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Microstructure of polycrystalline materials has profound effects on fatigue crack initiation,
and the inherent randomness in the material microstructure results in significant variability
in fatigue life. This study investigates the effect of microstructural features on fatigue
nucleation life of a polycrystalline material using an uncertainty quantification framework.
Statistical volume elements (SVE) are constructed, where features are described as
probability distributions and sampled using the Monte Carlo method. The concept of SVE
serves as the tool for capturing the variability of microstructural features and consequent
uncertainty in fatigue behavior. The response of each SVE under fatigue loading is
predicted by the sparse dislocation density informed eigenstrain based reduced order
homogenization model with high computational efficiency, and is further linked to the
fatigue nucleation life through a fatigue indicator parameter (FIP). The aggregated FIP
and its evolution are captured using a probabilistic description, and evolve as a function of
time. The probability of fatigue nucleation is measured as the probability that the predicted
FIP exceeds the local critical value which represents the ability of material to resist the
fatigue load. The proposed framework is implemented and validated using the fatigue
response of titanium alloy, Ti-6Al-2Sn-4Zr-2Mo (Ti-6242).

Keywords: titanium alloy, lamellar structure, fatigue nucleation, reduced order model, uncertainty quantification

1 INTRODUCTION

Quantitative evaluation of fatigue failure is an important factor for material and structural
design of aircraft components that bear cyclic loads. Fatigue failure process consists of micro-
crack nucleation and short microstructure-sensitive crack growth (collectively referred to as
fatigue initiation), long crack growth and final rupture. Experimental observations show that
high cycle fatigue failure of polycrystalline materials could be dominated (up to 80–90%
of life (Larsen et al., 2013)) by crack initiation which, in turn, is significantly influenced by
material microstructural features. The microstructures exhibit significantly varying features
depending on processing conditions, and this inherent randomness results in significant
uncertainty in fatigue life (Lütjering, 1998; Bandyopadhyay et al., 2019; Waheed et al., 2019;
Kotha et al., 2020). In the current study, we propose an uncertainty quantification framework
to quantify the effect of microstructure on fatigue nucleation life from a probabilistic point of
view.
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Fatigue failure of polycrystalline materials is shown to
be significantly affected by material microstructure in both
experimental and modeling investigations (Dunne et al., 2007;
McDowell and Dunne, 2010; Castelluccio et al., 2014). A
large body of experimental work established aspects of
the relationships between the fatigue crack formation and
microstructural attributes (e.g., grain size (Miao et al.,
2012), crystallographic orientation (Miao et al., 2012), grain
interactions (Tschopp et al., 2009; Abuzaid et al., 2013),
inclusion-matrix interaction (Jiang et al., 2015), twin boundaries
(Carroll et al., 2013), surface topology/roughness (Ho et al.,
2011), etc (Maruschak et al., 2020)) using imaging and
characterization techniques such as electron backscatter
diffraction, scanning electron microscopy, digital image
correlation and others.The influence of microstructure attributes
on the fatigue response of the polycrystalline materials has
also been investigated numerically using the crystal plasticity
finite element (CPFE) method (McDowell and Dunne, 2010;
Castelluccio andMcDowell, 2015;Wang et al., 2015; Castelluccio
and McDowell, 2016; Yeratapally et al., 2016; Phan et al., 2017;
Cruzado et al., 2018; Wilson and Dunne, 2019). For instance
the influence of macrozones or microtextured regions results
in significant lifetime reduction under dwell fatigue, which are
widely observed in α and α+ β titanium alloy. The macrozone
in Ti-6Al-4V, which has aspect ratio larger than 4 and basal
poles within 15° of remote loading direction, leads to much
higher stress redistribution (Liu et al., 2020). Microstructural
heterogeneity within neighboring α/β phases with specific
orientation relationship plays a significant role in higher
local creep resistance in basketweave structure compared to
colony or Widmanstatten structure in α+ β titanium alloys
(Waheed et al., 2019; Zhang and Oskay, 2019).

Several sources of uncertainty contribute to the variability in
fatigue initiation and consequently total fatigue lifetimes. These
include themorphological features in thematerialmicrostructure
(Kotha et al., 2020), residual stress (Hrabe et al., 2017),
experimental conditions associated with the loading, boundary
conditions and testing environment (Biallas et al., 2005),
measurement techniques, among others. Probabilistic prediction
of fatigue initiation based on computational modeling and
simulation includes additional sources of uncertainty including
digitized representation of microstructure, model parameters,
model form, and the fatigue indicator parameter (FIP) used to
assess initiation.

A number of recent studies focused on incorporation of
statistics and uncertainty into computational fatigue initiation
prediction in polycrystalline materials. About a decade
earlier, McDowell and coworkers proposed a microstructure
analysis based probabilistic prediction paradigm that forms
the foundation for several studies (Owolabi et al., 2010;
Przybyla and McDowell, 2010; Przybyla and McDowell, 2011;
Bandyopadhyay et al., 2019). The primary means to quantifying
uncertainty is the aggregation of spatial distributions of FIPs
obtained from a collection of CPFE simulations on Statistical
Volume Elements (SVEs). Compared with the representative
volume element (RVE), SVE concept allows statistical variability
of the response from one realization to another since the

size of an SVE is taken to be much smaller than an RVE.
Considering an ergodic process, the ensemble response of
SVEs captures the RVE response. The FIP computations are
often performed as a post-processing step, where volume
averaged FIPs over grains (Castelluccio and McDowell, 2015;
Liu et al., 2020) or sub-grain domains (Gu et al., 2020) provide
the statistical data. Przybyla and McDowell (Przybyla and
McDowell, 2010; Przybyla and McDowell, 2011) connected
microstructure attributes with certain extreme value fatigue
response parameters to study the driving force of fatigue
nucleation in Ni-based superalloy IN100 (Przybyla and
McDowell, 2010) and Ti-6Al-4V microstructures (Przybyla
and McDowell, 2011). An important complicating factor in
this regard is the very high computational cost of performing
simulations over a sufficiently large SVE ensemble, thatmay be on
the order of thousands or more (Whelan and McDowell, 2019).
This cost could be reduced by replacing CPFE simulations
with microstructurally-informed homogenized constitutive
models (Kotha et al., 2020; Ozturk et al., 2021), reduced-order
microstructure models (Zhang and Oskay, 2015; Zhang and
Oskay, 2017), or machine learning models (Bock et al., 2019;
Whelan and McDowell, 2020), by establishing scalable and
efficient CPFE solvers (Yaghoobi et al., 2021), or by judiciously
limiting uncertainty analysis to a subset of geometric features
obtained based on sensitivity analysis (Zhang and Oskay, 2018).

