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Quantifying the population of nanoscale defects that are formed in metals and alloys
exposed to extreme radiation environments remains a pressing challenge in materials
science. These defects both fundamentally alter material properties and seed long-
timescale performance degradation, which often limits the lifespan of engineering
systems. Unlike ceramic and semiconductingmaterials, these defects inmetals and alloys
are not spectroscopically active, forcing characterization to rely on indirect measurements
from which the distribution of nanoscale defects may be inferred. In this mini-review,
different experimental methodologies which have been employed for defect inference
are highlighted to capture the current state of the art. Future directions in this area
are proposed, which, by combining data streams from multiple and complementary
characterization methods in concert with multi-scale modeling and simulation, will enable
the ultimate goal of quantifying the full spectrum of defects in irradiated metals and alloys.

Keywords: Defects, irradiated, metals, resistivity, positron annihilation spectroscopy, X-ray scattering, Rutherford
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INTRODUCTION

Materials in extreme radiation environments—fromnuclear energy systems, to particle accelerators,
to satellites—experience some of the most demanding sets of conditions for components in-service
(Allen et al., 2010; Gilbert et al., 2021). In addition to elevated temperatures, stresses, and corrosive
species, materials must withstand fluxes of high energy particles, often over long operational
lifetimes. These particles collide with atoms, creating cascades of displacements on very short
timescales (Zinkle and Singh, 1993). The formation and evolution of these primary, nanoscale
defects eventually leads to microstructural changes across all length scales and results in the
degradation of material properties.

Techniques used to investigate structural defects in irradiated materials include, but
are not limited to, electron microscopy (Jenkins and Kirk, 2001), optical spectroscopies
(Rickert et al., 2022), X-ray and neutron scattering (Albertini and Coppola, 1992; Ehrhart, 1994),
ion-beam analysis (Swanson, 1982), field ion microscopy (Seidman, 1978), and positron
annihilation spectroscopy (Selim, 2021). While transmission electron microscopy (TEM) has
been extensively used to characterize radiation-affected microstructures (Jenkins, 1994), it
is fundamentally unable to detect the full spectrum of defects in a material (Jenkins and
Kirk, 2001) due to a practical resolution limit of ∼1 nm (Zhou et al., 2007). Simulations show that
displacement cascades create a power law-scaled distribution of defect clusters (Yi et al., 2015),
implying that the smallest defects are the most prevalent in irradiated metals. A void with a
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diameter of 1 nm corresponds to a cluster of ∼350 vacancies
(Caturla et al., 2000). With TEM unable to reliably resolve
clusters of this size and below, electron microscopy drastically
underestimates the total defect density in irradiated materials
(Meslin et al., 2010; Reza et al., 2020; Ungár et al., 2021a).

In order to understand the mechanisms which govern
irradiation-induced changes in properties, it is crucial to
characterize the formation and evolution of defects on these
smallest scales. In addition to seeding larger scale defect
formation, nanoscale defects can have a significant effect on the
properties of irradiated materials. Reza et al. show that defects
below the resolution limit of TEM play a dominant role in
the decrease of thermal diffusivity for self-ion irradiated W
(Reza et al., 2020). Li et al. report that the ultrahigh hardening of
He-irradiated Nb results from the presence of vacancies (V) and
He-V complexes (Li et al., 2022).Thus, for accurate prediction of
irradiated materials’ properties at the macroscale, it is critical to
characterize defects at the nanoscale.

In non-metals, these defects can often be characterized
through optical spectroscopic techniques such as
Raman spectroscopy (Shelyug et al., 2018), optical
ellipsometry (Khanolkar et al., 2022), photoluminescence
(Khanolkar et al., 2022), and others. In Raman-active materials,
the vibrational modes of different bonds give unique signatures
that can be probed optically and provide insight into defects as
small as isolated vacancies and interstitials. Similarly, these point
defects in many ceramics are charged, leaving them optically
accessible through absorption, excitation, or emission. Due
to charge screening from free electrons in metals and alloys,
these spectroscopic methods may not be readily applied to
the study of defects. Thus, nanoscale defects must be detected
through alternative means. Their presence, type, and density
can be determined indirectly through their effect on certain
material properties and structural features. The purpose of this
mini-review is to highlight developments in these inference-
based techniques and report progress towards the quantitative
characterization of nanoscale defects in irradiated metals and
alloys.

