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Introduction of high entropy alloys or multi-principal element alloys around 15 years
ago motivated revising conventional alloy design strategies and proposed new ways
for alloy development. Despite significant research since then, the potential for new
material discoveries using the MPEA concept has hardly been scratched. Given the
number of available elements and the vastness of possible composition combinations,
an unlimited number of alloys are waiting to be investigated! Discovering novel high-
performance materials can be like finding a needle in a haystack, which demands an
enormous amount of time and computational capacity. To overcome the challenge, a
systematic approach is essential to meet the growing demand for developing novel
high-performance or multifunctional materials. This article aims to briefly review the
challenges, recent progress and gaps, and future outlook in accelerated alloy
development, with a specific focus on computational high-throughput (HT)
screening methods integrated with the Calculation of Phase Diagrams (CALPHAD)
technique.
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INTRODUCTION

Recent Progress and New Horizons in Alloy Development
Alloy development is one of the main pillars of technological advancement in many strategic
sectors such as energy and transportation. Concerning structural applications, conventional alloy
development strategies include various strengthening mechanisms such as grain boundary
strengthening, work-hardening, solid solution strengthening and transformation strengthening.
With increasing demands for new technologies, such material design strategies seem to be reaching
their intrinsic limits, and there has been a need to revise the material development routines.
Introduction of high entropy alloys (HEAs) or multi-principal element alloys (MPEAs) in 2004
(Yeh et al., 2004; Cantor et al., 2004), with their exceptional properties, motivated revisiting
conventional alloy design strategies and offered new ways for alloy design and development.
Traditionally, HEAs were defined as alloy systems with increased entropy that favours a
thermodynamically stable single-phase solid solutions with equal proportions of five or more
principal elements. Later, non-equimolar multi-principal compositions also showed great
potential, which led to a more “relaxed” term of MPEA or compositionally complex alloys
(CCA), including more multi-phase alloys with “slightly decreased configurational entropy”
compared to HEAs (Pradeep et al., 2015). As an example, Miracle et al. (2014) elaborated the
essence of developing HEAs containing particles as a secondary strengthening mechanism that is
crucial for improved high-temperature stability, especially for structural applications in the
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transportation and energy sectors. Given the vastness of
composition-particle combinations, this suggests an
astronomical number of alloys waiting to be discovered and
investigated.

Despite significant research efforts since 2004, the potential for
new material discoveries using the MPEA concept has hardly
been scratched! As Miracle et al. (Miracle et al., 2014) stated, “the
vastness (of opportunities) is frightening, and it beckons”! This
vastness offers excellent potential for new discoveries, but at the
same time, it is the biggest obstacle for alloy design since it
demands an enormous amount of time and computational
capacity even before proceeding to the experimental validation.

In the industrial context, imagine a case for developing
existing lightweight alloys (e.g., Al-Si alloys) for mechanical
stability at elevated temperatures; a fascinating research
question. But considering the vastness of compositional space
(elemental choices and the amount for each element to be added/
modified in the composition), the alloy modification/
development will be a very tedious and time-consuming job.

Systematic accelerated metallurgy is essential to meet the
growing demand for developing novel high-performance or
multifunctional materials. The current article briefly reviews
the challenges, recent progress and gaps, and future outlook in
accelerated alloy development with a specific focus on
computational high-throughput screening methods integrated
with the Calculation of Phase Diagrams (CALPHAD) technique.

Machine Learning for Alloy Development
Data-driven modelling and machine learning (ML) can offer the
possibility to extract sound and sometimes unexpected results
from sparse datasets. ML methods have been gaining interest due
to their intrinsic ability to construct complex non-linear
relationships between input and output data. Recent
developments in ML for alloy design have been appealing with
the promise of exploring the phase formation, phase stability and
properties of metallic materials (Abu-Odeh et al., 2018; Qu et al.,
2019; Qiao et al., 2021a; Choi et al., 2021; Li et al., 2021; Nassar
and Mullis, 2021; Xiong et al., 2021; Zhao et al., 2021; Yang et al.,
2022), as well as processability of the alloys such as castability and
3D printability (Seede et al., 2021). These methods usually
provide a reasonable calculation accuracy of typically >85%.
As an example, Subedi et al. (2021) have recently developed a
python-based multi-principal element alloys laboratory toolkit
based on an artificial neural network (ANN) to predict phase
formation in MPEAs. The toolkit was claimed to be able to
predict phase formations in MPEAs based on the given
composition and properties of the constituent elements.
Besides ANNs, other machine learning models such as support
vector machines (SVMs) and decision trees (DTs) have been
widely used in literature (Frydrych et al., 2021). New methods
such as deep learning (DL) has also been gaining attention,
eventually making machine learning a promising tool for
material discovery, as well as material property prediction
(Qiao et al., 2021a). Generally, unsupervised ML aims at
finding the internal structure and the relationship among data,
and supervised ML is used to compare the prediction results with
the actual training data. Learning-based models can predict

properties of undiscovered materials and thus could be used as
an efficient tool to bypass direct experiments or calculations for
exploring the territory of unknown materials (Jin et al., 2021; Wu
et al., 2022). One of the main challenges in ML, though, is that the
credibility partly depends on the vastness of training data, for
which a combination of experimental and simulation data could
be used. The main drawback of ML, in general, is the limited
explored composition spaces based on experimental data (Sorkin
et al., 2021a; Zeng et al., 2021).

