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Ti alloys have been widely used in biomedical field due to good compatibility and corrosion
resistance. However, corrosion-related failures of implanted Ti devices and prostheses
have been regularly reported within the medical literature. The corrosion of Ti alloys has
attracted much attention in vivo and in vitro. In the current study, the corrosion behavior of
Ti6Al4V alloy was investigated using surface analysis and electrochemical tests. Corrosion
of Ti6Al4V in 2 M hydrochloric acid is temperature dependent within the temperature range
studied. It has found that the steady state current density at −510mV vs. SCE (the primary
passivation potential at the physiological temperature of 37°C) becomes higher with
increasing temperature. The α phase of Ti6Al4V is preferentially dissolved relative to
the β phase after potentiostatic measurement at primary passivation potential in 2 M HCl at
37°C. This investigation provides novel and useful information for Ti corrosion-related
failures of biomedical implants and prostheses.
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1 INTRODUCTION

Increasing concern regarding the consequences of metal release from biomedical implants has
stimulated efforts to better understand the conditions under which corrosion occurs, and the nature
of the corrosion products that are released (Xu et al., 2018; Morrell et al., 2019; Xu et al., 2019).
Oxidation-resisting steel, Co-Cr and Ti alloys are the most common biomedical implant metals in
use today (Sullivan and Topoleski, 2015; Harun et al., 2017; Xu et al., 2018; Xu et al., 2019). Of these,
Ti in its commercially pure and alloyed forms is mostly used for “cementless” implants because of
titanium’s ability to “osseointegrate” with bone, provide adequate mechanical properties, and exhibit
resistance to corrosion under normal physiological conditions (Paka and Pokrowiecki, 2018; Kang
and Yang, 2019; Rabadia et al., 2019; Zhang and Chen, 2019; Zhang L.-C. et al., 2020). However, there
is increasing evidence to demonstrate that Ti implants do corrode in the body under specific
conditions (Addison et al., 2012; Nelson et al., 2020). The combination of multiple crevice
environments (metal-metal; metal-bone, metal-soft-tissue) may produce significant changes in
the chemistry of the local solution which are not predicted by standard pre-clinical testing
regimens (Liu et al., 2021; Smith and Gilbert, 2021). Direct evidence of Ti corrosion in vivo has
been reported in the orthopaedic literature associated with cemented femoral stems andMorse taper
connections (Jacobs et al., 1998a; Jacobs et al., 1998b; Hallam et al., 2004). These geometrical
scenarios, specifically provide conditions where aggressive (acidic) chemistries may be maintained,
allowing mechanically assisted crevice corrosion (MACC) to occur (Gilbert et al., 1993; Addison
et al., 2012; Kubacki and Gilbert, 2021).
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Several factors influence the corrosion resistance of Ti
including temperature and environmental chemistry. It has
been reported that the frequency of thin film breakdown
events increases with increasing temperature (Kolman et al.,
1998; Yu et al., 2001; Atapour et al., 2012). For biomedical
applications experimental measurements are typically
conducted 37°C to simulate physiological body temperature
(Atapour et al., 2011) although at inflamed sites local tissue
temperatures can vary by several degrees. In other applications
such as dental implants, temperature fluctuations can be much
larger due to ingested hot or cold foods and beverages. Within the
relevant literature a range of temperatures from 25 to 50°C have
been used to explore mechanistic behaviors (Jackson et al., 2000;
Valero Vidal et al., 2010). Alongside temperature, the chemistry
of the environment into which the implant is placed is a key factor
which can influence the corrosion resistance of Ti and its alloys.
In the body, Ti implants encounter a range of liquid
environments which can contain components such as reactive
oxygen species, or proteins which can modify corrosion
resistance (Zhang et al., 2018a). Of particular importance is
the presence of Cl− in tissues fluids (100–110 mM) which
reduces the passivation of Ti in acidic conditions (Mi-Kyung
et al., 2015). Although an acknowledged extreme, measurement
of fluids in contact with Ti alloy orthopaedic implants retrieved
during revision surgery has shown that the local acidity may
reach levels approaching pH 2.5 (Hallam et al., 2004).
Importantly, this is an environment that represents local
acidification as a consequence of MACC (Zhang et al., 2018b).

