenerator (TENG)-based
e-skin (Shi et al., 2021). As shown in Figure 2C, a volleyball
sensing system based on a 2 × 3 e-skin array was developed,
which can monitor the player’s position and angle of hitting the
ball. The position of the athlete also needs to be monitored.
Shi et al. (2020) demonstrated a smart floor monitoring system,
as shown in Figure 2E. The system is based on deep learning
for data analysis and can determine the athlete’s position, activity
status, and identity information.There is another smart floorwith
a unique structure. He et al. (2017a) integrated the square-frame
triboelectric nanogenerator (SF-TENG) into a standard wooden
floor, as shown in Figure 2B. It can also monitor athletes and the
basketball movement status.

In cycling, the TENG also has some applications.
Meng et al. (2015) proposed a self-powered rotational sensor
(SPRS) for multitasking motion measurement, which has been
used in real-time motion monitoring for bicycle wheels. For
better data collection, Zhang et al. (2022) reported a wireless
sensor system based on a triboelectric nanogenerator (TENG),
which was applied to real-time monitoring of tire pressure and
the speed of a bicycle. To judge cycling competitions fairly,
Tang et al. (2021) proposed a wireless motion monitoring system
based on the triboelectric nanogenerator (TENG). It can be
used to monitor in real time the flow of athletes and bicycles
entering the detection area, as well as their speed and direction of
movement.

There is also the ability of TENGs to monitor the intensity
level of a sporting event. Wu et al. (2019) proposed a cylindrical
multifunctional sensor (MS), as shown in Figure 2G, which
has a rotating magnetic mechanism with the ability to detect
acceleration, force, and rotation parameters. It can be used
to measure boxing acceleration and the golf club angle.
To improve sensitivity, Peng et al. (2019) prepared a fabric-
based triboelectric nanogenerator (FB-TENG) using melt-blown
technology. It serves as a self-powered sensor with a very
short response time to accurately collect pedestrian data and
monitor boxing strength. To improve the efficiency of data
collection, He et al. (2017b) described a square-grid triboelectric
nanogenerator (SG-TENG) for collecting vibration energy and
sensing impact. The SG-TENG is integrated with a table tennis
paddle to obtain vibrational energy fromhitting a table tennis ball
with the paddle. The SG-TENG is integrated into a boxing glove
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TABLE 1 | Collection mediums and monitoring contents in different sports.

Project Collection mediums Monitoring contents

Basketball Floor, basketball, rim, and shoes Player movement data and basketball pressure on the floor
Contact angle and power of the basketball to the rim

Table tennis Tables and rackets Landing point of the ball
Athletics Floor Determination of the arrival time
Swimming Swimming pool and swimwear Athlete’s swimming stance and speed
Fighting Gloves and sandbags Strength of the athlete
Skiing Tracks and skateboards Speed at different places

and can be used in various combat sports, such as boxing and
kickboxing, to monitor the boxing frequency and amplitude. The
collected data help athletes monitor their condition and improve
their skills.

The TENG has also been applied to the scoring system. Using
silver-coated nylon yarn and silicone rubber, Dong et al. (2018)
have designed a yarn-based triboelectric nanogenerator (TENG),
as shown in Figure 2D, it has been used in self-counting jump
ropes, gesture recognition, and the golf scoring system. To
monitor the athlete’s limb stretch strength, Sheng et al. (2021)
proposed a kind of TENG based on (SA-Zn) hydrogel. As
shown in Figure 2H, energy can be obtained from the athletes’
movement.They also prepared a self-powered smart training belt
for monitoring arm extension.

There are also specific sports in which the TENG can be
applied. To help athletes with snow sports, Ahmed et al. (2019)
presented the first snow-based triboelectric nanogenerator
(snow-TENG),which can be used as amultifunctional sensor and
energy harvester based on the snow-triboelectrification principle.
It is very useful for snow-related movements. Similarly, to help
athletes with underwater sports, an underwater biomimetic
triboelectric nanogenerator was reported by Zou et al. (2019), as
shown in Figure 2F, which mimics the structure of ion channels
in the cell membrane of electric eels. It can be used for human
swimming movement monitoring and submarine rescue.

These TENG-based motion sensors can make sports
competitions scientific and fair and enable athletes to better
develop their abilities. These works not only expand the
application of automated systems to intelligent sports but also
promotes the development of big data analysis in the intelligent
sports industry.

TABLE 2 | Main physical fitness test projects.

