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In the mechanical analysis of steel structures, whether it is static analysis or dynamic
analysis, it is necessary to establish the structural stiffness matrix first. In the process of
building the structural stiffness matrix, the same element usually has different node code
connection orders, and it has never been argued whether the different connection orders
of the same element will have an effect on the building of the stiffness matrix. In this study,
the influence of the difference in the node connection order on the construction of the
element stiffness matrix is studied. First, the structural element stiffness matrix in the global
coordinate system is established when the node connection order is different. It is found
that the element stiffness matrix in the global coordinate system is indeed inconsistent for
the same element with different connection orders. In this study, the elements of the
established element stiffness matrix are extracted into the global stiffness matrix of the
structural system based on the law of energy conservation; it is found that the global
stiffness matrix finally established by using two different connection relationships is the
same. The research results of the example show that in the stress analysis of steel
structures, selecting different node connection sequences to establish the structural
stiffness matrix will obtain the element stiffness matrix under different global coordinate
systems. However, through the aggregation process of the global stiffness matrix of the
structural system, the global stiffness matrix obtained is consistent, so the different
connection sequences of nodes will not affect the stress analysis of steel structures.
The example further analyzes the static stress and dynamic responses of the steel
structure. The conclusions of this study provide a reliable theoretical basis for the
situation that the order of node connections need not be consistent in the finite
element modeling of steel structures and are of reference value for the finite element
modeling of steel structures.

Keywords: stress analysis of steel structure, finite element analysis, local coordinate, global coordinates, stiffness
matrix, node connection

1 INTRODUCTION

In recent years, the application of high-quality high-performance steel has pushed steel buildings
into a boom (Wang et al., 2021; Yang et al., 2021). In order to ensure the safety of steel structures
during design, installation, and use, researchers have used various methods to mechanically
analyze the steel structures. Kamiński and Supeł (2016) analyzed the restrained bending moments
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of steel beams by the analytical method and the finite difference
method. Yu and Zhu (2016) proposed to combine the finite
particle method (FPM) to investigate the nonlinear dynamic
performance of a semi-rigid connected planar steel frame. In the
mechanical analysis of steel structures, the finite element
method is also one of the more commonly used methods
compared to these methods (Iu and Bradford, 2010;
Shifferaw and Fanous, 2013; Yu and Zhu, 2016; Azim and
Gül, 2021; Ziemian and Ziemian, 2021).

Its basic idea is to use the simple and regular geometry of
various basic elements in the local coordinate system and the ease
of calculation to simulate the various complex structural shapes
that occur in actual engineering (Bathe, 1996). The basic work of
the finite element method consists of two major parts. The first
part is the element analysis, i.e., the exploration of the mechanical
properties of the element. It includes the selection of the trial
functions of the element, the derivation of the element stiffness
(Feng, 2018; Feng et al., 2018; Luo and Yang, 2021) that
characterizes the stiffness or flexibility properties of the
element, or the flexibility matrix (Doebling et al., 1998; Yang
et al., 2013; Zare Hosseinzadeh et al., 2016; Katebi et al., 2018;
Stutz et al., 2018; LI et al., 2020). The second part is the structural
analysis, where the discrete elements are assembled into an
overall full-structure computational model, which ultimately
enables the matrix equations representing the full structural
equilibrium (or coordination) to be obtained (Pindera, 1991;
Mignolet et al., 2013; Luo et al., 2018). Usually, in the process
of structural analysis, after completing the nodal coding of the
divided structural elements, it is necessary to create the stiffness
matrix of each element in the local coordinate system (Bathe,
1996). Also, the positive direction of the local coordinates is
related to the starting position of the node encoding. The element
stiffness matrices in the local coordinate systems established by
choosing different node starting positions are not the same, and
this phenomenon has not been discussed. Then, it is a matter of
concern and investigation whether the resulting element stiffness
matrices will cause differences in the global stiffness matrix of the
structural system.

In this study, the influence of different node connection
sequences on the stiffness matrix is studied in the process of
establishing the finite element model. Based on the node
connection relationship and energy principle, the element
stiffness matrix with different connection sequences is
deduced, and the global stiffness matrix of the structure is
established based on the element stiffness matrix; the stiffness
matrices in different modeling stages are compared and verified.

The example further analyzes the static stress and dynamic
response of the steel structure. The results have reference
values for the stress analysis of steel structures by the finite
element method.

2 UNIT COORDINATE CONVERSION

2.1 Element Stiffness Matrix in the Local
Coordinate System
The beam element i j is analyzed in a local coordinate system, and
its material parameters are known. The node displacement is
shown in Figure 1.

The displacement component of the beam end can be
expressed as follows:

δ � [ ui vi θi uj vj θj ]T. (1)
Thus, the stiffness matrix of the beam element in a local

coordinate system can be obtained (Luo and Liu, 2016) as follows:

ke �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

2.2 Element Stiffness Matrix in the Global
Coordinate System
2.2.1 Forward Process
The beam element is placed in the global coordinate system (as
shown in Figure 2 with the sequence of element connection from

FIGURE 1 | Node displacement in local coordination.