RESISTIVITY MEASUREMENTS

Some of the oldest methods deployed to infer populations
of nanoscale defects in metals are those relying on changes
in electrical resistivity. Perturbations of the crystalline lattice
increase resistivity through enhanced scattering of electrons
(Broom, 1954). Net changes in resistivity can be expressed as the
sum of contributions from all types of defects under the principle
developed by (Matthiessen and Vogt, 1864), which considers
contributions from each defect type through their concentration
and specific resistivity.

Many studies have used resistivity measurements to infer
the Frenkel pair concentration after cryogenic irradiation.
These include experiments seeking to determine threshold
displacement energies (Lucasson and Walker, 1962), defect
production rates, spontaneous relaxation volumes, and the
saturation concentration of defects (Nakagawa et al., 1977;

Nakagawa et al., 1979; Nakagawa, 1982). With defect migration
deactivated at low temperature, this method has enabled
the evaluation of primary damage formation from different
irradiation particles in FCC metals (Iwase et al., 1992) and Fe
(Chimi et al., 2000), and the validation of displacement cross
sections in Cu (Iwamoto et al., 2015).

Often these studies also use isochronal annealing to evaluate
the recovery of specific defect populations with increasing
temperature (Lucasson and Walker, 1962; Nakagawa et al., 1977;
Nakagawa, 1982; Iwase et al., 1992; Chimi et al., 2000;
Iwamoto et al., 2015; Horak and Blewitt, 1975). These
experiments can be coupled to kinetic Monte Carlo (kMC)
simulations (Fu et al., 2004; Fluss et al., 2004) of the defect
evolution to gain insight into the precise recovery mechanism,
shown in Figure 2A. Additionally, several studies have correlated
resistivity to stored energy measurements in order to validate the
change in defect concentration (Kinchin and Thompson, 1958;
Isebeck et al., 1966; Delaplace et al., 1968; Nicoud et al., 1968;
Losehand et al., 1969). Resistivity measurements have also been
used to evaluate the effect of solutes on the recovery of radiation
damage, including studies on C-doped Fe (Takaki et al., 1983)
and Fe-Cr (Gómez-Ferrer, 2016).

Alternative measurement schemes have also been developed.
For example, Briggmann et al. use the 1/f nature of noise
from a resistivity measurement to characterize defects through
their migration rather than through their annihilation
(Briggmann et al., 1994). This method reveals the presence of
recovery stages, shown in Figure 1A, that do not appear in
conventional resistivity measurements, which are attributed
to de-trapping of crowdions. Nikolaev has also championed
the use of differential resistivity recovery measurements to
decouple the effects of changing defect concentration and specific
resistivity (Nikolaev, 2007). This has been used to determine the
effect of short range order in Fe-based alloys (Nikolaev, 2009),
and to deconvolve resistivity contributions from vacancies and
interstitials (Nikolaev, 2018).

One major limitation of this family of techniques includes
the inability to directly simulate the resistivity of large defects,
as density-functional theory (DFT) is computationally-limited
to small supercell volumes. Additionally, many instances of
deviation fromMatthiessen’s rule have been reported (Bass, 1972;
Fluss et al., 2004). The effect of defect clustering on the specific
resistivity has been studied by Zinkle et al. (Zinkle, 1988) who
report that the Frenkel pair resistivity for defects in small
dislocation loops is similar to that of isolated Frenkel pairs,
although this may not hold for larger loop sizes. These factors
hinder the accurate determination of defect densities.