Test project Monitoring elements

Height and weight test Level of morphological development and body shape
Step test Function of the human cardiovascular system
Lung function test Breathing system function
Sprint Physical flexibility and harmonization
Long-distance running Physical endurance and cardiovascular system
Standing long jump Explosive power of lower limb muscles
Grip index Relative strength of muscles
Sit-ups Physical strength and endurance
Sit and reach Joint mobility and muscle flexibility
Pull-ups Upper body strength

3 TENG FOR PERSONAL SPORTS
TRAINING

With the rapid development of science and technology, it
is crucial for athletes to apply these emerging science and
technology for physical exercise. Here, the TENG can be used as
a human–machine interaction device and amobile power source,
applying the Internet of Things and artificial intelligence to
athletes’ daily training and providing people with a scientific and
convenient way to exercise. By detectingmicro-movements of the
skin around the corner of the eye, the TENG can assist athletes in
the human–machine interaction. A TENG-based micromotion
sensor was reported by Pu et al. (2017a) as shown in Figure 3A,
which is fixed on a pair of glasses and applied to intelligent remote
control systems and wireless hands-free typing systems, with the
advantages of stability, simple operation, low cost, and ultra-
high sensitivity. Similarly, Anaya et al. (2020) developed a novel
triboelectric sensor (NEDTS). A micro-motion sensor has been
developed formonitoring the skin around the corners of the eyes,
which is integrated into a portable human–machine interface that
can be used to remotely control instrumented devices.

In addition, the TENG can sense hand joint movements to
help athletes train. Wen et al. (2020) investigated facile carbon
nanotube and thermoplastic elastomer (CNT/TPE) coating
methods, shown in Figure 3C. Then, a pair of TENG-based
gloves can be made. The gloves have energy harvesting and
human motion sensing capabilities. It can use the machine
learning technology to complete various gesture recognition
tasks, and the impact of sweat during operation is minimized.
Similarly, Zhu et al. (2020) proposed a novel TENG-based finger
flexion sensor, as shown in Figure 3B; integrating it into a
glove allows for the human–machine interaction. In order to
achieve more precise synchronization control, a TENG-based
joint motion sensor (jmTQS) was designed by Pu et al. (2018).
It had a manipulator synchronization system that uses human
gestures instead of a handle to operate the manipulator, making
the human–machine interface more natural and precise. In order
to improve the flexibility of sensing, Shi and Lee (2019) proposed
a flexible bio-inspired spider-net-coding (BISNC) interface. As
shown in Figure 3D, the technology has various applications
in intelligent sports, such as virtual reality, the Internet of
Things, and human–computer interactions. For the sole purpose
of training the athlete’s hand grip strength, Zhao et al. (2020)
fabricated a TENG-based smart glove, which enables hand grip
monitoring for athletes.

Frontiers in Materials | www.frontiersin.org 4 May 2022 | Volume 9 | Article 902499

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Zhang et al. TENGs in Sports

It is also possible for the TENG to be made into a smart band
to assist athletes. Han et al. (2019) reported a TENG-based band,
which can identify humans by detecting their muscle activity.
The band allows quantitative detection of the walking distance,
stride length, and speed. Similarly, Maharjan et al. (2018)
demonstrated a novel TENG-based wearable motion sensor
(WHEM-TENG), which can monitor the daily training of
athletes.

There are also ways for the TENG to assist athletes in
their training through their voice. Guo et al. (2018) designed a
TENG-based auditory sensor (TAS), which can be used to build
electronic hearing systems. Combined with intelligent machine
equipment, TAS can performhigh-quality speech recognition. To
reduce the cost of speech recognition devices, Yuan et al. (2021)
proposed a 3D-printed acoustic triboelectric nanogenerator (A-
TENG). The speech signal is first converted into an electrical
signal by A-TENG and then recognized and processed by a
neural network for subsequent circuits, which can realize real-

time speech recognition and show great potential in the field of
intelligent sports.

In sports training, foot training is also critical. Lee et al. (2016)
developed TENG-based pressure sensor H-TENGs, as shown in
Figure 3E. It can be used as an active sensor to map the pressure
generated by the athlete’s feet for training assistance. There are
also some TENG-based smart shoes being researched. A review
of TENG-based smart power generation shoes was conducted by
Zou et al. (2020). Here, we will not go into details. These smart
shoes can harvest energy and can also help athletes train by
sensing the rhythm and intensity of their movements.