FIGURE 2 |Global coordinate system rotation diagram (point i to point j).
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i point to j points). In order to obtain the element stiffness matrix
of the beam element in the global system, we rotated the global
coordinate system counterclockwise at an angle of φij so that the
axis x coincides with the axis of the beam element.

According to the transformation relation between the global
displacement and local displacement, the transformation matrix
Sij (YANG et al., 2019) can be obtained:

Sij �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosφij sinφij 0 0 0 0
−sinφij cosφij 0 0 0 0

0 0 1 0 0 0
0 0 0 cosφij sinφij 0
0 0 0 −sinφij cosφij 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3)

Through the transformation matrix, the element stiffness
matrix Keij in the global coordinate system with the element
connection relation from point i to point j can be obtained (Luo
and Yan, 2015):

Keij � STij · ke · Sij. (4)

2.2.2 Reverse Process
We selected the same beam element, as shown in Figure 3, with
the element connection sequence from points j to i and rotated
the global coordinate system counterclockwise at an angle of φji
so that axis x overlapped with the axis of the beam element.

According to the coordinate correspondence φji = 180。+ φij,
the transformation matrix Sji is as follows:

Sji �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosφji sinφji 0 0 0 0
−sinφji cosφji 0 0 0 0

0 0 1 0 0 0
0 0 0 cosφji sinφji 0
0 0 0 −sinφji cosφji 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5)

Through the transformation matrix, the element stiffness
matrix Keji in the global coordinate system with the element
connection relation from point j to point i can be obtained as
follows:

Keji � STji · ke · Sji. (6)

Comparing Eqs. 4–6, we can get

Keij ≠ Keji. (7)
Therefore, for the same element, different connection

sequences of elements will lead to inconsistency of the element
stiffness matrix in the global coordinate system. The influence of
such inconsistency on the global stiffness matrix of structure is
worthy of further study.

3 STRUCTURAL GLOBAL MATRIX

For the element in Figure 2, the elastic strain energy e of the
element can be expressed as follows: (Luo and Liu, 2016)

eij � 1
2
δTijKeijδij, (8a)

eji � 1
2
δTjiKejiδji. (8b)

The elastic strain energy E of the same element in the overall
structure can be expressed as follows (Luo and Liu, 2016):

Eij � 1
2
ΔTKgijΔ, (9a)

Eji � 1
2
ΔTKgjiΔ. (9b)

According to the law of energy conservation, the elastic strain
energy of the element remains unchanged no matter how the
connection sequence and coordinate system are selected:

eij � eji, (10a)
Eij � Eji, (10b)
eij � Eij, (10c)
eji � Eji. (10d)

Substituting Eqs. 9a,b into Eq. 10b, we obtain

Kgij � Kgji. (11)
Δ in Eqs. 9a,b is the displacement component of the overall

frame structure. For the frame structure with n nodes, it can be
expressed as a 3n F0B4 1 column vector.

Δ � [ u1 v1 θ1 / ui vi θi / uj vj θj / ]T.
(12)

The corresponding element displacement component is
extracted from the displacement component of the overall
frame structure, and a 6 F0B4 3n extraction matrix T
(element subscript is the row and column) is established
(Luo et al., 2019):

Tij �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

/ 0 1(1,3i−2) 0 / / / / / / / / /
/ / 0 1(2,3i−1) 0 / / / / / / / /
/ / / 0 1(3,3i) 0 / / / / / / /
/ / / / / / / 0 1(4,3j−2) 0 / / /
/ / / / / / / / 0 1(5,3j−1) 0 / /
/ / / / / / / / / 0 1(6,3j) 0 /

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(13a)

FIGURE 3 |Global coordinate system rotation diagram (point j to point i).
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Tji �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

/ / / / / / / 0 1(4,3j−2) 0 / / /
/ / / / / / / / 0 1(5,3j−1) 0 / /
/ / / / / / / / / 0 1(6,3j) 0 /
/ 0 1(1,3i−2) 0 / / / / / / / / /
/ / 0 1(2,3i−1) 0 / / / / / / / /
/ / / 0 1(3,3i) 0 / / / / / / /

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(13b)

where Tij represents the element displacement component
extracted from the integral displacement component in the
order that point i is connected to point j, and Tji represents
the element displacement component extracted from the integral
displacement component in the order that point j is connected to
point i.

From Eq. 1, Eq. 12, and Eqs. 13a,b, the process of extracting
the element displacement component from the global
displacement component can be expressed as follows:

δij � TijΔ, (14a)
δji � TjiΔ. (14b)

Substituting Equations 14a,b into Equations 8a,b we obtain

eij � 1
2
ΔTTT

ijKeijTijΔ, (15a)

eji � 1
2
ΔTTT

jiKejiTjiΔ. (15b)

Substituting Eq. 9a and Eq. 15a into Eq. 10c and at the same
time substituting Eq. 9b and Eq. 15b into Eq. 10d, the conversion
relationship of the element stiffness matrix in the global
coordinate system can be obtained as follows:

Kgij � TT
ijKeijTij, (16a)

Kgji � TT
jiKejiTji. (16b)