The most common Ti implant substrate in use today is the
ASTM Grade V alloy, Ti6Al4V, which exhibits a microstructure
containing α and β phases stabilized by Al and V, respectively
(Liu et al., 2004; Yu et al., 2015; Zhang et al., 2018a). The
manufacturing and processing of Ti6Al4V can be tailored to
generate a variety of microstructures with different spatial
distributions of the α and β phases (Atapour et al., 2010;
Atapour et al., 2012). However it has been observed that these
phases can have different corrosion behaviors and should
corrosion occur would lead to a differential release of the
alloying (Chandrasekaran et al., 2006; Atapour et al., 2011;
Zhang H. et al., 2020) elements. Hence, the purpose of this
study was to explore the temperature dependent corrosion
behavior of Ti6Al4V in the presence of HCl and identify
factors which lead to preferential corrosion of the
microstructural phases. The corrosion behavior of Ti6Al4V
alloy was studied in hydrochloric acid at different
temperatures by applying potentiodynamic/potentionstatic
polarization scans and surface analysis methods, and novel
explanation can be provided regarding failure of biomedical Ti
alloys.

2 MATERIALS AND METHODS

2.1 Sample Preparation
Disc-shaped test specimens (14 mm diameter and 1.2 mm
thickness) were fabricated from a Ti6Al4V alloy (ASTM Grade
V, Titanium Products Ltd., Solihull, United Kingdom) and the

surfaces polished to a mirror finish. Polishing involved sequential
use of abrasive cloths beginning with MD-Piano (Struers,
Rotherham, United Kingdom) and deionized water as a
lubricant, followed by MD-Largo with a 9 µm diamond
suspension as a lubricant. Finally, a MD-Chem polishing cloth
(Struers, Rotherham, United Kingdom) was used with 0.04 µm
OP-S Colloidal Silica suspension (Struers, Rotherham,
United Kingdom) to produce a mirror finish on both sides of
the disc. Following polishing, specimens were thoroughly cleaned
sequentially in acetone, ethanol, and deionized water using
ultrasonic agitation for 10 min at each stage. Specimens were
finally dried in an air stream before further experiments.

2.2 Electrochemical Tests
2.2.1 General Procedures
A standard three-electrode cell with reference electrode (RE),
counter electrode (CE) and working electrode (WE) was used.
The CE was a Pt mesh (working area ~4 cm2) and RE was a
commercial saturated calomel electrode (SCE). The potential was
controlled with a potentiostat (ACM Instruments,
United Kingdom). Ti discs were mounted in VARI-SET cold
mounting acrylic (MetPrep Ltd., United Kingdom) and used as
WE. The electrode was polished to a mirror surface using
identical sample preparation methods. To achieve good
reproducibility, the time between polishing and
electrochemical measurements was controlled using the
following approach throughout. After final polishing with an
MD-Chem polish cloth, the samples were immediately cleaned
with deionized water (Millipore), then dried in an air stream and
left in open air for 5 min before immersed in the test solutions.
Due to the preparatory procedures of setting up the
electrochemical cell, there was a 5 min interval between the
initial immersion of the sample and acquisition of the first
measurement. The electrochemical cell was immersed in a
water bath (Bennett Scientific Limited, Nickel Electro Ltd.,
England, United Kingdom) with high temperature stability
(±0.5°C). The temperature was monitored with a
thermocouple connected to a computer.

2.2.2 Potentiodynamic Polarization Curves
Freshly polished Ti6Al4V electrodes were immersed in 2 M HCl
at 37°C. The open circuit potential (OCP) was measured for 1 h
and then anodic polarization curves were measured by sweeping
the potential from −50 mV below the OCP to 0 mV vs. SCE at a
rate of 1 mV/s. The anodic polarization curves were measured
three times for each condition, using a freshly polished sample
and fresh solution in each case.