Energy harvesting can also be performed by the TENG
to assist athletes in their training. Wang et al. (2017)
developed a TENG-based energy-harvesting skin. It drives
human–computer interaction equipment by collecting energy
from athletes’ physical training. For carrying convenience,
a highly miniaturized TENG (MFKI-HNG) was proposed
by Rahman et al. (2020), which can effectively collect the

FIGURE 2 | TENG for tactical strategy in sporting competitions. (A) Diagram of the intelligent wooden ping pong table. Reproduced with permission
(Luo et al., 2019). Copyright 2019, Springer Nature. (B) Row of LEDs illuminated by free-falling basketball at different heights. Reproduced with permission
(He et al., 2017a). Copyright 2017, American Chemical Society. (C) Diagram of the 2 × 3 integrated electronic skin arrays applied to the sport of volleyball.
Reproduced with permission (Shi et al., 2021). Copyright 2021, American Chemical Society. (D) Schematic illustration of the self-counting skipping rope.
Reproduced with permission (Dong et al., 2018). Copyright 2018, Wiley-VCH. (E) Conceptual diagram of the smart floor monitoring system. Reproduced with
permission (Shi et al., 2020). Copyright 2020, The Author(s). (F) Schematic diagram of the application of a bionic stretchable nanogenerator (BSNG) in the
underwater human motion monitoring system. Reproduced with permission (Zou et al., 2019). Copyright 2019, Springer Nature. (G) Application of MS for the swing
angle measurement in golf. Reproduced with permission (Wu et al., 2019). Copyright 2019, Wiley-VCH. (H) Diagram of the practical application of the self-powered
smart elastic belt system. Reproduced with permission (Sheng et al., 2021). Copyright 2021, American Chemical Society.
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FIGURE 3 | TENG for personal sports training. (A) Schematic diagram of the construction of the msTENG fitted to a pair of ordinary glasses. Reproduced with
permission (Pu et al., 2017a). Copyright 2017, The Authors, published by AAAS. (B) Demonstrations of finger bending sensing as main functions of HMI.
Reproduced with permission (Zhu et al., 2020). Copyright 2020, The Authors, published by AAAS. (C) Schematic diagram of the control system. Reproduced with
permission (Wen et al., 2020). Copyright 2020, The Authors, published by Wiley-VCH Verlag GmbH and Co. KgaA, Weinheim. (D) Schematic representation of the
BISNC interface and its spider-net-inspired structure. Reproduced with permission (Shi and Lee, 2019). Copyright 2019, The Authors, published by Wiley-VCH
Verlag GmbH and Co. KgaA, Weinheim. (E) Diagram of a self-powered pressure sensor for detecting foot pressure. Reproduced with permission (Lee et al., 2016).
Copyright 2016, Wiley-VCH. (F) Schematic representation of the self-charging power textile. Reproduced with permission (Rahman et al., 2020). Copyright 2016,
The Authors.

vibration energy induced by human movement. Using a custom
power management circuit, the athlete can make it a portable
power source for electronics. For better energy harvesting,
Wen et al. (2016) proposed a TENG-based hybrid self-charging
system, shown in Figure 3F. It can harvest the energy of sunlight
and sports at the same time and store them in one energy
storage unit. It can be woven into textiles to create smart
sportswear to assist athletes in their sports training. To improve
wearing comfort for athletes, Ren et al. (2020) developed a
TENG-based self-cleaning energy harvesting system. It can
continuously collect a variety of energy and integrate with the
human body, collecting energy without affecting the comfort of
athletes.

There are still many sports aids based on the TENG, and it can
be seen that theymake the training of athletes more scientific and
convenient.

4 TENG FOR THE PHYSICAL FITNESS
TEST

The physical fitness test is an effective means for athletes to
monitor their physical condition. Regular physical fitness tests
can prevent a number of potential physical diseases.Themain test
projects are shown in Table 2, which are the height and weight
test, step test, lung function test, sprint, long-distance running,

standing long jump, grip index, sit-ups, sit-and-reach test, and
pull-ups. The height and weight test can test the level of human
morphological development and body shape. The step test can
monitor the function of the human cardiovascular system. The
lung function test canmonitor the breathing system function.The
sprint test can monitor physical flexibility and harmonization.
The long-distance running test can monitor physical endurance
and the cardiovascular system. The standing long jump test can
monitor the explosive power of lower limb muscles. The grip
index test can monitor the relative strength of muscles. The sit-
up test can monitor physical strength and endurance. The sit-
and-reach test can monitor joint mobility and muscle flexibility,
and the pull-ups can monitor the upper body strength. Different
TENG sensors can be designed depending on how and what
to test. Currently, a self-powered real-time sensor monitoring
system based on the TENG has been applied to all aspects of
physical fitness testing.