Therefore, by substituting Eqs. 4, 6 into Eq. 16a and Eq. 16b,
we can obtain the following:

Kgij � TT
ijS

T
ijkeSijTij, (17a)

Kgij � TT
jiS

T
jikeSjiTji. (17b)

From Eq. 2, it is known that the element stiffness matrix ke in
the local coordinate system is unique. According to Eq. 7, in the
process of transforming local coordinates into global coordinates,
the stiffness matrix Ke of the element in the global coordinate
system will change if different element connection relations are
selected; however, in the process of the global stiffness assembly,
the elements of Ke need to be extracted into the overall structure
matrix according to Eqs. 16a,b, based on the corresponding
relationship of the element node degrees of freedom.
Therefore, the modeling of the element stiffness matrix is
composed of two steps. The first step is to transform the
element stiffness matrix in the local coordinate system into the
global coordinate system, and the second step is to extract the
element stiffness matrix elements in the global coordinate system
into the global matrix.

It can be seen from Eq. 11 that the two stiffness matrices
obtained by Eqs. 17a,b are the same, and changing the connection
relation of elements does not affect the modeling results of the
element stiffness matrix.

The elastic strain energy Et of the given structure is expressed
as follows:

Et � 1
2
ΔTKGΔ. (18)

The elastic strain energy of the structure is the sum of the
elastic strain energy of each element, namely,

Et � ∑E. (19)
Substituting Eq. 18 and Eqs. 9a,b into Eq. 19, we can obtain

KGij � ∑Kgij, (20a)
KGji � ∑Kgji. (20b)

The comprehensive Eqs. 11–20 can be obtained as follows:

KGij � KGji. (21)
Finally, the boundary conditions of the structure are

considered, and the rows and columns corresponding to the
freedom of constraint in KG are modified to obtain the global
matrix K of the structure. Because the boundary conditions are
the same, regardless of the selection of the node connection order,
the result can be obtained as follows:

Kij � Kji. (22)
Therefore, for the same structure, different cell connection

orders will not change the global matrix of the structure. This
conclusion optimizes the process of overall structural analysis,
especially the computer programming for frame structure, which
can improve the logic of the program.

4 EXAMPLE ANALYSIS

Taking the rigid frame structure shown in Figure 4 as an
example, the section shapes and dimensions of element ①,
element ②, and element ③ are equal. See Table 1 for various
material properties of the beam element. The displacement and
element internal force of the rigid frame structure under the
action of external force are calculated.

4.1 Forward Process
The global matrix of the structure is calculated, according to the
node coding shown in Figure 5.

In the first step, the stiffness matrix ke is found to be the same
for all three elements in the figure in the local coordinate system,
according to Eq. 2.

In the second step, the coordinate conversion matrix S of
each element is found. For element ①, the tilt angle is 45。.
Element ② has no inclination, that is, the global coordinate
system coincides with the local coordinate system. For element
③, the tilt angle is 135。. By substituting the inclination angle of
each element into Eq. 3, the conversion matrices Sij

1, Sij
2, and

Sij
3 corresponding to element ①, element ②, and element ③

can be obtained.
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In the third step, the stiffness matrix Ke of each element in the
global coordinate system is obtained. By substituting the
transformation matrices Sij

1, Sij
2, and Sij

3 of each element into
Eq. 4, the stiffness matrices Keij

1, Keij
2, and Keij

3 corresponding to
element ①, element ②, and element ③ in the global coordinate
system can be obtained, respectively.

K1
eij �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.4402 2.3898 −0.1782 −2.4402 −2.3898 −0.1782
2.3898 2.4402 0.1782 −2.3898 −2.4402 0.1782
−0.1782 0.1782 1.6800 0.1782 −0.1782 0.8400
−2.4402 −2.3898 0.1782 2.4402 2.3898 0.1782
−2.3898 −2.4402 −0.1782 2.3898 2.4402 −0.1782
−0.1782 0.1782 0.8400 0.1782 −0.1782 1.6800

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 106 , (23)

k2eij �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.8300 0 0 −4.8300 0 0
0 0.0504 0.2520 0 −0.0504 0.2520
0 0.2520 1.6800 0 −0.2520 0.8400

−4.8300 0 0 4.8300 0 0
0 −0.0504 −0.2520 0 0.0504 −0.2520
0 0.2520 0.8400 0 −0.2520 1.6800

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 106 , (24)

K3
eij �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.4402 −2.3898 −0.1782 −2.4402 2.3898 −0.1782
−2.3898 2.4402 −0.1782 2.3898 −2.4402 −0.1782
−0.1782 −0.1782 1.6800 0.1782 0.1782 0.8400
−2.4402 2.3898 0.1782 2.4402 −2.3898 0.1782
2.3898 −2.4402 0.1782 −2.3898 2.4402 0.1782
−0.1782 −0.1782 0.8400 0.1782 0.1782 1.6800

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 106. (25)

In the fourth step, the extraction matrix T of the stiffness
matrix of each element is determined, according to the location of
the element displacement component in the global displacement
component. According to Eq. 13a, the extraction matrices
corresponding to element ①, element ②, and element ③ are
Tij

1, Tij
2, and Tij

3, respectively.
In the fifth step,Kg is obtained according to the transformation

relation of the element stiffness matrix in the global coordinate
system. SubstitutingKeij

1 and Tij
1 into Eq. 16a, we can obtainKgij

1

of element ①; substituting Keij
2 and Tij

2 into Eq. 16a, we can
obtain Kgij

2 of element②; and substituting Keij
3 and Tij

3 into Eq.
16a, we can obtain Kgij

3 of element ③.
In the sixth step, it can be seen from Eq. 20a that Kgij of the

three elements is accumulated to obtain the 12th order structural
global matrix KGij.