POSITRON ANNIHILATION
SPECTROSCOPY

Positrons annihilation spectroscopy (PAS) is able to detect open-
volume in a crystalline lattice by virtue of locally reduced
electron density, allowing incident positrons to probe vacancy-
type defects (Selim, 2021). Similar to resistivity measurements,
positron annihilation lifetime spectroscopy (PALS) has been
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FIGURE 1 | Many experimental techniques can be used to infer nanoscale defects in irradiated metals and alloys. (A) Novel resistivity measurements reveal recovery
stages unseen in conventional experiments. From (Briggmann et al., 1994), Copyright 2006 John Wiley and Sons. (B) Variable energy PAS can resolve vacancy-type
defects with depth. From (Agarwal et al., 2020), CC BY-NC 4.0. (C) XDS can determine the size distribution of dislocation loops down to <1 nm. From
(Olsen et al., 2016), Copyright 2016 Elsevier. (D) TGS coupled to kinetic theory allows estimation of the Frenkel pair defect density as a function of dose. From
(Reza et al., 2022), CC BY 4.0. (E) DSC can characterize previously unreported defect annealing stages. From (Hirst et al., 2021), CC BY 4.0.

used for many years to investigate the formation and evolution
of primary radiation damage in metals after irradiation at
cryogenic temperatures and subsequent isochronal annealing
(Mantl and Triftshäuser, 1978; Eldrup and Singh, 1997; Eldrup
and Singh, 2003). Decomposition of the positron lifetime
spectrum into multiple components can be used to characterize
the size distribution of vacancy clusters (Eldrup and Singh, 2003;
Hu et al., 2016), although there is a limit to the number of
components that can be identified.

Additionally, the local chemical environment around vacancy-
type defects can be explored through analysis of the momentum
of the annihilating electron in Coincidence Doppler Broadening
(CDB) experiments (Selim, 2021). This method has enabled
the detection of solute-vacancy complexes in electron-irradiated
reactor pressure vessel (RPV) model alloys. (Nagai et al., 2003)
used CDB experiments to estimate the local concentration of
solute around vacancies and attribute the irradiation-induced
hardening of RPV steels to the formation of these features.

By varying the energy of the incident positrons,
the depth-dependence of defect populations can be
resolved in materials with heterogeneous microstructures
(Lynn et al., 1986; Siemek et al., 2021). Recently, Agarwal et al.
(Agarwal et al., 2020) used this method to probe the depth

dependence of vacancy clusters created following 2 MeV self-
ion irradiation of Fe thin-films, shown in Figure 1B. Their work
reports an increase in the density of small vacancy clusters with
depth and an associated decrease in large vacancy clusters.
Most strikingly, they report a decrease in the diameter of
cavities with increasing dose, which is attributed to a new
mechanism of interstitial-induced shrinkage of voids and
resultant intra-cascade nucleation of small vacancy clusters.

The ability of PALS to detect individual vacancies allows
direct comparisons to be made to primary radiation damage
simulations Tuomisto et al. (Tuomisto et al., 2020) studied Ni-
ion irradiation damage in NiCoFeCr and its derivative alloys
throughPALS,molecular dynamics (MD), and density functional
theory (DFT) simulations, shown in Figure 2B. They compare
the modeled fraction of vacancies as a function of dose to their
experimental data to rule out potential mechanisms and in doing
so reveal the segregation of Ni and Co to vacancies. Soneda
et al. (Soneda et al., 2003) use kMC simulations to model defect
accumulation in Fe and demonstrate strong agreement between
their predicted number densities of vacancy clusters and earlier
PAS work. Further information on the use of PAS for irradiation
materials can be found in a comprehensive review by Selim
(Selim, 2021).
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FIGURE 2 | Simulation techniques can be used to aid the inference of nanoscale defects in irradiation experiments. (A) kMC can predict the isochronal evolution of
defects and thus simulate the resistivity recovery spectrum. From (Fu et al., 2004), Copyright 2004 Springer Nature. (B) DFT (inset) can determine the effect of
defects on positron lifetime characteristics. From (Tuomisto et al., 2020), CC BY-NC-ND 4.0. (C) DFT can be used to predict the radial probability distribution and
compared to extended X-ray absorption fine structure experiments. From (Andrianov et al., 2021), Copyright 2021 Elsevier. (D) MD schemes can simulate the
degradation in thermal diffusivity with dose and can be compared to TGS experiments. From (Mason et al., 2021), CC BY 4.0. (E) MD can also determine the
system stored energy following PKA cascades and subsequent isothermal annealing. From (Hirst et al., 2021), CC BY 4.0.