There are many applications for the TENG in joint and
muscle rehabilitation. Wang et al. (2018) developed a TENG-
based flexible sensor (KT-TENG). As shown in Figure 4H, the
device can operate effectively during bending or stretching. The
open-circuit voltage and short-circuit transfer charge showed
good linearity with both tensile displacement and bending angle
and could be used as a wearable self-powered sensor for real-time
human motion monitoring, such as human gestures and knee
flexion. To improve monitoring accuracy, Wang Z. et al. (2020)
developed a TENG-based angle sensor (SPAS) that has been
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synthetically optimized to achieve a resolution of 2.03 nano
radian. In addition, the SPAS has the advantage of being
lightweight and thin. It can be installed in medical devices
for personalized orthopedic rehabilitation. In a recent study,
a TENG-based motion sensing system (MC-EH-HL) was
developed byGao et al. (2021) It has a unique structure, as shown
in Figure 4F, and it can assist athletes in leg muscle monitoring
and also lower limb rehabilitation training. For the treatment
of joint trauma, Yang et al. (2021) prepared a multifunctional
TENG (MF-TENG) with photothermal properties. As shown
in Figure 4B, MF-TENG can be attached to different joints of
the human body and can provide photothermal therapy under
near-infrared laser irradiation to restore human joint motion. To
assist patients with joint movements, Guo et al. (2021) invented a
TENG-based crutch. It is equipped with a deep learning system
and has advanced sensing capabilities, as shown in Figure 4C,
providing a health monitoring platform for users with movement
disorders.

A number of applications are also available for the TENG
in monitoring gait abnormalities. Lin et al. (2018) reported a
TENG-based smart insole. As shown in Figure 4E, movement
patterns such as jumping, stepping, walking, and running can
be accurately monitored and can be used to monitor gait
abnormalities and rehabilitation assessments. For improved
comfort, Zhu et al. (2019) developed aTENG-based sock (-sock).
It has better wearability, as shown in Figure 4C, and allows for
walking pattern recognition and healthcare.

In addition, the TENG can monitor weak physiological
movements. Chen et al. (2017) reported a TENG-based
micromotion sensor. It can be attached to different parts of the
athlete to monitor physiological signals in real time, such as
blinking, pronunciation, arm movement, and pulse. Similarly,
Lu et al. (2020) developed an ion-based TENG (PL-TENG),
which attaches to the athlete’s face and neck to monitor fatigue
and distraction.

In the field of sleep monitoring, the TENG has many
applications. Zhou et al. (2020) developed a TENG-based textile,
which canmonitor all-roundphysiological parameters during the
sleep of athletes. It can help improve sleep quality and physical
fitness. To improve wearability, Fan et al. (2020) developed a
TENG-based sensor array with high sensitivity and comfort,
as shown in Figure 4A, further developing a long-term non-
invasive health monitoring system for cardiovascular disease and
sleep apnoea syndrome,making great progress in the quantitative
analysis of certain chronic diseases. In order to improve
the measurement sensitivity, Salauddin et al. developed a new
MXene/Ecoflex nanocomposite with a fabric-based waterproof
TENG (FW-TENG). Salauddin et al. (2020) invented a motion
sensing device based on FW-TENG, which can be used as a sleep
monitoring sensor for athletes.There aremanymore applications
of theTENG for body healthmonitoring, and the aforementioned
introduction shows that it has a great potential for development
in this area.

The TENG can be used for cardiovascular monitoring.
Wang R. et al. (2020) optimized the pva–gelatin composite film.
As shown in Figure 4I, the prepared TENG devices made
of the optimized pva–gelatin laminate film have a stable

output. This wearable device can monitor an athlete’s pulse
to prevent cardiovascular disease. Similarly, Park et al. (2021)
have developed a novel TENG-based electronic skin which can
also monitor the arterial pulse of the wrist. For better micro-
pressure measurement, Liu Z. et al. (2019) developed a TENG-
based pressure sensor, which can be mounted on the athlete’s
chest and wrist for respiration and pulse monitoring. In order
to better monitor in real time, Meng et al. (2020) developed
a TENG-based sensor system (TS). The collected athlete’s
pulse signal can be wirelessly transmitted to the application
on the smartphone in time to display the athlete’s health
data.

In addition, the TENG is also used for respiratorymonitoring.
Zhang et al. (2019) proposed a TENG-based respiration
monitoring device, which can monitor athletes’ breathing
status by sensing chest changes. To measure respiratory airflow,
Wang et al. (2019) developed a TENG-based respiration sensor,
which can convert respiratory airflow into electrical signals for
detecting an athlete’s respiratory flow and respiratory rate. For
ease of wear, Lu et al. (2022) designed a TENG-based respiratory
sensor (RS-TENG), as shown in Figure 4G. Combining it with a
mask and a circuit module can constitute an apnea alarm system
so that an alarm can be issued in time after people stop breathing.
In order to monitor blood oxygen levels, Chen et al. (2019)
developed a TENG-based flexible blood oxygen monitoring
system for the first time. Flexible blood oxygen and pulse
detectors with no significant degradation in performance were
obtained, providing a new method for sustainable monitoring of
physiological parameters.