In the seventh step, it can be seen from Figure 5 that node 1
and node 4 have fixed end constraints, so the node displacement
and rotation angle of these two points are 0. Therefore, the row
and column corresponding to the displacement component of
node 1 and node 4 in KGij are deleted, and the global matrix Kij of
the rigid frame structure in Figure 5 is obtained as follows:

FIGURE 4 | Calculation model and the section size of the rigid frame. (A) Calculation model. (B) Section size (unit: mm).

TABLE 1 | Table of the structural unit material property.

Element type Material properties Material property value

Beam Elastic modulus (E) 2.1 × 108kN/m2

Sectional area (A) 0.23m2

Moment of inertia (I) 0.02m4

Length (L) 10m

TABLE 2 | Calculation cases.

Case External incentive Damping ratio (ζ)

Case 1 Harmonic excitation (frequency: 11 Hz) 0.010
Case 2 Harmonic excitation (frequency: 11 Hz) 0.015
Case 3 Harmonic excitation (frequency: 11 Hz) 0.020
Case 4 Harmonic excitation (frequency: 11 Hz) 0.025
Case 5 Harmonic excitation (the frequency is the first-order frequency of the structure) 0.010
Case 6 Harmonic excitation (the frequency is the first-order frequency of the structure) 0.015
Case 7 Harmonic excitation (the frequency is the first-order frequency of the structure) 0.020
Case 8 Harmonic excitation (the frequency is the first-order frequency of the structure) 0.025
Case 9 EL Centro seismic wave 0.010
Case 10 EL Centro seismic wave 0.015
Case 11 EL Centro seismic wave 0.020
Case 12 EL Centro seismic wave 0.025
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Kij �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7.2702 2.3898 0.1782 −4.8300 0 0
2.3898 2.4906 0.0738 0 −0.0504 0.2520
0.1782 0.0738 3.3600 0 −0.2520 0.8400
−4.8300 0 0 7.2702 −2.3898 0.1782

0 −0.0504 −0.2520 −2.3898 2.4906 −0.0738
0 0.2520 0.8400 0.1782 −0.0748 3.3600

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 106. (26)

4.2 Reverse Process
The global matrix of the structure is calculated according to the
node coding shown in Figure 6.

In the first step, the stiffness matrix ke of the three
elements in the local coordinate system is found according
to Eq. 2.

In the second step, the coordinate conversion matrix S of
each element is found. For element ①, the tilt angle is 225°.
For element ②, the tilt angle is 180°; for element ③, the tilt
angle is 315°. By substituting the inclination angle of each
element into Eq. 5, the conversion matrices Sji

1, Sji
2, and Sji

3

corresponding to element ①, element ②, and element ③ can
be obtained.

In the third step, the stiffness matrix Ke of each element in
the global coordinate system is obtained. By substituting the
transformation matrices Sji

1, Sji
2, and Sji

3 of each element
into Eq. 6, the stiffness matrices Keji

1, Keji
2, and Keji

3

corresponding to element ①, element ②, and element ③
in the global coordinate system can be obtained,
respectively.

K1
eji �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.4402 2.3898 0.1782 −2.4402 −2.3898 0.1782
2.3898 2.4402 −0.1782 −2.3898 −2.4402 −0.1782
0.1782 −0.1782 1.6800 −0.1782 0.1782 0.8400
−2.4402 −2.3898 −0.1782 2.4402 2.3898 −0.1782
−2.3898 −2.4402 0.1782 2.3898 2.4402 0.1782
0.1782 −0.1782 0.8400 −0.1782 0.1782 1.6800

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 106 , (27)

K2
eji �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.8300 0 0 −4.8300 0 0
0 0.0504 −0.2520 0 −0.0504 0.2520
0 −0.2520 1.6800 0 0.2520 0.8400

−4.8300 0 0 4.8300 0 0
0 −0.0504 0.2520 0 0.0504 0.2520
0 −0.2520 0.8400 0 0.2520 1.6800

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 106 , (28)

K3
eji �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.4402 −2.3898 0.1782 −2.4402 2.3898 0.1782
−2.3898 2.4402 0.1782 2.3898 −2.4402 0.1782
0.1782 0.1782 1.6800 −0.1782 −0.1782 0.8400
−2.4402 2.3898 −0.1782 2.4402 −2.3898 −0.1782
2.3898 −2.4402 −0.1782 −2.3898 2.4402 −0.1782
0.1782 0.1782 0.8400 −0.1782 −0.1782 1.6800