X-RAY BASED METHODS

Scattering
X-ray scattering has been extensively used to probe radiation
damage in metals due to its sensitivity to defects below the
resolution limit of TEM and the ability to directly compare
measurements to scattering theory. Many studies have used X-
ray diffuse scattering (XDS) to characterize the size distribution
of dislocation loops in irradiated Cu (Larson, 1975; Larson
and Young, 1987; Ehrhart and Averback, 1989), Ni (Narayan
and Larson, 1977; Larson and Young, 1987; Ehrhart and
Averback, 1989; Yuya et al., 1999; Olsen et al., 2016), and W
(Sun et al., 2018). Most of these studies compare their XDS
results to the size distribution of loops determined from TEM
measurements. These comparisons explicitly demonstrate a)
the presence of a significant fraction of loops with radii below
1 nm, and b) the inability of TEM to characterize this population
of defects. An example from (Olsen et al., 2016) is shown in
Figure 1C.

More recently, the convolutional multiple whole profile
(CMWP) X-ray diffraction Line Profile Analysis (XLPA)
method (Ribárik, 2008; Ribárik et al., 2020) has been developed

to characterize dislocation loops in irradiated materials
(Seymour et al., 2017; Ungár et al., 2021b). Through calculation
of the broadening of X-ray diffraction (XRD) peaks, the type,
density, and size distribution of dislocation loops can be
determined. Ungár et al. (Ungár et al., 2021a) demonstrated this
in proton-irradiated Zircaloy-2 where they combined TEM and
synchrotronXRD to calculate the power law size density function
of ⟨a⟩-loops, showing a significant density of loops below TEM
resolution. Additionally, they extend their analysis to determine
the average loop diameter as a function of loop density. They
report, counter intuitively, that initially a low density of large
⟨a⟩-loops forms due to growth without impingement on other
loops. Further work at low doses is needed to validate this claim.

Absorption
In addition to X-ray scattering, the local environment around
atoms can be investigated using extended X-ray absorption
fine structure (EXAFS) spectroscopy. EXAFS allows calculation
of the radial distribution function which reveals the presence
of defects through changes in the local coordination. This
enables experiments to be directly compared to simulations,
as demonstrated by Andrianov et al. (Andrianov et al., 2021)
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in Figure 2C. EXAFS has been used to study the impact of
self-irradiation in Pu and its alloys as a function of dose
(Booth et al., 2007; Booth et al., 2013; Olive et al., 2016; Booth
and Olive, 2017). Booth et al. use EXAFS to determine the
fraction of a sample that is damaged and compare these
measurements to estimates based on point defect production and
annealing (Booth et al., 2013). From this comparison, they report
that classical defect production models (NRT-dpa and Kinchin-
Pease) are insufficient to capture the effect of different bonding
on defect evolution in intermetallics. Further validation of this
finding with MD simulations — as demonstrated by Okamoto
et al. (Okamoto et al., 1991) for N-ion irradiated amorphous
Pd80Si20, and Booth and Olive (Booth and Olive, 2017) for pure
Pu — would be insightful, but subject to the availability of
accurate interatomic potentials.