ML can be combined with any calculation method, such as
empirical models, CALPHAD, and DFT, to rapidly screen and
predict properties. Some recent examples are provided here. Zeng
et al. (2021) combined ML and CALPHAD to explore the
selection rules of single FCC and BCC phases of HEAs. Arora
and Aidhy (2020) used ML and DFT to predict the Stacking Fault
Energy (SFE) based on the alloy composition. Yan et al. (2021)
used ML combined with empirical models to design single-phase
refractory HEAs (R-HEAs) for high-temperature applications
and elaborated the relative importance of different empirical
models for designing R-HEAs. Huang et al. (Huang et al.,
2021) used ML combined with empirical models to study the
effect of solid solution hardening on the overall mechanical
behaviour of HEAs. Guo et al. (2021) proposed integrating
Molecular Dynamic (MD), ML and generic algorithms for
predicting the stiffness and critical resolved shear stress of
HEAs. Dewangan and Kumar (2022) recently used ANN to
predict high-temperature oxidation behaviour in HEAs.

Each calculation method has its own uncertainty that is added
to that of the ML; e.g., first-principle calculations sometimes have
a disagreement with experiment or even CALPHAD. The reasons
for this disagreement is still controversial, but it could be partly
due to the sluggish diffusion in HEAs that makes it difficult for
the alloy to reach the “equilibrium” state. These challenges, along
with the essence for further improving calculations’ credibility
and extending the screening methods to non-equiatomic
compositions, is an urgent and exciting research topic for
more profound development.

Although powerful, to become efficient tools for accelerated
alloy design, ML methods require a boost both for rapid
validation and for providing the data for training.
Computational and experimental high-throughput (HT)
screening methods are powerful tools to overcome these
challenges.

High-Throughput Screening
While there has been some progress in computational HT
screening, the experimental HT (HT alloy production and
testing) requires much more development to reach the same
level of maturity. For computational HT, ongoing efforts try to
integrate novel machine learning and artificial intelligence with
alloy design models; calculations can be conducted in various
scales from atomic (first principle, such as density functional
theory; DFT) to nano/micro (Molecular Dynamics; MD), micro/
macro (CALPHAD), and macro (Finite Element Modelling;
FEM) (Lederer et al., 2018; Li et al., 2020; Qiao et al., 2021a;
Sorkin et al., 2021b; Yaqi, 2021). Table 1 summarises the
capabilities and limitations of each method and the typical
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scale each method is applicable in. Combining these methods
would provide a superior multi-scale modelling toolkit for
material discovery, although the associated cost and required
computational power remain a challenge.

HT screening has been developed and is more mature for
functional materials such as magnetoelectrics, batteries, and
photovoltaics (Hautier et al., 2010; Potyrailo et al., 2011;
Chaudhary et al., 2021; Tu et al., 2022). For structural
materials, these techniques require more development (Gao
and Alman, 2013), while the main challenge is that besides the
composition and phase fractions, structural properties also
depend on microstructural coarseness and distribution of
various phases.

Calculation of Phase Diagrams
One of the most commonly used and less costly calculation
methods with a relatively good level of credibility is HT
combined with CALPHAD (Zeng et al., 2021). CALPHAD is a
very versatile semi-empirical tool. Many structural applications
are related to phase formation and stability that can be evaluated

using CALPHAD. It is also proven that CALPHAD can
significantly reduce the number of experimental trials for
discovering new alloys (Tazuddin et al., 2017).

The HT-CALPHAD technique has been used for developing
various types of alloys, such as alloys with an austenitic matrix
containing a secondary coherent phase that is stable at a wide
range of temperatures (Tripathi et al., 2021), screening for alloys
containing solid-solution (SS), intermetallic (IM), and SS + IM
phases (Senkov et al., 2015a), HEAs with stable disordered single
phases at low temperatures (Klaver et al., 2018), and to
developing lightweight HEAs (Asadikiya et al., 2021).

In the following section, we present an overview of various
steps for conducting HT-CALPHAD.

DISCUSSION

High-Throughput CALPHAD
HT-CALPHAD can be divided into four distinct steps, as
depicted in Figure 1.