In addition to the uncertainty induced by microstructure
heterogeneity, numerical discretizations and the constitutive
models used to idealize unresolved subscale behavior also
introduce uncertainty and error into initiation predictions.
Yeratapally et al. (Yeratapally et al., 2017) focused on the effect
of model parameter uncertainty on the variability of fatigue
initiation predictions. The number of parameters contributing to
initiation variability is reduced by global sensitivity analysis (also
employed in (Zhang and Oskay, 2018; Zhang and Oskay, 2019)).
Local parametric sensitivity analyses also provide information
on critical parameters that affect fatigue initiation (Whelan and
McDowell, 2020). Anahid and Ghosh (Anahid and Ghosh, 2013)
developed a probabilistic crack nucleation model which links
time for macroscopic crack nucleation to the macroscopic stress
state and microstructural characteristic parameters. Kotha et al.
(Kotha et al., 2020) quantified model form uncertainty for a
parametrically homogenized constitutive model and took the
approach of SVE ensemble simulations to track FIP variability.

The aforementioned investigations (e.g. (Bandyopadhyay et al., 
2020; Bandyopadhyay and Sangid, 2021)) have primarily focused
on characterization of uncertainty in fatigue initiation parameters
and their extreme value distributions since fatigue is expected to
initiate at regions of high FIP. We refer to this as “uncertainty
in fatigue forces” loosely indicating that uncertainty in the
microstructure is propagated to the response fields such as
stress, strain, plastic strain, dislocation density or a combination
thereof. In this study, borrowing from reliability analysis, we
posit the existence of “uncertainty in fatigue resistance” and
assess microstructure sensitive fatigue failure using a risk-based
approach. Fatigue resistance refers to an inherently stochastic
property that quantifies the ability of the material to sustain the
aforementioned fatigue forces. By this approach, the probability
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of fatigue failure is computed using both the uncertainties in
microstructural fatigue forces and resistances.

In the current study, we devised an uncertainty quantification
framework to elucidate the linkage between microstructure
and fatigue nucleation life, and exercised this framework to
study fatigue nucleation in titanium alloy, Ti-6Al-2Sn-4Zr-2Mo
(Ti-6242). Fatigue nucleation is modeled using the concept
of FIP. FIP distribution over an SVE is computed using a
dislocation density informed eigenstrain based reduced order
homogenization Model (DD-EHM) (Liu et al., 2020) combined
with the Sparse EHM formulation (Zhang and Oskay, 2017).
DD-EHM is a reduced order microstructure modeling approach
that computes microstructure response at a fraction of the cost
of a CPFE simulation. The SVEs are generated based on the
probabilistic distributions of features, and the responses of these
SVEs under cyclic loading are assembled to obtain the FIP
distributions as a function of load cycles. The distribution of
fatigue strength, i.e. the critical FIP distribution is taken as a
material property, which is identified using experimental data.
The probability of failure as a function of load cycles is then
computed using the calibrated fatigue strength distribution and
the predicted FIP distribution. Probability of fatigue nucleation
for Ti-6242 are predicted at different stress levels as a validation
of the proposed framework.

The remainder of this manuscript is organized as follows:
Section 2 describes the proposed uncertainty quantification
framework, including the parametric and probabilistic
description of material microstructure, multiscale simulations
and the probability of fatigue nucleation. Section 3 introduces
the microstructure attributes of Ti-6242. Section 4 describes the
DD-EHM formulation, the constitutive model employed in the
forward simulations of the fatigue response, and the employed
FIP. Section 5 discusses the uncertainties of microstructural
attributes considered in this study. Detailed investigation and
analysis for the relationship between microstructure and fatigue
behavior are also presented in this section. Section 6 includes the
summary and conclusions.

2 OVERVIEW OF THE UNCERTAINTY
QUANTIFICATION FRAMEWORK

The uncertainty quantification (UQ) framework used in this
study is based on the idea that fatigue damage evolution at the
scale of the material microstructure can be characterized by a
fatigue indicator parameter, and that the probability of fatigue
nucleation in the material microstructure is determined as the
probability that the FIP exceeds a critical value after a prescribed
number of load cycles. The probability of fatigue nucleation is
therefore dictated by two distributions: 1) the spatial distribution
of the FIP induced by microstructure heterogeneity under the
applied loadings, which evolves as a function of load cycles; and
2) a random variable referred to as the critical FIP that represents
the ability of the material to resist fatigue crack initiation at a
given material point. Consider that both the FIP and critical FIP
are random variables, where the uncertainties are expressed as
probability density functions (PDF). We indicate the measure of

risk as the probability of fatigue nucleation (PFN). The expression
of PFN is given by (Mahadevan and Haldar, 2000):

PFN (t) =∫
∞

0
[∫

ξ

0
fR (r)dr] fS (ξ, t)dξ =∫

∞

0
FR (ξ) fS (ξ, t)dξ

(1)

where FR(ξ) is the cumulative distribution function (CDF) of the
critical FIP, fR(r) is the PDF of the critical FIP, and fS(ξ) is the PDF
of the FIP. The time dependency of the risk measure stems from
the fact that increasing the number of load cycles increase the
values of FIP, thereby shifting its evolving PDF as a function of
time.

The overall structure of the UQ framework is schematically
demonstrated in Figure 1. The SVE concept is employed in
the current study to capture the variability in the mechanical
response and the FIP as a function of loading. The framework
utilizes two types of experimental data: 1) microstructure
morphology and material properties; and 2) fatigue nucleation
life curves. The statistical microstructure morphology data
are used to create a parameterized representation of the
microstructural features (e.g., grain orientation and size
distributions, phase volume function, etc. measured from EBSD
scans and imaging of physical specimens (Tschopp et al., 2009)).
The SVEs are generated synthetically based on parametric
and probabilistic descriptions of microstructural features.
The inherent variability in these features are captured by the
experimental data, and the probability distributions for the
parameters associated with each feature are constructed. For
each feature, realizations are sampled from these distribution
functions using the Monte Carlo technique. Sampled features
serve as inputs to the polycrystal generation software package
Neper (Quey et al., 2011), which builds the SVE geometry.

An important consideration is selecting the correlated values
of SVE size (the physical dimension of the SVE) and the ensemble
size (the number of SVEs simulated). When the computational
cost of themodel that predicts themechanical response of an SVE
is high, selection of the SVE size and the ensemble size may be
limited by the practical consideration of computation and time
resources. In the current study, the ensemble size is determined
by the convergence of the statistics of themechanical response for
a prescribed SVE size. The convergence metric we employed in
this study ensures that the discrepancy between FIP distributions
computed using separately sampled SVE ensembles of the same
size are within a prescribed tolerance.