The ability of EXAFS to probe the local structure also extends
to chemical environments. Kuri et al. investigated neutron-
irradiated, annealed and re-irradiated, RPV steels to analyze
the coordination of solutes Cu, Ni, and Mn (Kuri et al., 2009).
They report similar atomic environments for each of the solute
atoms, with attenuation in the radial distribution function peaks
attributed to local disorder. The nearest neighbor coordination
of Fe atoms does not decrease, which suggests the presence
of vacancy-solute complexes, as has been demonstrated in PAS
(Nagai et al., 2003).

RUTHERFORD BACKSCATTERING

Rutherford backscattering in the channeling condition (RBS/C)
is part of a family of ion beam analysis techniques that have
been used to characterize disorder in irradiated materials
(Chu et al., 1973; Swanson, 1982; Matzke, 1985). Placing a
reference material in a channeling condition under light ion
bombardment dramatically reduces the backscattered ion yield.
However, by introducing defects or disorder into the lattice via
irradiation, that backscattered yield increases. By varying the
energy of the incident ions, the depth dependence of radiation
damage can be probed. Comparing these data to the predicted
damage profile allows for interpretation of the mobility of
irradiation-induced defects, as shown in (Lu et al., 2016).

The radiation resistance of Ni-based complex solid solution
alloys (CSSAs) has been extensively explored using RBS/C
(Zhang et al., 2015; Jin et al., 2016; Lu et al., 2016; Velişa
et al., 2017; Fan et al., 2019). Through comparison of the
backscattering yield of different alloys irradiated to the same
dose, the effect of chemical complexity on recombination can be
deduced. The morphology of larger defect clusters is found to
evolve as a function of dose, with dislocation loops forming at
higher dose levels, which reduce the irradiation-induced strain
in the material (Jin et al., 2016; Velişa et al., 2017).

Most studies use measures of the relative disorder between
pristine and as-irradiated specimens to investigate the
accumulated defects. However, further insight into nanoscale
defect populations can be gained from RBS/C spectra
simulated from atomistic configurations (Zhang et al., 2016;
Zhang et al., 2017; Levo et al., 2021). Zhang et al.’s simulations

of ion-irradiated Ni indicate that the contribution to the RBS/C
signal from extended defects is stronger than the contribution
from Frenkel pairs. While this appears to conflict with previous
studies which report a decrease in irradiation-induced strain and
thus decrease in backscattering signal with defect agglomeration,
this work demonstrates the insight that can be gained from a
combination of RBS/C experiments and simulations.

TRANSIENT GRATING SPECTROSCOPY

Recently, local thermophysical properties as measured using
transient grating spectroscopy (TGS) have been applied to
the measurement of radiation effects on metals and alloys
(Short et al., 2015; Dennett et al., 2016; Hofmann et al., 2019).
In these experiments, a micron-scale 1D periodic laser
excitation causes local heating and thermoelastic generation
of surface-confined acoustic waves (Käding et al., 1995;
Johnson et al., 2012; Hofmann et al., 2019). By optically
measuring the dynamics of these excitations, elastic and
thermal properties can be extracted simultaneously from a
single non-destructive measurement (Dennett and Short, 2018).
The measurement sampling depth is on the order of
single microns, a length scale particularly relevant for the
study of metals with defects induced through ion beam
irradiation (Hofmann et al., 2015a; Hofmann et al., 2015b;
Dennett et al., 2018; AlMousa et al., 2021). Capabilities for in situ
TGS measurements during high temperature ion beam exposure
have also been developed (Dennett et al., 2019).