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 106. (29)

In the fourth step, the extraction matrix T of the stiffness
matrix of each element is determined, according to the location of
the element displacement component in the global displacement
component. According to Eq. 13b, the extraction matrices

corresponding to element ①, element ②, and element ③ are
Tji

1, Tji
2, and Tji

3, respectively.
In the fifth step,Kg is obtained according to the transformation

relation of the element stiffness matrix in the global coordinate
system. SubstitutingKeji

1 and Tji
1 into Eq. 16b, we can obtainKgji

1

of element ①; substituting Keji
2 and Tji

2 into Eq. 16b, we can
obtain Kgji

2 of element②; and substituting Keji
3 and Tji

3 into Eq.
16b, we can obtain Kgji

3 of element ③.
In the sixth step, it can be seen from Eq. 20b that Kgji of the

three units is accumulated to obtain the 12-order structural global
matrix KGji.

In the seventh step, it can be seen from Figure 6 that node 1
and node 4 are constrained by fixed ends, so the node
displacement and rotation angle of these two points are 0.
Therefore, the row and column corresponding to the
displacement component of node 1 and node 4 in KGji are
deleted, and the global matrix Kji of the rigid frame structure
in Figure 6 is obtained as follows:

Kji �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7.2702 2.3898 0.1782 −4.8300 0 0
2.3898 2.4906 0.0738 0 −0.0504 0.2520
0.1782 0.0738 3.3600 0 −0.2520 0.8400
−4.8300 0 0 7.2702 −2.3898 0.1782

0 −0.0504 −0.2520 −2.3898 2.4906 −0.0738
0 0.2520 0.8400 0.1782 −0.0748 3.3600

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 106. (30)

Through the example, we can find Keij≠Keji and Kij = Kji and
verify the conclusion of Eqs. 7, 22.

4.3 Displacement and Bearing Reaction
In the first step, the external load vector F is established.
According to Figure 4, a vertical external force of 100 KN is
applied at node 2, which is expressed as a column vector given as
follows:

F � [ 0 −100 0 0 0 0 ]T. (31)
In the second step, the structural stiffness equation is

established as follows:

KU � F. (32)
The displacement vector U can be obtained by transforming

Eq. 32:

U � K−1F. (33)
In the third step, the displacement vectorU can be obtained by

substituting Eqs. 26, 31 into Eq. 33:

FIGURE 6 | Node coding (point j to point i).

FIGURE 5 | Node coding (point i to point j).
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U �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.554m
−2.819m
0.071rad
2.452
2.307m
0.114rad

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 10−4. (34)

The first three lines of Eq. 34 represent the displacement and
rotation angle of node 2, and the last three lines represent the
displacement and rotation angle of node 3.

The fourth step determined the stiffness equation of the
complete structure, which is given as follows:

KGΔ � R. (35)
where R is the load array of four nodes in the structure; it is
expressed as follows:

R � [R1x R1y R1θ R2x R2y R2θ R3x R3y R3θ R4x R4y R4θ ]T.
(36)

Eq. 36 can be transformed into a column vector of 4ⅹ1.

R � [R1 R2 R3 R4 ]T. (37)
According to Eq. 12, Δ is the displacement array of four nodes

in the structure, which can be transformed into the column vector
of 4ⅹ1.

Δ � [Δ1 Δ2 Δ3 Δ4 ]T. (38)
Because there is a fixed end constraint between node 1 and

node 4, the displacement and rotation angle of node 1 and node 4
are 0, so

Δ � [ 0 Δ2 Δ3 0 ]T. (39)
In the fifth step, Ke is divided into a stiffness sub block array in

the order of connecting point i to point j and loaded into the
global matrix KG (the process of point j connecting to point i is
similar, and the final KG result is the same, so it will not be
described here)

Element ① is split from node 1 to node 2:

K1
e � [K1

e11 K1
e12

K1
e21 K1

e22
]. (40)

Element ② is split from node 2 to node 3:

K2
e � [K2

e22 K2
e23

K2
e32 K2

e33
]. (41)

Element ③ is split from node 4 to node 3:

K3
e � [K3

e44 K3
e43

K3
e34 K3

e33
]. (42)

The global stiffness matrix KG can be obtained by combining
the element stiffness matrix derived from Eqs. 40–42, and the
global stiffness matrix KG is expressed as follows:

KG �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
K1

e11 K1
e12 0 0

K1
e21 K1

e22 + K2
e22 K2

e23 0
0 K2

e32 K2
e33 +K3

e33 K3
e34

0 0 K3
e43 K3

e44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (43)

In the sixth step, the support reaction of constrained nodes is
calculated.