2.2.3 Potentiostatic Measurements
The corrosion behavior of Ti6Al4V in the presence of 2 M HCl
was studied by potentiostatic measurements at various
temperatures around the physiological norm (28°C, 31°C, 34°C,
37°C, 40°C, and 43°C). The temperature was controlled by the
water bath and was recorded by a thermocouple, which was
immersed in the solution. Freshly polished Ti6Al4V was
immersed in 2 M HCl. OCP was measured for 30 min and
then −510 mV vs. SCE was applied for 3 h. The potentiostatic
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measurements were repeated three times for each condition,
using a freshly polished sample and fresh solution in each case.

2.3 Surface Characterization
Ti surfaces before and after electrochemical testing were
characterized using SEM. Briefly, to locate the same region on
the specimen, a hardness indentation was introduced into the
center of the mirror polished surface (Vickers hardness test, load:
300 g, MVK-H1 hardness testing machine, Mitutoyo, Japan).
After the initial baseline measurement, the carbon layer on the
surface resulting from SEM was removed by quickly (~10 s)
polishing the sample on an MD-Chem polish cloth with OP-S
Colloidal Silica suspension, so that it would not affect the
electrochemical experiments. SEM observation was undertaken
with JEOL 7000 instrument (Japan Electron Optics Laboratory
Co., Ltd. accelerating voltage 20 kV, beam current ~70 μA). Both
secondary electron mode (SE) and backscatter electron mode
(BSE) imaging were used. Electron back-scattered diffraction
(EBSD) analysis was also performed. The elemental
composition of the test specimen surfaces was also analyzed
by energy dispersive X-ray spectroscopy (EDX detector model:
7558 for JEOL 7000; collecting window: ATW 2; acquisition time:
60 s; quantification method: standard less; Oxford Instrument,
United Kingdom).

3 RESULTS

3.1 Characterization of Ti6Al4V
Figure 1 shows the surface morphology and EDX analysis of
Ti6Al4V test specimens exhibiting mirror-polished surfaces.
When the “as-polished” sample was etched in Kroll’s etchant
(2% HF and 10% HNO3 mixed solution) for ~5 s, the β phase was
clearly observed (data not shown). Ti6Al4V surfaces show the
characteristic two-phase (α and β) microstructure. Increased V
and Fe was seen in the β phase and whereas the α phase contained
relatively higher Al (Figure 1C).

3.2 Effect of HCl on Ti Corrosion
3.2.1 OCP Measurement and Anodic Polarization
Figure 2A shows the OCP as a function of time for mirror-polished
Ti6Al4V in naturally-aerated 2M HCl. The OCP started from
~−350mV vs. SCE and then abruptly decreased to ~−670mV vs.
SCE for Ti6Al4V, indicating dissolution of the air-formed passive
film and surface activation in 2M HCl. Figure 2B shows that
Ti6Al4V exhibited obvious active peaks during anodic polarization.
The primary passivation potential (Epp) of Ti6Al4V is ~−510mV
vs. SCE.

3.2.2 Temperature Dependence of Corrosion Behavior
of Ti6Al4V
Figure 3 shows potentiostatic measurements of the mirror-polished
Ti6Al4V in 2M HCl at different temperatures. It shows that the
steady state current density of Ti6Al4V was sensitive to temperature.
It can be seen that the corrosion process at 28°C is slightly different
from the behaviors above 28°C since the current density of Ti6Al4V
was gradually decreased within the measured time until ~4,000 s
(before reaching a relative steady state). Figure 3C also shows that
the steady state current density of Ti6Al4V was increased with
increasing temperature at above 28°C, i.e., 31°C, 34°C, 37°C, 40°C
and 43°C.