TGS has been used for nanoscale defect inference in
several studies. Ferry et al. used changes of thermal diffusivity
in Si-ion irradiated Nb to infer the agglomeration of point
defects into clusters, reducing total thermal carrier scattering
(Ferry et al., 2019). The most direct demonstration of nanoscale
defect inference through TGS has come fromReza and coworkers
(Reza et al., 2020; Reza et al., 2022). Initially, measurements of
thermal diffusivity in self-ion irradiated W specimens were
used in concert with a point defect-electron scattering model
to infer the population of Frenkel defects retained after room
temperature irradiation to dose levels spanning five orders of
magnitude (Reza et al., 2020). Comparing with TEM-measured
defect populations, a total defect density approximately an order
of magnitude higher across all conditions was inferred. By using
MDdefect generation simulations to predict the nanoscale defect
populations missed by TEM, the TGS-inferred and TEM/MD
combination defect densities become comparable. In follow-on
work, Reza et al. use in situ TGS during thermal annealing of
previously-irradiated samples to infer point defect densities and
explore their recombination kinetics (Reza et al., 2022), shown in
Figure 1D.They then compared their work toMD estimations of
the thermal diffusivity degradation with increasing dose, shown
in Figure 2D.

Using local elastic properties measured with in situ TGS
during high temperature ion irradiation, Dennett et al. studied
the accumulation of point defects, vacancy clusters, and
eventually void swelling in a series of Ni-based CSSAs up
to and including 5-component, single phase Cantor alloy
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(Dennett et al., 2021). Alloy chemistries known to retain a higher
density of nanoscale vacancy clusters, such as ternary NiCoCr,
showed a much stronger elastic signature of vacancy-type
defect density. Although TGS returns both elastic and thermal
properties simultaneously, no work has yet demonstrated an
inference method based on the combination of these properties
together.

CALORIMETRY

The characteristic energies of formation and migration can be
used to infer the density of irradiation-induced defects through
calorimetric experiments. Annealing irradiated materials leads
to multiple stages of recovery (Schilling, 1978) where the
recovery onset temperature can be used to determine the
migration energy, therefore defect type, and the enthalpy
change divided by the formation energy, therefore defect
density. Due to their high stored energy density (∼103 J/g)
(Snead et al., 2019) most prior literature focuses on the
recovery of irradiated ceramics, including studies on graphite
(Iwata, 1985), UO2 (Staicu et al., 2010), SiC (Snead et al., 2019),
and NaCl (Vainshtein and Hartog, 2000). However, this strategy
is also applicable to metals.

After Eugene Wigner first postulated that energy could be
stored in metals as irradiation-induced defects (Wigner, 1942),
many works investigated defect recovery at cryogenic
temperatures.These include studies onCu (Losehand et al., 1969;
Blewitt et al., 1959; Richard et al., 1990), Al (Isebeck et al., 1966),
Mg (Delaplace et al., 1968), and Be (Nicoud et al., 1968). Often
the focus of these works was the fundamental science behind
primary radiation damage production, rather than investigating
defect evolution at engineering-relevant temperatures. Research
has been conducted following ambient temperature irradiation,
including studies on Mo (Kinchin and Thompson, 1958;
Pedchenko and Karasev, 1971; Lambri et al., 2009), Cu
(Pedchenko and Karasev, 1971; Blewitt et al., 1961), Ni and Fe
(Toktogulova et al., 2010), andPu (Ennaceur andMigliori, 2018).
But little work has been conducted following irradiation
at elevated temperatures, with Lee et al.’s analysis of Zr-U
(Lee et al., 2007) and Hirst and colleagues’ recent study of Ti
(Hirst et al., 2021), shown in Figure 1E, the only research to
date. In addition, very few prior studies have leveraged the
information contained within the fine structure of annealing
spectra, with the exception of (Richard et al., 1990). The authors
of this study derived a kinetic model which was fit to the

experimental recovery of neutron-irradiated Cu. This model
yielded information on the activation energies of multiple
substages and was used to (in)validate the proposed recovery
mechanism for reactor-irradiated metals.