Substituting Eqs. 37, 39 and 43 into Eq. 35, we can obtain the
following:

K1
e12 · Δ2 � R1, (44)

K3
e43 · Δ3 � R4. (45)

where the significance of the stiffness sub-block Ke12
1 is the force

generated by node 1 when node 2 has element displacement in the
global coordinate system. According to Eq. 23, the stiffness sub-
block Ke12

1 is

K1
e12 � ⎡⎢⎢⎢⎢⎢⎣−2.4402 −2.3898 −0.1782

−2.3898 −2.4402 0.1782
0.1782 −0.1782 0.8400

⎤⎥⎥⎥⎥⎥⎦ × 106. (46)

The significance of the stiffness sub-block Ke43
3 is the force

generated at node 4 when node 3 has unit displacement in the
global coordinate system. According to Eq. 25, the stiffness sub-
block Ke43

3 is as follows:

K3
e43 � ⎡⎢⎢⎢⎢⎢⎣−2.4402 2.3898 −0.1782

2.3898 −2.4402 −0.1782
0.1782 0.1782 0.8400

⎤⎥⎥⎥⎥⎥⎦ × 106. (47)

According to Eq. 34, it can be known as

Δ2 � [ 2.554 −2.819 0.071 ]T × 10−4, (48)
Δ3 � [ 2.452 2.307 0.114 ]T × 10−4. (49)

Substituting Eqs. 46, 48 into Eq. 44, we can obtain

R1 � [ 49.1923kN 78.8027kN 101.7109kN ·m ]T. (50)
Substituting Eqs. 47, 49 into Eq. 45, we can obtain

R4 � [−49.0417kN 20.9933kN 94.3814kN ·m ]T. (51)
Because R1 contains the known external load array F1 and the

reaction force f1 on the supporting node,

f1 � R1 − F1. (52)
The same can be given as follows:

FIGURE 7 | Frame structure deformation diagram.
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f4 � R4 − F4. (53)
There is no external load on node 1 and node 4, so

F1 � [ 0 0 0 ]T, (54)
F4 � [ 0 0 0 ]T. (55)

By substituting Eqs. 50, 54 into Eq. 52, the supporting reaction
force at node 1 can be obtained as follows:

f1 � [ 49.1923kN 78.8027kN 101.7109kN ·m ]T. (56)
By substituting Eqs. 52, 55 into Eq. 53, the supporting reaction

force at node 4 can be obtained as follows:

f4 � [−49.0417kN 20.9933kN 94.3814kN ·m ]T. (57)
The drawing of deformation diagram of rigid frame structure is

shown in Figure 7 (solid line after deformation and dotted line before
deformation).

4.4 Structural Dynamic Analysis Based on
the State Space Model
We continued taking the rigid frame structure shown in Figure 4
as an example to analyze the dynamic response of the rigid frame
under different working conditions, the specific working
conditions are shown in Table 2.

The working conditions are as follows: by comparing cases 1 to 4
to study the dynamic response of rigid frame structures with
different damping ratios when the harmonic excitation
(frequency: 11 Hz) is equal; by comparing cases 5 to 8 to study
the dynamic response of rigid frame structures with different
damping ratios when harmonic excitation (frequency is the first-
order frequency of the structure) causes structural resonance; and by
comparing cases 1 to 4 with cases 5 to 8 to study the dynamic
response of the structure under different excitations when the
damping ratio is the same; cases 9 to 12 are used to investigate
whether the dynamic response of the structure under the excitation

FIGURE 8 | (A) Time history curve of the output response under harmonic excitation (f = 11 Hz and ζ = 0.01). (B) Time history curve of the output response under
harmonic excitation (f = 11 Hz and ζ = 0.015), (C) Time history curve of the output response under harmonic excitation (f = 11 Hz and ζ = 0.02). (D) Time history curve of
the output response under harmonic excitation (f = 11 Hz and ζ = 0.025).
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of EL Centro seismic waves conforms to the laws of the dynamic
response of the structure discussed in cases 1 to 8.

4.4.1 Dynamic Response Analysis Process of Example
In the first step, the global mass matrix is established in the global
coordinate system MG.

The element mass matrix in the local coordinate system is
(Ding and Chen, 2006)

me � ρAl

420

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

140 0 0 70 0 0
0 156 22l 0 54 −13l
0 22l 4l2 0 13l −3l2
70 0 0 140 0 0
0 54 13l 0 156 −22l
0 −13l −3l2 0 −22l 4l2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (58)

Similarly, through the transformation matrix Sij of Eq. 5, the
element mass matrix me in the local coordinate system can be

transformed into the element mass matrix Meij in the global
coordinate system.

Meij � STij•me•Sij. (59)
The matrix Tij is extracted by Eq. 13a, and each element inMe

is extracted into the global structure matrix.

Mgij � TT
ij•S

T
ij•me•Sij•TT

ij. (60)
The global mass matrix MGij of the structure under the global

coordinate system is obtained by accumulation.

MGij � ∑Mgij. (61)
According to the parameters in Figure 4 and Table 1, the

global mass matrix MG of the structure in the global coordinate
system is calculated.

FIGURE 9 | (A) Time history curve of the output response under harmonic excitation (f = 13.3592 Hz and ζ = 0.01). (B) Time history curve of the output
response under harmonic excitation (f = 13.3592 Hz and ζ = 0.015). (C) Time history curve of the output response under harmonic excitation (f = 13.3592 Hz and ζ
= 0.02). (D) Time history curve of the output response under harmonic excitation (f = 13.3592 Hz and ζ = 0.025).
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FIGURE 10 | (A) Time history curve of the output response under El Centro seismic wave excitation (ζ = 0.01). (B) Time history curve of the output response under El
Centro seismic wave excitation (ζ = 0.015). (C) Time history curve of the output response under El Centro seismic wave excitation (ζ = 0.02).(D) Time history curve of the
output response under El Centro seismic wave excitation (ζ = 0.025)

TABLE 3 | Peak values of displacement, velocity, and acceleration of structures under different cases.