4.1 Summary and Outlook
Currently, sports competitions and body monitoring are moving
toward intelligence. More and more sensors are appearing in this
field. However, they share a common challenge that needs to be
overcome: the measurement data are not accurate enough, the
measurement methods are not scientific enough, and there are
more interfering factors. For example, the sit-and-reach test is
supposed to measure the flexibility of the subject’s lumbar joints
and the flexibility of the muscles, but the current measurement
method makes the length of the testers’ fingers, arms, and
legs have a great influence on the measurement results. This
article reviews the advantages of the TENG-based self-powered
sensor, which is wearable, efficient, and has a wide choice of
materials. However, the TENG also faces several opportunities
and challenges.

1) Most of the current research on the TENG is still at the
research stage. There is still a long way to go before it
becomes a mature sensor. The main reason here is that
most of the current research study has only characterized
the potential of the TENG to be used as a sensor, and the
accuracy as a sensor is not yet very high. The TENG can
be designed as grids, to improve measurement sensitivity
by increasing the density of the grids. For this, the highly
sensitive self-powered angle sensor (SPAS) invented by
Wang Z. et al. (2020) offers a way forward for accurate
motion measurement of TENGs.
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FIGURE 4 | TENG for the physical fitness test. (A) To monitor respiratory and pulse signals in real time, two TATSAs are integrated into one shirt. Reproduced with
permission (Fan et al., 2020). Copyright 2020, The Authors, published by AAAS. (B) Simulation diagram of the photothermal treatment. Reproduced with permission
(Yang et al., 2021). Copyright 2021, American Chemical Society. (C) Multifunctional monitoring system enabled by the caregiving walking stick. Reproduced with
permission (Guo et al., 2021). Copyright 2021, American Chemical Society. (D) Schematic representation of PEDOT. Reproduced with permission (Zhu et al., 2019).
Copyright 2019, American Chemical Society. (E) Overview of the smart insole for gait monitoring. Reproduced with permission (Lin et al., 2018). Copyright 2018,
Wiley-VCH. (F) Configuration of the MC–EH–HL system, which consists of two main components: R-TENG and S-PEG. Reproduced with permission
(Gao et al., 2021). Copyright 2021, The Authors, Advanced Science published by Wiley-VCH GmbH. (G) Control circuit diagram of the smart facemask. Reproduced
with permission (Lu et al., 2022). Copyright 2018, published by Elsevier Ltd. (H) Schematic diagram of the KT-TENG for real-time monitoring of knee joint
movements. Reproduced with permission (Wang et al., 2018). Copyright 2018, The Authors. (I) Diagram of the PVA-7G90 film attached to the human wrist.
Reproduced with permission (Wang R. et al., 2020). Copyright 2020, Wiley-VCH.

2) At present, the TENG, as a sports measurement device,
still faces the problem of sweat soaking. By modifying
the surface with hydrophobic chemical groups or
generating surface nanostructures (Zhang et al., 2018),
the hydrophobicity and self-cleaning properties of
frictional electrical layers can be improved. Advanced
encapsulation techniques (Wang, 2014) can also be
developed to protect TENG devices from perspiration
penetration. Consideration can also be given to designing
modular and miniaturized wearable devices to solve these
problems.

3) For sports, effective data collection and analysis are
essential. Although some sports analysis techniques have
been developed (Kutcher et al., 2013; Ahmadi et al., 2015),
there are still limited ways to analyze sports data. The
TENG has also developed some signal collection and
analysis methods (Pu et al., 2017a; Wang Z. et al., 2020;

Yin et al., 2020), but the accuracy and stability of the data
still need to be improved, by integrating the data collection
module, wireless transmission module, power management
module, and signal processing module; it can collect data
well in real time and solve some of the aforementioned
problems.

There aremany projects and requirements for sports and body
monitoring, and this article provides an overview of different
TENG sensing structures designed for different application
conditions. For athletes’ sports training, the TENG can also be
of great help in terms of human–machine interaction devices
and energy supply. However, TENGs also face challenges such
as poor sensing accuracy, imperfect signal processing, and
sweat penetration, but what is certain is that along with the
challenges there are also many opportunities and that TENGs
combined with technologies such as cloud computing, big data,
the Internet ofThings, and artificial intelligence can becomemore
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intelligent and offer potential value for smart sport and body
monitoring.
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