The numerical simulations of the mechanical behavior of
SVEs serve as the bridge between microstructure morphology
and fatigue nucleation prediction under cyclic loading.
While direct CPFE simulations of the SVEs provide highly
accurate predictions of the local fields and stress risers within
microstructures, computational costs of these simulations are
typically too high to directly simulate the evolution of the
response as a function of loading under high cycle regime and
perform sufficient number of SVEs needed for probabilistic
analysis. Instead we employ a sparse implementation (Zhang
and Oskay, 2017) of the eigenstrain based homogenization
method (EHM) (Zhang and Oskay, 2015). EHM is a reduced
basis approximation of a CPFE simulation that allows accurate

Frontiers in Materials | www.frontiersin.org 3 May 2022 | Volume 9 | Article 897998

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Zhang et al. Uncertainty Quantification for Fatigue Nucleation

FIGURE 1 | Overview of the proposed uncertainty quantification framework.

estimation of local and global response fields at a fraction of
the cost of CPFE simulations (Liu et al., 2020). In EHM, the
response fields are represented as a function of a series of
influence functions, obtained by linear elastic analyses of the
SVE. Coupled with a reduced basis approximation of inelastic
strains and stresses, the equilibrium is approximated using a small
system of nonlinear algebraic equations. This system is solved
for a set of stress and inelastic strain fields averaged over SVE
subdomains (or parts) in terms of coefficient tensors that retain
the morphological information of the material. This approach
has been shown to accurately describe small strain as well as
large deformation response of polycrystals. A summary of the
governing equations are provided in Section 4. For each SVE
in the ensemble, the geometry is discretized, and the influence
functions and coefficient tensors are computed to construct the
reduced order model (ROM).

The ROMs are then exercised to simulate the spatio-temporal
evolution of the response field within the SVEs. In view of
the viscoplastic deformations within the microstructure, the
microstructural response fields and hence FIPs continue to evolve
as a function of load cycles. While the EHM approach allows
for direct evaluation of several hundreds to thousands of cycles,
evaluation of the high cycle fatigue response is computationally
prohibitive in the context of a probabilistic framework. A
time acceleration methodology (Crouch et al., 2013; Crouch and
Oskay, 2015) is necessary to predict the long term evolution

of the material response. In this study, the long term behavior
is estimated in a statistical sense based on extrapolation of
early (i.e., first few thousand cycles) evolution of the FIP
probability densities. The FIP distribution computed from the
SVE ensemble under the cyclic loading is fitted with an extreme
value distribution (two parameter Weibull) and its evolution is
extrapolated to predict the state of the distribution as a function
of load cycles.

The critical FIP distribution refers to the uncertainty in
the resistance of the material to fatigue nucleation. Direct
experimental measurement of this critical distribution is
not a trivial task. Instead, we identify this property based
on experimental fatigue life measurements. The critical FIP
distribution is obtained through numerical optimization,
where the experimentally-observed and numerically simulated
probability of fatigue nucleation is minimized for a prescribed
load amplitude. The calibrated distribution along with the
numerical simulation framework are exercised to predict
nucleation life under different load conditions.

3 TITANIUM ALLOY, TI-6242

Ti-6242 is a near-α titanium alloy that has been widely used
in aerospace and other engineering applications for its high
specific strength, fracture toughness, high temperature capability
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and creep resistance. Fatigue life of near-α and α—β titanium
alloys are well known to exhibit significant sensitivity to
microstructural features (Leyens and Peters, 2003). Depending
on the thermo-mechanical processing route, various types of
microstructures are achieved, such as Widmanstatten, fully
lamellar, bi-modal or duplex, and equiaxed α-dominated
microstructures (Lütjering, 1998; Gockel et al., 2016). Colony
grains consist of α-phase lamellae within large β-phase grains
of several hundred microns in diameter. Increase in cooling
rate leads to the reduction of colony grain size, α lamellae
thickness, and the nucleation of new colonies, which produces the
formation of “basket weave” or Widmanstatten microstructure
(Sieniawski et al., 2013). In the current investigations, we
incorporated both lamellar and pure α grains in the
microstructure to model a wide range of morphology variations,
and their effect on the probability of fatigue nucleation.

3.1 Microstructural Features
The effects of Ti-6242 microstructure have been investigated
with respect to features (pure α grain size, colony
grain, lamellae structure, micro-texture etc.) through
experiments (e.g. (Lütjering, 1998; Sansoz and Ghonem, 2003;
Collins et al., 2009)) and numerical simulations (e.g.
(Deka et al., 2006; Ashton et al., 2017; Zhang and Dunne, 2017;
Zhang and Dunne, 2018)). A schematic illustration of bi-modal
Ti-6242 microstructure is shown in Figure 2. Two types of
grains are considered: pure α grain and colony grain. A colony
grain is made of a collection of fine laths of alternating α
phase and β phase. Each pure α grain is idealized as a single
crystal, while each colony grain contains multiple α variants with
prescribed thickness (dα) and β lath with prescribed thickness
(dβ). Particularly, four feature parameters of Ti-6242 are taken
into account in this study: crystal orientation of prior β grain,
colony grain volume fraction, α lath thickness and β lath
thickness.

Orientation of α phase at room temperature depends on
the metallurgical high temperature state, i.e., the parent β
phase. After a heat treatment in the parent β phase, the
resulting α texture does not contain variant selection, i.e., all

variations have equal chances to be generated. However, with
a mechanical deformation in the parent β phase, the volumes
of α phases at room temperature are unbalanced. Therefore,
the mechanical deformation and orientation of the prior β
grain influence the crystal orientations of the α phases in the
microstructure. Notwithstanding various potential mechanical
deformations (Lütjering, 1998), in the current manuscript, we
consider the rolling induced mechanical deformation. In this
study, we consider that a SVEdomain is occupied by a single prior
β grain, and the orientation of the β grain is random.

The prior β orientation is represented using three Euler angles
{Θβ

1,Θ
β
2,Θ

β
3}. The orientation relationship between the room

temperature α phase and high temperature β phase is defined by
BurgersOrientationRelationships (BOR): 1) (110)β//(0001)α and
2) [111]β//[2110]α (Tong et al., 2017).Therefore, orientation of an
α grain or an α lath is selected out of 12 possible orientations
relative to the orientation of the prior β grain. In fact, only
a small subset of the variants are probable under different
thermo-mechanical conditions. In the current study, variant
selection is performed using the approach proposed by Gey et al.
(Gey et al., 1997). Denoting the orientation of ithα variant as gαi
and the orientation of the prior β grain as gβ, then

gαi = {big
β}i=1,2,…,12 (2)

where bi is the BOR for the ith variant. The volume of the ithα
phase related to the volume of the prior β grain f β(gβ) by

f βi = vi ⋅ f
β (gβ) (3)

and vi is the variant selection function defined by

vi =
|γi|

∑γmax

γ0
|γ|

(4)

where γi is the resolved shear strain for the ith variant,
γ0 = X%γmax is the minimum resolved shear strain amplitude
that corresponding α variant is possible to form, and γmax is the
maximum resolved shear strain amplitude among all slip systems
under given thermo-mechanical loading. The denominator sums

FIGURE 2 | Schematic example of microstructure features.
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TABLE 1 | Measured values of the microstructure geometry parameter for Ti-6242 available in the literature.