Case External incentive Damping ratio Displacement (m) Speed (m/s) Acceleration (m/s2)

Case 1 Harmonic excitation (frequency: 11 Hz) 0.010 0.0283 2.0936 168.1733
Case 2 Harmonic excitation (frequency: 11 Hz) 0.015 0.0273 2.0074 158.4512
Case 3 Harmonic excitation (frequency: 11 Hz) 0.020 0.0264 1.9405 151.2406
Case 4 Harmonic excitation (frequency: 11 Hz) 0.025 0.0255 1.8786 144.6427
Case 5 Harmonic excitation (the frequency is the first-order frequency of the structure) 0.010 0.2724 22.8122 1917.0000
Case 6 Harmonic excitation (the frequency is the first-order frequency of the structure) 0.015 0.1841 15.4405 1,294.4000
Case 7 Harmonic excitation (the frequency is the first-order frequency of the structure) 0.020 0.1383 11.6095 971.9114
Case 8 Harmonic excitation (the frequency is the first-order frequency of the structure) 0.025 0.1107 9.2911 777.6984
Case 9 EL Centro seismic wave 0.010 0.0158 2.3664 655.7782
Case 10 EL Centro seismic wave 0.015 0.0141 2.0825 567.5561
Case 11 EL Centro seismic wave 0.020 0.0128 1.8396 478.9636
Case 12 EL Centro seismic wave 0.025 0.0122 1.7121 400.0018
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In the second step, the treatment of boundary conditions of
the finite element method is carried out (mark 0 to set 1) (Reddy,
2019).

As shown in Figure 4, because node 1 and node 4 are fixed
ends, each fixed end has three constraints. Therefore, the
boundary conditions of the global mass matrix MG and the
global stiffness matrix KG of the structure in the global
coordinate system are processed, respectively (mark 0 to set
1) the global mass matrix MZ and global stiffness matrix KZ of
the structure in the processed global coordinate system are
obtained.

In the third step, the damping matrix is established.
In general, Rayleigh damping can be expressed as follows

(Cruz and Miranda, 2017):

[Cz] � a0[Mz] + a1[Kz], (62)
where a0 and a1 are two scaling coefficients.

a0 � 2ζω1ω2

ω1 + ω2
, a1 � 2ζ

ω1 + ω2
, (63)

where ω1 and ω2 represent the first-order frequency and the
second-order frequency, respectively, and ζ represents the
structural damping ratio. For convenience, the first two modal
damping values of the structure analyzed in this study are
the same.

The damping ratios are 0.01, 0.015, 0.02, and 0.025,
respectively, and brought into Eq. 62 together with MZ, KZ,
and Eq. 63; the damping matrices Cz0.01, Cz0.015, Cz0.02, and
Cz0.025 of the steel frame structure are obtained, respectively.

In the fourth step, based on the state space model, the dynamic
analysis of the rigid frame structure is carried out.

The discrete-time state space model of the system can be
expressed as follows: (Moonen et al., 1989; Swindlehust et al.,
1995; Bernal et al., 2015)

X[k + 1] � AX[k] + BU[k], (64)
Y[k] � C1X[k] + DU[k]. (65)

Among them,

A � eAcΔt, (66)

FIGURE 11 | (A)Relationship between the damping ratio and displacement. (B) Relationship between the damping ratio and velocity. (C)Relationship between the
damping ratio and acceleration.
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B � ∫Δt

0
eAcτBcdτ � A−1

c (A − 1)Bc, (67)
C1 � Cc � [Cd − CaM

−1K Cv − CaM
−1C ], (68)

D � Dc � CaM
−1. (69)

A is the state matrix of the discrete-time system, B is the
input matrix of the discrete-time system, and C1 and D are the
observation matrices of the state and input of the discrete-
time system, respectively. Δt is the sampling period, Ca, Cv, and
Cd are the acceleration output matrix, velocity output
matrix, and displacement output matrix, respectively, Ac is
the state matrix of the structural continuous time system,
and Bc is the input matrix of the structural continuous time
system.

Ac � [ 0 I
−M−1K −M−1C ],Bc � [ 0

M−1 ], (70)

I is the identity matrix, C is the damping matrix,M and K are the
global mass matrix and global stiffness matrix after finite element
boundary condition treatment, respectively.

4.4.2 Dynamic Response Analysis of the Rigid Frame
Structure
4.4.2.1 Dynamic Response of the Rigid Frame Structure
Under Harmonic Excitation
The discrete-time state space model is used to describe the
system. The sampling frequency is set as Fs = 200Hz, the
sampling interval as 1/Fs, and the number of generated
samples as N = 1,000 to sample the output displacement,
output speed, and output acceleration, respectively.