Calorimetric measurements have the key advantage of
being directly comparable to simulations of radiation damage.
However, until recently, this comparison had only been
conducted for ceramics (Béland et al., 2013). Hirst et al.
used MD simulations to investigate the evolution of defects
below the resolution limit of TEM in neutron-irradiated Ti
(Hirst et al., 2021). Their isothermal annealing simulations,
shown in Figure 2E, reveal a new mechanism for radiation
damage recovery, with dislocation loops sweeping up point
defects as they glide. This process was correlated to differential
scanning calorimetry (DSC) measurements of the stored energy
release between 300 and 480°C, where TEM micrographs show
little change in the microstructure. This work reports that TEM
is unable to account for 80% of the stored energy release and
demonstrates the use of DSC as a tool to characterize defects that
may be hidden to microscopy techniques.

FUTURE DIRECTIONS

Table 1 compares some characteristic features of each of the
techniques highlighted above. While great insight into the
populations of nanoscale defects can be gained from these
methods, their accuracy depends on the quality of data
interpretation. Without the ability to directly image defects,
inference-based techniques rely on theoretical models to deduce
the type, size distribution, and number density of defects in
materials.

One strategy that can be used to strengthen the inference
model is to combine data streams from multiple methodologies.
Disparate techniques often have unique sensitivities to
different defect features, offering some degree of measurement
orthogonality. Correlative experiments thus allow for a more
comprehensive characterization of defect populations. This can
be done ex situ, as in Meslin et al.’s study of neutron-irradiated
ferritic alloys (Meslin et al., 2010), or in situ, demonstrated by
Jackson’s simultaneous measurement of resistivity recovery and
stored energy release in deuteron-irradiated metals (Jackson,
1980).

Many inference-based techniques are non-destructive, which
allows for both concurrentmulti-modal characterization and also
the ability to observe nanoscale defect generation and evolution

TABLE 1 | Comparison of some salient features of the reviewed defect inference techniques. All methods listed can be applied to both pure metals as well as alloys and
for irradiation with both neutrons and ions. Note: classifications should be understood as generalizations and abilities thus far demonstrated, not as absolute limitations.

Resistivity PAS X-ray RBS/C TGS Calorimetry

Max. probing range cm mm cm 10 μm 10 μm cm
Polycrystalline samples? ✓ ✓ ✓ (XLPA) 7 ✓ ✓
Point/Extended Defects Point Point Both Both Both Both
Vacancy/Interstitial Both Vac Both Both Both Both
Chemical sensitivity? ✓ ✓ (CDB) ✓ (EXAFS) 7 ✓ ✓
Destructive? 7 7 7 ✓ 7 ✓
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in real-time. Combining inference-based techniques and ion-
accelerators allows for significant insight, but requires detailed
consideration of the experimental geometries, as highlighted by
Dennett et al. (Dennett et al., 2019). The ability to investigate the
dynamics of defect accumulation and recovery in situ canuncover
fundamental mechanisms and also accelerate nuclear materials
development. It is under this promise that recent efforts have been
directed in this area (Selim, 2021) and continued expansion of
such capabilities is a necessity.

Combining experimental methods with simulated data, as
shown in Figure 2, can also greatly benefit the interpretation
of inference-based methods. This can be done directly,
as in the comparison of simulated and measured atomic
radial distribution functions (Andrianov et al., 2021), or
indirectly, through the measurement and estimation of thermal
diffusivity degradation using TGS and MD (Reza et al., 2020;
Mason et al., 2021). The limitations of this strategy remain the
considerable range of time and length scales that radiation
damage encompasses. Atomistic simulations are typically
restricted to timescales below microsecond and coarser methods
rely on accurate parameterization. Recent advances in kMC
methods (Béland et al., 2015) have demonstrated the ability to
couple displacement cascades to experimental timescales and
warrant further study.

In summary, the development of inference-based techniques
has significantly advanced the ability to characterize the
entire spectrum of defects formed in metals and alloys under
irradiation. However, truly quantitative measurement of defects
at the smallest scales remains a grand challenge. By designing
future experimentation and simulation to function in concert,
rapid progress towards this goal may be achieved.
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