References Deka et al.  Jun et al.  Qiu et al.  Sansoz and Jun et al.  Ashton et al.  Zhang and Zhang and Waheed et 
(2006) (2016a) (2014) Ghonem, (2003) (2016b) (2017) Dunne, (2017) Dunne, (2018) al. (2019)

Vα 0.7 0.9 0.9 — — — — — —
dα (μm) — — — 0.7, 2.0, 5.9 2.0, 3.7 1,2,5 — — 2.5
dβ (μm) — — — 0.2 0.5, 0.8 0.5 0.6, 1.5, 2.5 1.6, 3.2 —

the slip rates for which the amplitudes are larger than γ0. This
equation is based on the assumption that the orientations of
α grains are distributed according to the shear strains in the
corresponding slip systems, and γ0 is the threshold shear strain.
Following (Gey et al., 1997), X is selected as 50.

3.2 Uncertainty in Microstructure
The sources of the uncertainties in the parameters are two fold.
First is the variability observed in microstructures built using
identical thermo-mechanical processing (TMP) conditions. The
second is the variability in samples built by different TMP
conditions. While the latter source of uncertainty is reducible,
access to precise TMP conditions of the experimental samples
are not often readily available andwell-documented.We therefore
consider the presence of both sources of uncertainties.

Table 1 shows the summary of measured values and values
used in numerical studies for the microstructure geometry
parameters that were used to bound the uncertainties. Deka
et al. (Deka et al., 2006) measured the volume fraction of the
transformed β phase and primary α grain in the overall Ti-6242
microstructure to be 30 percent and 70 percent, respectively.
Within the colony grains, α and β lamellae were experimentally
observed to have volume fractions of approximately 88 and
12%, respectively. However, measured values for the volume
fraction of α and β phases of Ti-6242 are 90 percent and 10
percent in the experiments by Jun et al. (Jun et al., 2016a) using
secondary electron micrographs. Similarly, the volume fraction
of α grains in the Ti-6242 specimens is approximately 90 percent
in the experiments conducted by Qiu et al. (Qiu et al., 2014).
The grain size of α grains is approximately 13.6 μm. Sansoz
and Ghonem (Sansoz and Ghonem, 2003) performed scanning
electron microscope examinations on the fracture surface of
three microstructures in order to identify the relevant crack
growth mechanisms with respect to the microstructure details.
In these three microstructures, the average thicknesses of α
laths are quite different (0.7, 2.0 and 5.9 mm), while the average
thickness of the β lath is found to be similar in all produced
microstructures (0.2 mm). Jun et al. (Jun et al., 2016b) studied

TABLE 2 | Morphology parameters.

Variable Lower Bound Upper Bound

Vα 0.65 0.95
dα 2.0 μm 6.0 μm
dβ 0.5 μm 2.0 μm

θβ1 ,θ
β
2 ,θ

β
3 0° 90°

local deformation mechanisms in Ti-6242 by performing in-
situ micropillar compression tests on nine different pillars, and
they concluded that, for the colony structures, the presence and
morphology of the β phase can significantly alter the apparent
yielding point and work hardening response. The widths of α and
β lath in their specimens were approximately 2 and 0.5 mm, while
the averaged thicknesses in the nine processed specimens were
around 3.7 and 0.8 mm for α and β lath, respectively.

The range of values observed in the aforementioned
experimental observations are used herein to bound the ranges of
microstructure geometrymodel parameters.Table 2 summarizes
the bounds used for all parameters. Since no distributional
information is available, the parameters are considered to be
uniformly distributed within these bounds.

3.3 Uncertainty in Fatigue Life
To estimate the fatigue nucleation life based on total fatigue
lives reported in experimental samples, the fatigue crack growth
(FCG) model developed by Shen et al. (Shen et al., 2004) is used.
Three stages of fatigue failure (crack initiation, crack propagation
and final rupture) are all taken into account in the employed
FCG equations. The fundamental idea is to solve for the cycle
number of fatigue nucleation given the experimentally observed
fatigue failure life, i.e., the inverse of problem of FCG. The
initial crack length at fatigue nucleation is taken to be 0.1 mm
following (McBagonluri et al., 2005). In the current manuscript,
Paris’ parameters (C andm) and fracture toughness are the taken
to be same as in Ref. (Shen et al., 2004), while the other model
parameters are re-computed based on the values and continuity
conditions provided in the reference. The model parameters used
in this study are summarized in Table. 3 x0, x1, x2 and x3 are the
transition points between fatigue regimes. x3 is computed from
to the fracture toughness (47.1 MPa√m) and R ratio, where x0,
x1 and x2 are estimated from experiments. α1 and β1 are material
constants and obtained through the continuity conditions of
crack growth rate and its first order derivative at x1. α3 and β3
describe material behavior at high ΔK regime, and are calculated
from the continuity conditions at x2.

TABLE 3 | Parameters of the FCG model.

Parameter x0 x1 x2 x3 α1

Value ln 3.5 ln 5.0 ln 25 ln 47.1 (1 − R) −0.0808
Parameter β1 C m α3 β3
Value 0.0023 7 ×10–9 3.3 1.8938 3.3
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FIGURE 3 | (A) Experimental fatigue failure data available in the open literature; and (B) nucleation life estimated based on the experimental life data and the FCG
model. The dashed lines represent three stress levels investigated in the numerical analysis.

Several studies report experimentally measured number of
cycles to failure Nf for Ti-6242 at various stress levels. Fujishiro
and Eylon (Fujishiro and Eylon, 1980) investigated the effect
of Pt ion plating on the high cycle axial fatigue life of Ti-
6242 specimens at room temperature and 455°C. Measured
number of cycles to failure at room temperature without Pt
coat are employed in this study. Yuan et al. (Yuan et al., 2019)
studied the effects of surface roughness and residual stress
induced by the mechanical polishing treatments (cold rolling
polishing (CRP), sandpaper polishing (SP) andnylon cloth
polishing (NCP)) on fatigue life. Sinha et al. (Sinha et al., 2004)
presented the results of a study of the response of an β-
forged Ti-6242 during static, normal-fatigue, and dwell-fatigue
loading. Results under pure fatigue loading is employed in the
current study. Ghosh et al. (Ghosh et al., 2007) conducted pure
fatigue and dwell fatigue tests with different test conditions
(load ratio, dwell time and peak stress to yield strength
ratio) for the three α/β-forged and one β-forged Ti-6242. Ref
(Mechanical Properties Data Center Traverse City Mich, 1972).
provided the fatigue properties of duplex annealed sheet at
room temperature and smooth rotating beam made of Ti-6242.
However, available data points are limited to relative low stress
level (<90% yield stress). Pilchak et al. (Pilchak et al., 2012)
performed fatigue test on both as-received samples and exposed
samples at 80% yield strength. Kassner et al. (Kassner et al., 1999)
determined the low cycle fatigue properties and dwell low cycle
fatigue properties for Ti-6242. Garcia and Morgeneyer (García
and Morgeneyer, 2019) measured the fatigue life for the parent
material (PM) and linear friction welds (LFW) of Ti-6242,
and number of cycle to failure is observed mainly with stress
less than 800 MPa. Lefranc et al. (Lefranc et al., 2006) focused