(1) Dynamic response of the rigid frame structure under the
harmonic excitation with a frequency of 11 Hz.

When the harmonic excitation with a frequency of 11 Hz is
adopted, the output response of the system under different
damping ratios is recorded from the initial time, as shown in
Figure 8A–D.

(2) Dynamic responses of the rigid frame structure under the
harmonic excitation with a frequency of 13.3592 Hz

Because the first-order natural frequency of the
structure is 13.3592 Hz, the structure resonates when the
frequency of harmonic excitation is 13.3592 Hz. The
output response of the system under different damping
ratios is recorded from the initial time, as shown in
Figures 9A–D.

4.4.2.2 Dynamic Response of the Rigid Frame Structure
Excited by an El Centro Seismic Wave
The discrete-time state space model is used to describe the
system. The drive of the system is the seismic wave input. The
seismic wave adopts 500gal El Centro wave, the sampling
period is 0.02s, and the number of generated samples is
N = 1,500.

When El Centro seismic wave excitation is adopted, the output
response of the system under different damping ratios is recorded
from the initial time, as shown in Figures 10A–D.

The peak values of displacement, velocity, and acceleration of
each case of the structure are extracted, respectively. The specific
data are shown in the table as follows.

In order to more clearly show the relationship between the
structural damping ratio and displacement, and velocity and
acceleration under different external excitation, we draw the
data in Table 3 into a broken line diagram, as shown in
Figures 11A–C.

Combined with Table 3 and Figure 11, it can be seen that in
cases 1 to 4, under the harmonic excitation with a frequency of
11Hz, when the damping ratio is 0.01, the displacement, velocity,
and acceleration of the rigid frame structure reach the maximum,
which are 0.0283m, 2.0936 m/s, and 168.1733 m/s20, respectively;
when the damping ratio is 0.025, the displacement, velocity, and
acceleration of the rigid frame structure reach the minimum
values, which are 0.0255m, 1.8786 m/s, and 144.6427 m/s2,
respectively. In the working conditions 5 to 8, under the
harmonic excitation with a frequency of 13.3592Hz, when the
damping ratio is 0.01, the displacement, velocity, and acceleration
of the rigid frame structure reach the maximum, which are
0.2724m, 22.8122 m/s, and 1917m/s2, respectively; when the
damping ratio is 0.025, the displacement, velocity, and
acceleration of the rigid frame structure reach the minimum
values of 0.1107m, 9.2911 m/s, and 777.6984 m/s2, respectively. It
can be seen that under the same excitation, with the increase in
the damping ratio, the displacement, velocity, and acceleration of
the rigid frame structure gradually decrease, and the structure
gradually tends to be stable; moreover, in the structural dynamic
analysis, the value of the damping ratio will affect the accuracy of
structural dynamic response analysis.

Through the comparative analysis of cases 1 to 4 and cases 5 to
8, it can be seen that in cases 5 to 8, when the excitation frequency
is equal to the natural frequency of the rigid frame structure, the
structure resonates. At the same damping ratio, the acceleration
of the structure is much greater than the corresponding
acceleration in cases 1 to 4.

In cases 9 to 12, under the excitation of the El Centro seismic
wave, with the increase in the damping ratio, the displacement,
velocity, and acceleration of the rigid frame structure gradually
decrease, and the structure tends to be stable; moreover, the
dynamic response of the rigid frame structure caused by the El
Centro seismic wave is less than that of structure resonance. It
conforms to the law obtained from the comparative analysis of
cases 1 to 8.

5 CONCLUSION

In the stress analysis of steel structures, whether static analysis or
dynamic analysis, it is necessary to establish the structural
stiffness matrix first. In the process of establishing the
structural stiffness matrix, there are usually different coding
sequences of nodes for the same element. In this study, the
influence of the change in the connection order of element
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nodes on the global matrix of the structure is discussed, and the
mechanical analysis of steel structures is carried out, and the
following conclusions are obtained through theoretical deduction
and calculation example analysis:

(1) For the same elements, different nodal connection orders will
lead to different element stiffness matrices in the global
coordinate system due to the change in the coordinate
axis direction.

(2) Although the element stiffness matrices under the established
global coordinate system are different, in the process of
integrating the global stiffness matrix, the elements of the
global stiffness matrix obtained by reordering the
corresponding relationship between the node code and the
matrix elements are the same. Therefore, there is no difference
in the global stiffness matrix of the structure established by
changing the node connection relationship, which will not
affect the stress analysis of the steel structure. This conclusion
provides a reliable theoretical basis for the situation that the
order of node connections need not be consistent in the finite
element modeling of steel structures and is of reference value
for the finite element modeling of steel structures.

(3) When analyzing the dynamic response of rigid frame
structures, the dynamic response structure of the structure

analyzed by different external excitation processes is
different; when the frequency of external excitation is
equal to the natural frequency of the structure, the
dynamic response value of the structure reaches the peak
and the structure resonates.

(4) Although the change in the damping ratio is small, the peak
acceleration of the structure changes obviously. Therefore,
the value of the damping ratio will affect the accuracy of the
results of structural dynamic analysis.
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