TABLE 1 | Capabilities, limitations and the applicable scale for different modelling techniques used for alloy design.

Method Capabilities Limitations Scale Size

First-principles
and DFT

Predict physical properties without the need for experimental
parameters

Not fully applicable for disordered phases/alloys Atomic
(Femto)

MD Predict mechanical properties and the structure of liquid
atoms

Microstructural features such as dislocations and twins are not
considered

Nano to
meso

CALPHAD Calculate phase formation and stability for material and
processing optimisation

Relies on equilibrium conditions and does not necessarily predict non-
equilibrium conditions

Micro/Meso

FEM Investigating the effect of microstructure on material
properties

Extensive data is required for meshing, and the output result can vary
considerably

Micro/Macro

FIGURE 1 | Steps for HT-CALPHAD.
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Step One; Elemental Selection
Senkov et al. (2015b) and Miracle et al. (2014) suggested the first
step for HT screening to be defining a palette of elements. A
typical master list of non-toxic, non-gaseous and non-radioactive
elements leads to a total of ~57 elements. The alloy application
can further shorten the list. For instance, if the target is high-
temperature applications, the low melting point elements (e.g.,
Tm< 700 K) shall be excluded, which reduces the list to 45
elements. Only considering equimolar HEAs, this list of
elements gives 106 possible 5-element compositions and 1011

possible 13-element compositions to be discovered and/or
investigated. Including non-equimolar and multi-phase
composition will easily lead to an almost endless number of
possibilities! To date, it is estimated that less than 2000 MPEAs
have been reported in the literature, which is just a tiny fraction of
millions of possible compositions to be discovered. We normally
choose a smaller set of elements for specific applications, which is
called the “palette of elements” by Miracle (Miracle et al., 2014).
The elements can be ranked within the palette based on their
physical properties such as density, melting point, bonding
energy, etc. This will give a better perspective on combining
elements for specific applications, e.g., low density and high
working temperature (high melting point). The ranking of
elements can also be correlated to the processability of the
alloys (castability, printability, etc.); for instance, alloys
containing elements with a significantly different melting point
might possess wide solidification intervals that in turn could lead
to segregation or other casting/3D-printing defects (Qiao et al.,
2021b). Very different atomic sizes might also lead to excessively
strained crystal lattices that add to the residual stress after casting,
3D printing or welding.

Step Two; Creating Composition List and
Phase Diagram Calculations
The next step is to build the compositions from the palette of
elements and evaluate them using CALPHAD. The number of
compositions to be calculated would depend on the range of each
element at%, the incremental step size of each element. The
number of CALPHAD calculations also depends on the
temperature range and the respective step size. In the
algorithm we have been recently developing (Conway et al.,
2022), the built compositions will be fed to the ThermoCalc
software as a macro file (Python interface). Depending on the
desired results, different modules of the ThermoCalc could be
engaged in HT calculations.

This step aims not to evaluate all possible compositions but to
quickly scan the interested palette and compositional range and
identify workable subsets with the potential to be deeper
evaluated. Recent developments in related software packages
have facilitated such evaluations, e.g., TC-Python framework
in Thermo-Calc (Yang et al., 2020; Tripathi et al., 2021).

Step Three; Data Processing
An enormous amount of data could be extracted from the
previous step, such as solidus temperature, solidification
intervals, phase formation and stability at various

temperatures, phase fractions, composition and lattice
parameters of phases, solutionising window, etc. These results
as a dataset will be used for ranking the compositions into islands
of selected compositions. Based on the set criteria for alloy design
and expected properties, the center of these compositional islands
is selected (Conway et al., 2022). It is important to note that the
screening may contain false-negative results (false rejection of
compositions with development potential), which can be a
concern since the very spirit of identifying potentially
exceptional alloys may be hampered. Having false-positive
results (compositions that have no potential for development)
is also of great concern because more resources would be needed
to deeper evaluate wrong results.

It is also important to note that the credibility of CALPHAD
calculations must be considered for predictions. Senkov et al.
(2015b) suggested a method to quantify the credibility of
CALPHAD calculations. They looked at the available binary
and ternary phase diagrams in the CALPHAD databases,
through which they calculated the fraction of assessed binary
diagrams (FAB) and the fraction of assessed ternary phase
diagrams (FAT). The higher the FAB and FAT, the more
credible the CALPHAD calculations would be. Ideally, the aim
is to have FAB equal to one for reliable calculations. But it is
common to have FAT less than one. It is debatable to state what
shall be the acceptable value for FAB and FAT. According to the
literature, it is reasonable to keep a minimum FAT value of 0.6 as
followed in (Senkov et al., 2015b; Zeng et al., 2021). This is
suggested to be considered as a decision-making factor for
selecting which CALPHAD database to use and also a
rejection factor for final compositions. It is to be noted that
even usage of a database with a high FAT value has also
occasionally reported discrepancies compared to experiments
(Guruvidyathri et al., 2017), partly due to the deviation from
the equilibrium states in real conditions.