the dwell effect on β-forged Ti-6242, but they also measured
fatigue life for comparison. The experimental data collected in
the aforementioned studies have been compiled and plotted
in Figure 3A. We note that the experimental conditions in
these studies (e.g., stress ratio, air/vacuum exposure, testing
equipment) are not necessarily identical. The fatigue nucleation
data that is generated by subtracting the long crack growth and
rupture lives by using the FCGmodel from the experimental data
are shown in Figure 3B.

4 METHODOLOGY

4.1 DD-EHM Formulation
The domain of an SVE is denoted as Θ. This polycrystalline
microstructure is decomposed into non-overlapping n sub-
domains (or reduced order “parts”), where Θ(𝔸) denotes the
domain of part 𝔸. In the current study, the domain of each
pure α grain as well as each lath within the colony grains
constitute a part. We denote ̇σ (𝔸) and ̇μ(𝔸) the part average (i.e.,
over Θ(𝔸)) stress rate and plastic deformation rate, respectively.
The EHM formulation expresses equilibrium using the following
relationship:

M𝔹ijkl ̇σ
(𝔹)
kl (x, t) −

n

∑
α=1
[P(𝔹𝔸)ijkl − δ

(𝔸𝔹)Iijkl] ̇μ
(𝔸)
kl (x, t) = A

(𝔹)
ijkl �̇�kl (x, t) (5)

in which, �̇� is the SVE-averaged strain rate, M(𝔹) is the elastic
compliance tensor of the constitutive occupying Θ(𝔹), P(𝔹𝔸) and
A(𝔹) are interaction and concentration tensors, respectively. P(𝔹𝔸)
and A(𝔹), collectively named coefficient tensors, are computed
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from elastic influence functions associated with the SVE. �̇�
constitute the forcing function and prescribed to apply the cyclic
loading.

Equation 5 is evaluated alongside crystal plasticity models
(detailed below) that describe the evolution of part-averaged
plastic deformations. The constitutive laws are therefore
expressed in terms of part-averaged quantities. Since the
constitutive equations are nonlinear, the EHM formulation
results in a nonlinear algebraic system of 6n equations to describe
the SVE response. Since all P(𝔹𝔸) are non-zero, the resulting
system is dense and scale badly for large n. In order to reduce
cost for problems with large n, we employ a sparse formulation
where long range grain interactions are ignored (Zhang and
Oskay, 2017).

In simulations below, fatigue loading is defined in terms
of stress rather than strain. In order to ensure that proper
load amplitude is applied at each cycle, a stress-controlled
incrementation scheme is implemented, where the strain rate is
kept until a peak SVE-average stress is reached and then reversed
to begin unloading. The SVE-averaged stress is computed as

σ ij =
n

∑
𝔹=1

v(𝔹)σ (𝔹)ij (6)

where v(𝔹) is the volume fraction of part 𝔹.

4.2 Constitutive Model
A dislocation-mediated crystal plasticity model (Liu et al., 2018)
has been adopted to describe the evolution of viscoplastic
deformation within each subdomain, Θ(β). To simplify notation,
we do not use part designation in the geometry equations below.
The slip rate at the sth system is derived from the Orowan’s
equation:

̇γs =
ρsmv

s
id (b

s)2

2
sign (τs)exp{(−ΔF

s

kθ
)}exp{(

(τs − ss)ΔV s

kθ
)} (7)

where ρsm is the average mobile dislocation density, vsid the
vibration frequency of the dislocation segment, bs the magnitude
of the Burgers vector, k the Boltzmann constant and θ the
temperature in Kelvin, ΔVs the thermal activation volume, and
ΔF the activation energy. ss is the critical resolved shear strength,
and the strength hardening is expressed as

ss ( ̇γs) = ss0 + s
s
for ( ̇γ

s) + ssdeb ( ̇γ
s) (8)

where ss0 is the initial slip resistance, ̇γs is the slip rate at sth slip
system, ssdeb and s

s
for denote the contributions to strength evolution

by dislocation debris and forest dislocations, respectively. In the
current manuscript, the evolution of the debris dislocation is
related to the recovery process induced by dislocation climb or
cross-slip, and the hardening is affected by debris dislocation
on all slip systems. The evolution of the forest dislocation is
controlled by the competing mechanisms of generation and
annihilation associated with recovery.

The contributions by dislocation debris and forest dislocations
to strength evolution are denoted as ssdeb and ssfor respectively.

ssfor ( ̇γ
s) = μχbs√ρsfor (9)

ssdeb ( ̇γ
s) = μbskdeb√ρforln(

1
bs√ρdeb

) (10)

where μ is the shear modulus, χ is the dislocation interaction
parameter, bs is the Burgers vector. ρsfor and ρsdeb represent the
forest and debris dislocation density, respectively. kdeb is the
material independent factor associated with low substructure
dislocation density.

The total forest dislocation density is expressed as:

ρsfor = ρ
s
fwd + ρ

s+
rev + ρ

s−
rev (11)

where ρsfwd is the forward dislocation density and ρs±rev denote
the reversible terms corresponding to loading and unloading
paths along the sth slip system. Back stress was previously
introduced to describe dislocation interactions (Forest, 2008),
which is inversely proportional to the dislocation density.
The incorporation of back-stress component can capture
Bauschinger effect. In this study, the dislocation-dislocation
interaction, specifically dislocation annihilation, was directly
incorporated through dislocation evolution, i.e. reversible
dislocation. The reversible dislocation density decreased during
reversal of resolved shear stress and this has been demonstrated
to capture Bauschinger effect in Refs. (Kitayama et al., 2013;
Liu et al., 2020). The evolution of the forward dislocation density
includes both athermal storage and temperature dependent
recovery of classical Kock-Mecking law, as given below:

∂ρsfwd

∂γs
= (1− p)ks1√ρ

s
for − k

s
2 ( ̇γ,θ)ρ

s
for (12)

where p is a reversibility parameter. ks1 controls the generation
of forest dislocations, and the recovery coefficient ks2 is taken to
be:

ks2 ( ̇γ,θ) = k
s
1
bsχ
g s
(1− kθ
̂Dsbs

3 ln
̇γs

̇γ0
) (13)

where ̇γ0, gs and ̂Ds are the reference shearing rate, effective
activation enthalpy and drag stress, respectively. The evolution
of the remaining two components, ρs+rev and ρs−rev are expressed as
functions of loading direction in the slip system:

∂ρs+rev
∂γs
= ℍ(sign (τs))(pks1√ρ

s
for − k

s
2 ( ̇γ

s,θ)ρs+rev)

+ℍ(sign (−τs))[−ks1√ρ
s
for(

ρs+rev
ρs0
)
̂m

] (14)

∂ρs−rev
∂γs
= ℍ(sign (τs))(−ks1√ρ

s
for(

ρs−rev
ρs0
)
m̂

)

+ℍ(sign (−τs))[pks1√ρ
s
for − k

s
2 ( ̇γ

s,θ)ρs−rev] (15)

where ℍ is the heaviside function, ρs0 the total dislocation
density at the point of load reversal, m̂ the dislocation density
recombination coefficient.

The evolution of the debris dislocation density is expressed as:

dρdeb =∑
s

∂ρsdeb
∂γs

dγs, and
∂ρsdeb
∂γs
= qbs√ρdebk

s
2 ( ̇γ

s,θ)ρsfor (16)

where q is the recovery rate coefficient.
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TABLE 4 | Elastic constants for HCP and BCC crystals.

Parameter C11 C12 C13 C33 C44

BCC (GPa) 108.2 61.3 61.3 108.2 28.5
HCP (GPa) 164.66 82.5 61.7 175.1 48.5

4.3 Fatigue Indicator Parameter
The mechanical behavior of the Ti-6242 microstructure under
repeated cyclic loading is predicted by the Sparse DD-EHM,
while the onset of fatigue is indicated by the FIP which is a
function of microscale information (plastic strain, energy etc). A
number of FIPs have been previously proposed to predict fatigue
initiation life of polycrystallinematerials. Przybyla andMcDowell
(Przybyla and McDowell, 2011) employed the maximum plastic
shear strain range (MPSS) and Fatemi-Socie (FS) damage
parameter to investigate driving forces for fatigue crack formation
at the scale ofmicrostructure. Li et al. (Li et al., 2016) developed a
fatigue parameter based on accumulated plastic strain accounting
for triaxiality and temperature effects to predict thermo-
mechanical fatigue. Sangid et al. (Sangid et al., 2011) proposed
an energy-based failure criterion to link the variability in the
microstructure to fatigue response.

In the context of titanium alloys, the nucleation process
results in facet formation in a hard grain generally oriented
along a direction near the basal plane. Liu et al. (Liu et al., 2020)
proposed maximum relative dislocation density discrepancy
(MD3) as a FIP for titanium alloys, considering that dislocation
pile-ups at grain boundaries induce crack nucleation.The amount
of pile-ups and the inability of the dislocations cross the grain
boundary are collectively quantified by the relative dislocation
density discrepancy (D3) across a grain boundary. MD3 indicates
the maximum value of D3 across all grain boundaries within the
SVE. Instead of focusing on a single extreme value (i.e., MD3)
over entire microstructure and history, we aggregate the spatial
distribution of D3 within each SVE of an SVE ensemble. The D3

distribution at peak load amplitude is tracked.
The D3 for grain i, (Δρtot)

i, is defined as the relative dislocation
density discrepancy between grain i and all its neighbors.

(Δρtot)
i = max

j∈{1,…,mi}
{|(ρtot)

i − (ρtot)
k(j)|} (17)

where (ρtot)i is the maximum dislocation density for grain i
over all slip systems, k(j) is the grain ID for the jth neighbor
of grain i, ρtot is the total dislocation density defined as
ρtot = ρfor + ρdeb.

5 FATIGUE NUCLEATION PREDICTION

5.1 Constitutive Model Parameters
The microstructure of Ti-6242 is modeled using two types
of crystals: BCC β phase and HCP α phase. To ensure
that the constitutive formulation captures the response of
the alloy accurately, the constitutive parameters calibrated
by Liu et al. (Liu et al., 2020) are employed. The constitutive
model parameters are considered to be deterministic that are

TABLE 5 | Slip system of HCP and BCC.

Lattice Type Slip System Number

HCP Basal <a> {0001}⟨ 1120〉 3
Prismatic ⟨ a ⟩ {1010}⟨1120⟩ 3
Pyramidal ⟨ a ⟩ {1011}⟨1120⟩ 6
1st Order Pyramidal ⟨ c+a ⟩ {1011}⟨1123⟩ 12
2nd Order Pyramidal ⟨ c+a ⟩ {1122}⟨1123⟩ 6

BCC {110}⟨ 111〉 12
{112}〈121〉 12
{123}〈111〉 24

calibrated using a representative volume (i.e., representative for
the purposes of viscoplastic response). Specimen to specimen
variability in the static stress-strain response, which influences
fatigue nucleation uncertainty (especially in low cycle fatigue),
has been partially explained by the uncertainty in the model
parameters (Sangid et al., 2011; Zhang and Oskay, 2018; Zhang
and Oskay, 2019; Zhang and Oskay, 2021). Under high cycle
fatigue conditions considered in this study, the effect of parameter
uncertainty for elastic and viscoplastic properties is not explicitly
incorporated.

The HCP model includes 30 slip systems including the basal,
pyramidal and prismatic systems, and the BCCmodel includes 48
slip systems. All slips systems used in the model are summarized
in Table. 5. The elastic parameters are listed in Table 4, and
the flow and hardening parameters for both the HCP and BCC
lattices are summarized in Table 6.

The strength hardening evolution in HCP dominated
crystals is controlled by initial slip resistance, forest dislocation
and debris dislocation, and corresponding parameters are
summarized in Table 7. The dislocation interaction parameter
χ is set as 0.9 to satisfy the Taylor relationship (Beyerlein
and Tomé, 2008). The material independent factor kdeb is set
as 0.086 (Madec et al., 2002). A small value of initial forest
dislocation density is adopted, ρfor,0 = 1× 10

12 m−2, according
to experimental observations (Mecking and Kocks, 1981;
Naka et al., 1988; Viguier et al., 1995). The reversibility
parameter p is chosen as 0.8 (Kitayama et al., 2013).The reference
shear strain rate ̇γ0 is defined as 107 s−1. The dislocation
density recombination coefficient m̂ is taken to be 0.4 for
HCP and BCC (Zecevic and Knezevic, 2015). The initial debris
dislocation density in all slip systems are defined as 1× 1010 m−2

(Appel et al., 1997). With these constitutive parameters, the
tensile yield stress (σy) of the material is computed as 875 MPa at
a strain rate of 0.1/s.