3.2.3 Surface Morphology of Ti6Al4V After
Potentiostatic Tests
Figure 4 and Figure 5 compare the surface morphologies of
mirror-polished Ti6Al4V before and after potentiostatic tests at
−510 mV vs. SCE in 2 MHCl. It can be seen that Ti6Al4V shows a
characteristic α/β two phase microstructure based on the BSE
image (Figure 4B and Figure 5B) and EBSD phase map
(Figure 5A). There is no sign of corrosion before the test
(Figure 4A, Figure 4B and Figure 5B). However, the α phase
of Ti6Al4V was found to be attacked more than the β phase after
the test (Figure 4C and Figure 4D). More importantly, Figure 5C
shows the α phase of Ti6Al4V was preferentially attacked while
the β phase of Ti6Al4V stayed the same.

FIGURE 1 | (A) SEM, (B) EDX image and (C) weight percent (wt.%) of Al and V in α phase and β phase of mirror-polished Ti6Al4V based on the EDX analysis of
randomly chosen points on the sample.
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4 DISCUSSION

4.1 Effect of HCl on Ti6Al4V Corrosion
The current study demonstrated that Ti6Al4V surfaces were
activated in naturally-aerated 2 M HCl, which agrees with
other studies (Atapour et al., 2010; Atapour et al., 2011). The
E-pH diagram (Pourbaix diagram) at 37°C provides preliminary
information about the thermodynamically stable state of Ti3+

within a wide range of potentials at pH < 1.5 (Yu and Scully,
1997). In the presence of 2 MHCl (pH −0.3), the OCP of Ti6Al4V
was −670 mV vs. SCE (Figure 2), in which Ti3+ is the
thermodynamically stable state, and therefore chemical
dissolution of the Ti oxide passive film occurred as the first
stage before surface activation resulting in an abrupt drop in
OCP. The drop in OCP values also agreed with previous studies
(Yu et al., 1999; Atapour et al., 2010; Atapour et al., 2011). In
addition, a characteristic active-passive transition was observed

during anodic polarization in 2 M HCl. Similar Epp and icrit have
been reported, i.e., Ti6Al4V in aerated 1.5 M HCl (Atapour et al.,
2010) and in deaerated 5% (1.3 M) HCl (Atapour et al., 2012)
at 37°C.

4.2 Temperature Dependence of Ti6Al4V in
2M HCl
The steady state current density of Ti6Al4V at −510 mV vs. SCE
has been observed to be increased with increasing temperature
above 28°C, i.e., 31°C, 34°C, 37°C, 40 and 43°C (Figure 3).
Assuming the corrosion process of Ti6Al4V in this study can
be analyzed by a simple Arrhenius expression (Eq. 1) then the
corrosion rate would be represented by current density:

ln i � a − Ea

RT
(1)

FIGURE 2 | (A)OCP as a function of time and (B) anodic polarization curves for mirror-polished Ti6Al4V in 2 M HCl at 37°C (icrit: critical anodic current density; ipass:
passive current density; Epp: primary passivation potential).

FIGURE 3 | Potentiostatic measurements of mirror-polished Ti6Al4V in 2 M HCl at −510 mV vs. SCE for 3 h (A) with thermocouple record at 37°C, (B) at different
temperatures and (C) the relationship between the anodic steady state current density and temperature in the parallel experiments. The values were chosen from 4,000 s
to 10,800 s.
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FIGURE 4 | SEM image of mirror-polished Ti6Al4V (A,B) before and (C,D) after potentiostatic test in 2 M HCl at −510 mV vs. SCE for 30 min at 37°C. SE:
secondary electron mode SEM image; BSE: back scattered electron mode SEM image.

FIGURE 5 | (A) EBSD phase map (B) BSE image of mirror-polished Ti6Al4V before and (C) BSE image after potentiostatic test in 2 M HCl at −510 mV vs. SCE for
30 min at 37°C.
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where Ea is the activation energy of the corrosion process during
potentiostatic polarization, T is the absolute temperature (K) and
R is the gas constant (8.3 J/mol·K).

It can be seen from Figure 6 that the relationship between the
natural logarithm of current density and reciprocal temperature is
non-linear (black line) and does not obey a linear Arrhenius
expression. The corrosion processes of Ti6Al4V in this study
cannot therefore be completely described in this way. However, to
compare with other works, a fitted Arrhenius plot was conducted
(red line) and the calculated activation energy was 164 kJ/mol.