Depending on the application, different rejection criteria could
be set; e.g., for high-temperature applications, Miracle et al.
(2014) and Senkov et al. (2015a) suggested having the solvus
temperature of the alloy above its working temperature and
having no first order phase transformation below the
operating temperature, as the main decision-making criterion
(Feng et al., 2021). Other physical properties of the alloy, such as
density, elastic modulus or even cost of elements [rule of mixture
(Senkov et al., 2015b)], and more importantly, sustainability
factors, can also be used to narrow the selection criteria.

Step Four; Visualisation
While we can extract ideal compositions within a multi-
dimensional space, visualisation of the results is one of the
most challenging steps because the multi-dimensional
composition space is not easily imaginable in a 3D framework.
Miracle and Senkov (2017) have suggested a few visual devices to
tackle this challenge in 2D and 3D. However, the interpretation of
results using these alternatives is not straightforward.
Visualisation of mutli-dimensional space is a research field on
its own, with most solutions typically reducing the importance of
specific axis to colours or shapes in a 2D or 3D plot (Lowe and
Matthee, 2020). This is still insufficient in alloy development as
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each axis typically carries equal importance. Artificial intelligence
could provide a solution for transforming the hyper-dimensional
results to 3D (Ventocilla and Riveiro, 2020).

Gorsse et al. (2017) conducted an alloy network analysis to
categorise the alloys based on their intrinsic properties and/or
desired application. Their method can be used as either a visual
tool for elemental selection or an alternative for visualisation of
the HT-CALPHAD results. An intermediate alternative we have
proposed recently (Conway et al., 2022) includes binary
visualisation of pair of elements.

Required Computational Powers and Time
A typical impression is that such HT calculations require
sophisticated supercomputers or very high-performance
computers. New codings have been developed to facilitate such
calculations in conventional high-performance computers.
Recently, we further developed the screening method initially
proposed by Klaver et al. (2018), for screening and modifying the
composition of equimolar HEAs to reduce the elemental costs
and alloy density while maintaining the mechanical properties of
the equimolar HEAs (Conway et al., 2022). Python coding was
used to build the composition sets and create the macro files for
ThermoCalc software. Using a typical 64 core computer, we have
been able to conduct CALPHAD for ~ amillion compositions in a
relatively wide range of temperatures in the course of only
2–3 days. This provides a flexible, quick, and relatively
inexpensive method for alloy screening leading to a
comprehensive dataset as results. We selected the optimum
compositions as per the center of the “islands” of the
compositional spaces, as suggested in reference (Klaver et al.,
2018). Our HT algorithms are being further developed beyond
just phase diagram calculations, and the aim is to integrate other
ThermoCalc modules for precipitation and diffusion calculations.
We are also expanding the codes for simultaneous calculation of
other empirical models such as solid solution hardening, SFE, and
other physical properties like density and elastic modulus.

The Urgency for Developing
Experimental HT
For experimental HT screening, new processing routes such as
rapid alloy prototyping (Springer and Raabe, 2012), laser
engineered net shaping (LENS) (Chaudhary et al., 2021),
additive manufacturing (Vecchio et al., 2021) or preparing
diffusion multiples (Wang et al., 2021), offer a good level of
flexibility for producing chemical gradients (a number of alloy
compositions) in a single sample to be characterised. Micro/
nano-indentation on the diffusion multiples (Wang et al., 2021)

or on micro-pillars could be a tool for evaluating the mechanical
responses of the material (Miracle and Senkov, 2017).
Nonetheless, these methods still do not provide the required
speed and flexibility for various alloy development schemes. The
demands for developing MPEAs is a great motivation and ideal
platform for improving both computational and experimental
HT techniques.

FUTURE OUTLOOK AND REMARKS

For HT-CALPHAD, it is crucial to improve the credibility by
including more elements and more binary and ternary phase
diagrams into databases.

Combining data-driven machine learning, artificial
intelligence, and multi-scale simulation would be an excellent
tool for correlating the composition and properties.

There are various degradation mechanisms in materials that
are to be understood thoroughly as the base to define the criteria
for material discovery for various applications, e.g., hydrogen-
embrittlement resistance or high-performance catalysts for fuel-
cells to improve efficiency and reduce the cost of hydrogen
production.

Other empirical models can be integrated into HT-CALPHAD
to strengthen the resultant dataset, such as solid solution
hardening models, SFE calculation models, alloy costs, and
sustainability aspects. To improve the credibility of
calculations, it is required to revisit the empirical models and
validate the accuracy.
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