5.2 SVE Ensemble
The mechanical response of Ti-6242 SVEs under cyclic loading
is obtained using the EHM approach. In order to facilitate
uncertainty computations (i.e., reduce computational cost), SVEs
are modeled as quasi 2D. The edge length of an SVE is set to
39 μm. Grain sizes are sampled from a bi-modal distribution
function (lognormal distribution (sigma, mu) = (10.21, 0.16)
and normal distribution with cutoff (sigma, mu) = (0.43, 1.74))
(Liu et al., 2020). Morphology parameters shown in Table 2
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TABLE 6 | Flow rule parameters for HCP and BCC crystals.

Parameter Unit Basal ⟨ a⟩ Prismatic ⟨ a⟩ Pyramidal ⟨ a⟩ Pyramidal ⟨ c+a⟩ {110}(111)

ΔFs ×10−19J 2.58 2.93 3.21 3.44 2.27
ΔVs ×10−29m3 1.94 2.84 2.96 3.17 479
ρsm ×1012m−2 5 5 5 5 5
vsid ×1012Hz 1 1 1 1 1
bs ×10−4μm 3.54 3.58 3.59 6.83 2.86
ss0 MPa 11.6 47.2 143.69 158.87 94
ks1 ×106m−1 6.32 107 103 174 52
Ds MPa 100 150 185 225 230

TABLE 7 | Hardening parameters.

Parameter χ kdeb ρfor, 0 p ̇γ𝟎 ̂m ρsdeb, 0

Unit — — m−2 — s−1 — m−2

Value 0.9 0.086 1 × 1012 0.8 107 0.4 1 × 1010

are randomly sampled, SVEs generated and discretized, and
coefficient tensors are computed to build a ROM for each SVE.

The SVEs were subjected to stress controlled tensile loads
with an R-ratio of 0.1 and load frequency of 1 Hz Viguier et al.
(Viguier et al., 1995). For each SVE within the ensemble, the
fatigue indicator parameter (i.e., D3) at every grain interface was
computed as a function of load cycles. The D3 values were then

aggregated across the ensemble to obtain the D3 distribution and
its time evolution.

The effect of SVE ensemble size and the SVE size on predicted
D3 distribution are determined through a numerical convergence
study. In order to quantify the effect of ensemble size, we
performed a pool of 10,258 SVE simulations. The size of the
pool is selected large enough so that the D3 distribution for the
entire pool could be considered representative and converged.
All ensembles were then generated by random sampling from the
SVE pool. All simulations were performed using NASA’s Pleiades
supercomputer. Each SVE simulation in the pool was subjected to
10 cycles of loading with load amplitude of X%σy. D

3 values were
extracted from the end of the load cycle. The PDFs and CDFs of
D3 distributions for ensemble sizes of 100, 250, 500, 750, 1,000
and 2,000 are shown in Figure 4. For each ensemble size s, s SVEs

FIGURE 4 | Variability in the cumulative and probability distributions of D3 as a function of ensemble size (A) 100 SVEs, (B) 250 SVEs, (C) 500 SVEs, (D) 750 SVEs,
(E) 1,000 SVEs and (F) 2,000 SVEs.
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FIGURE 5 | Kolmogorov–Smirnov measure D∗ (A) Distribution of D∗ with increasing number of SVEs, and convergence of max D∗ with increasing number of SVEs.

A B C

D E F

FIGURE 6 | Distribution fits for (A) Weibull, (B) Rayleigh, (C) exponential, (D) normal, (D) lognormal and (F) extreme value models.

are randomly selected out of the simulation pool, and this process
was repeated for 50 times. These 50 separate ensembles (referred
to as ensemble samples) were used to quantify the variation in D3

distributions. The results demonstrate a clear narrowing trend in
the variations with increasing ensemble size, which confirms the
expectation that increased ensemble size allows a more thorough
sampling leading to less ensemble-to-ensemble variation. We
further contend that large ensemble sizes are necessary to achieve
sufficient sampling of the extreme value statistics. It is possible
to reduce the demand on the ensemble size by increasing the

size of the SVE instead. However, larger ensembles of smaller
SVEs are computationally less costly as SVE simulations in the
ensemble can be performed in parallel with linear scalability,
whereas evaluation of a single SVE simulation in parallel typically
scales sublinearly with size. In the current manuscript, the SVE
size with 150 grains is applied for each microstructure, and we
aggregate the responses in the analyses.

The ensemble-to-ensemble variability as a function of
ensemble size is quantified using the Kolmogorov–Smirnov (KS)
test. The Kolmogorov–Smirnov measure D∗ for two arbitrary
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FIGURE 7 | Motion of D3 distribution.

sample cumulative distribution functions, F1(x) and F2(x), is
defined as

D⋆ =max
x
|F1 (x) − F2 (x) | (18)

D∗ is the largest absolute difference between two CDFs. For a
given ensemble size, we computed theKSmeasure of every pair of
CDF ensemble samples, resulting in 1,225 D∗ values. Figure 5A
shows the PDFs of the KS statistics at different ensemble sizes and
Figure 5B shows the histograms of maximum KS statistics as a
function of ensemble size.

It is clear that increasing ensemble size monotonically
reduces both the variance of D∗ and mean of D∗ distribution,
confirming the converging trend of D3 distribution with
ensemble size. The maximum values of D∗, which correspond
to the largest difference among all 50 ensemble samples
for a given size, are extracted and plotted as a function of
ensemble size in Figure 5B. Increasing the ensemble size
from 100 to 2,000 significantly reduces the discrepancy
between the aggregated D3 distribution (∼2% for 2,000
SVEs). For an ensemble size of 500, the maximum D∗ is less
than 5%.

5.3 Long Term Evolution of FIP
Distributions
Tracking the evolution of the FIP distribution as a function of
load cycles based on cycle-by-cycle simulation of an ensemble of
SVEs is computationally prohibitive for high cycle fatigue. For
instance, evaluation of a single SVE response over 1,000 load
cycles using the sparseDD-EHMapproach require approximately
1 CPU-day. Therefore, an extrapolation technique is employed
to predict the long term evolution of FIP distribution. For the
first 1,000–2,000 cycles, the distribution of FIP is predicted by
the sparse DD-EHM approach for SVE ensembles.The particular
number of cycles to simulate at a given load amplitude is chosen

such that the rate of change of the FIP distribution is at a steady
state. For response at larger cycle numbers, the FIP distributions
are fitted to parameterized extreme value distributions with
parameters extrapolated from the sparse DD-EHM predictions.