Different activation energies have been previously reported, e.g.,
27 kJ/mol by Atapour et al. (Atapour et al., 2012), 57 kJ/mol by Yu
et al. (Yu et al., 1999) and 63 kJ/mol by Blackwood et al.
(Blackwood et al., 1988), which may be attributed to the
different methods used. The activation energy values reported
by Yu et al. (Yu et al., 1999) and Blackwood et al. (Blackwood
et al., 1988) are related to the dissolution/corrosion of Ti oxide on
CP-Ti in deaerated 5MHCl or 3MH2SO4, respectively, and based
on the surface activation time during immersion at OCP. These
findings suggest that the corrosion process in this study is
complicated and not controlled by a single mechanism. Active
dissolution and possible passivation may co-exist since the applied
potential is the primary passivation potential (−510 mV vs. SCE).
In addition, the applied potential was not far fromOCP (−670 mV
vs. SCE), where the cathodic reaction may also take place.

4.3 Surface Morphology of Ti6Al4V After
Potentiostatic Testing
The effect of microstructure on corrosion is significant, and may
induce corrosion defects as a result of preferential dissolution
(Zhang H. et al., 2020; Wang et al., 2022; Xu et al., 2022). The

corrosion process due to preferential attack has also been
documented in the medical literature (Gilbert et al., 2012). The
current study demonstrated that the α phase of Ti6Al4V was
preferentially attacked relative to the β phase in 2M HCl at 37°C
after potentiostatic measurement at Epp (−510 mV vs. SCE). This
observation differs from Atapour’s observation (Atapour et al.,
2011) that the β phase of Ti6Al4V-ELI (similar to Ti6Al4V but
contains lower content of C, N, O and Fe) was preferentially
attacked after exposure to 5M HCl at 37°C for 50 h. However, no
over-potential was applied in Atapour’s study in contrast to this
report. In addition, it has been reported that the preferential
dissolution of α phase of Ti-15Mo (with α+β phases
microstructure) was observed at potentials in the active region
in 40% H2SO4 at 80°C (Tomashov et al., 1974). The α phase of Ti-
15Mo-3Nb-3Al was also found to be preferentially attacked during
anodic polarization in 5M HCl at 37°C (Yu and Scully, 1997).

For the Ti6Al4V used in this study, there was more Al and less
V in the α phase, while there was more V but less Al in the β phase
(Figure 1). Al has been reported to have a detrimental influence
on the passivity and corrosion resistance of the α phase Ti in 5 M
HCl (Yu and Scully, 1997), while dissolution of V coupled with
conduction channels is also considered to be detrimental for the
passive film on Ti in Hank’s solution (Metikos-Hukovic et al.,
2003). Considering the conditions of this study, both active
dissolution and possible passivation of Ti6Al4V would be
expected. The detrimental effect of Al may dominate over
other factors, resulting in the observed preferential attack of α
phase. It is noted that there is also some Fe content (Figure 1) in
the β phase of Ti6Al4V in this study. Fe-containing β phase has
been reported to possibly initiate hydride formation and proton
reduction in acidic environment (Yan et al., 2006; Yan et al.,
2011). It is likely that the cathodically active hydride sites on β
phase co-exist with anodically active of α phase, which may have
further resulted in the preferential dissolution of α phase.

5 CONCLUSION

In the current study, the temperature dependent corrosion
behavior of Ti6Al4V has been investigated in the presence of
HCl. It was found that Ti6Al4V exhibited active-passive behavior
in HCl solution after surface activation. Furthermore, the steady
state current density at the primary passivation potential becomes
higher with increasing temperature. In addition, the factor
influencing preferential corrosion of the microstructural phases
has been explored. The α phase of Ti6Al4V is preferentially
dissolved relative to the β phase after potentiostatic
measurement. This study provides convincing evidence on
preferential attack of Ti based implants and orthopedic
replacements, and also supports corrosion-related failure of
biomedical Ti alloys theoretically.
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