In the current study, five hundred SVEs are selected to
represent the 10,258 SVE pool based on the selection criterion
that the difference between maximum D∗ of the 500 SVE
ensemble and maximum D∗ of the 10,258 SVE pool is smaller
than the critical value (1.36/√n for n > 40) in the KS test table
at significance level of 0.05. Cyclic loading is applied to these
500 SVEs up to 2,000 cycles. The FIP (D3) is represented using a
Weibull distribution at any given time instance, and its evolution
is tracked by the evolution of the Weibull parameters (shape
parameter and scale parameter). The Weibull distribution was
selected due to the better capture of tail of probability plot, as
shown in Figure 6. The probability distribution for a Weibull
random variable is expressed as:

f (x;λ,k) = {
k
λ (

x
λ)

k−1
⁡exp[−(xλ)

k
] x ≥ 0

0 x < 0
(19)

where k > 0 is the shape parameter, and λ > 0 is the scale
parameter.

At 91.5% yield stress, the distributions at 100 cycles, 200 cycles,
500 cycles and 1000 cycles are shown in Figure 7. The Weibull
distribution captures the tail of D3 distribution for D3 > 10–5

reasonably well for all time instances. The D3 distributions shift
towards higher D3 with increasing number of load cycles. It may
also be possible to obtain reasonable fits with other distributions
such as Gumbel or Frechet distributions, which were
suggested in some previous studies (Przybyla and McDowell, 
2010).

To estimate the evolution of D3 distribution between 1,000
cycles to 100,000 cycles or higher, the parameters of Weibull
distribution are expressed in a function form that varies with
the number of load cycles. The temporal evolution of the shape
and scale parameters within the first 1,000 or 2,000 cycles as
computed directly by the SVE simulations, and as fitted to a
bilinear curve are shown in Figure 8. Figures 8A,B respectively
shows the evolution of scale and shape parameters at three stress
levels (85.8,91.5 and 95.5% yield stress) as a function of cycle
number. The time evolution of the scale and shape parameters
obtained from SVE simulations are indicated by circle, triangle
and diamond symbols. In these plots we observe, 1) the initial
quick increase of local dislocation density mismatch, due to
rapid dislocation density accumulation at the onset of plastic
deformation followed by 2) stable dislocation accumulation due
to strain hardening in CRSS, leading to a stable slip accumulation
and dislocation density accumulation. Capturing the second
stage (i.e., the slope of the curves in the second stage) is
particularly important as it is projected to continue for a large
number of cycles. A bilinear curve is the simplest curve that is
able to fit the observed behavior. The bilinear fits capture the
SVE data well particularly at large number of cycles, where the
evolutions of the parameters stabilize. A change in the scale
parameter affects on the distribution as a change of the abscissa
scale. The reduction in the value of the scale parameter while
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A B

FIGURE 8 | Temporal evolution of (A) the scale parameter and (B) the shape parameter.

A B C

FIGURE 9 | Probability of fatigue nucleation PFN as a function of load cycles: (A) calibration at 91.5% of yield stress; (B) prediction at 85.8% of yield stress and (C)
prediction at 95.5% of yield stress.

keeping the shape parameter constant results in the narrowing
of the distribution. As indicated in Figure 8A, higher stress
level has larger scale parameter therefore larger variation in D3

distribution.

5.4 Critical FIP Calibration and Model
Validation
Direct experimental observations of the fatigue indicator
parameter at fatigue nucleation are not available at the
material microstructure scale. The calibration of the critical
D3 distribution is performed by minimizing the discrepancy
between the measurements of fatigue life and model predictions
at a prescribed load amplitude (i.e., 91.5% of yield stress). The
calibrated critical FIP distribution is then validated by comparing
the model predictions and experimental life curves at other load
amplitudes (i.e., 95.5 and 85.8% of yield stress). 91.5% of yield
stress load amplitude was used in the calibration because larger
number of experimental data points are available for this load

level compared with the other load levels. The calibration was
performed using numerical optimization by minimizing the
discrepancy in the probability of fatigue nucleation expressed
as:

RPFN
= √R2

1 +R
2
2 +⋯+R

2
ncp (20)

where Ri is the difference between the predicted PFN and
experimental PFN at the ith data point, and ncp is the number of
calibration points.Wenote that since the number of experimental
data points is relatively low, data were first fitted to a smooth
distribution and the calibration was performed by minimizing
the discrepancy between data points from the fitted distribution
and the simulation results.The outcome of the calibration process
is shown in Figure 9B. The calibrated strength distribution and
predicted evolution of D3 distributions at 91.5% yield stress are
plotted in Figure 10. The motion of D3 is represented every 5,000
cycles and up to 50,000 cycles.
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FIGURE 10 | Distribution of D3 and critical D3.

Figure 9 illustrates the predicted probability of the fatigue
nucleation curves are compared with those from experimental
observations for load amplitudes of 85.8,91.5 and 95.5% of
yield stress, respectively. The simulated probability of fatigue
nucleation at 91.5% yield stress is from calibration and therefore
exhibits high accuracy. The fatigue nucleation probabilities are
slightly underpredicted for the low amplitude loading, whereas
they are slightly overpredicted for the high amplitude loading. It is
important to note that the total number of cycles to failure varies
significantly (e.g., more than an order of magnitude between
85.8 and 91.5% loading) across the narrow load amplitude
range, and this variation is very well captured by the model
predictions. One of the primary reasons for the discrepancy
between the predicted results and the model observations is that
the number of experimental data points employed to generate the
experimental probabilities of fatigue nucleation is relatively low as
shown in Figure 3.

6 CONCLUSION

This manuscript established a computational framework to
predict fracture nucleation in polycrystalline microstructures
under cyclic loading conditions. The proposed framework is
probabilistic and considers the existence of an inherent property
in the microstructure, i.e., a critical distribution of fatigue
resistance that reflects the uncertainty induced by features that
remain unresolved at the scale of the grains. In view of the
results of the proposed investigations, we make the following
observations and conclusions: 1) A large ensemble of SVEs, of
approximately an order of magnitude larger than what most
previous studies considered is necessary to resolve the extreme
value statistics at the microstructural scale. This observation
emphasizes the need to employ fast solution algorithms in space
and in time (e.g., reduced order models, machine learning

models, time acceleration schemes) that allow for response
evaluation of such large ensembles of SVEs over large number of
cycles. 2) Validation of a probabilistic computational framework
such as the one proposed requires a large experimental dataset,
since extreme value statistics drive the nucleation process. To
the best of our knowledge, there is no such dataset available
in the open literature. 3) Furthermore, a thorough validation
of model predictions would need direct (and sufficient number
of) experimental observations of where and when fatigue cracks
nucleate. In view of the large variability of number of cycles
that nucleate fatigue cracks and the role of the microstructural
features in nucleating those cracks, the proposed probabilistic
computational framework offers a pathway for robust assessment
of fatigue life in polycrystalline materials.
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