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We propose an efficient method to determine the micro-structural entropic behavior
of polymer chains directly from a sufficiently rich non-homogeneous experiment at the
continuum scale. The procedure is developed in 2 stages: First, a Macro-Micro-Macro
approach; second, a finite element method. Thus, we no longer require the typical stress-
strain curves from standard homogeneous tests, but we use instead the applied/reaction
forces and the displacement field obtained, for example, from Digital Image Correlation.
The approach is based on the P-spline local approximation of the constituents behavior
at the micro-scale (a priori unknown). The sought spline vertices determining the polymer
behavior are first pushed up from the micro-scale to the integration point of the finite
element, and then from the integration point to the element forces. The polymer chain
behavior is then obtained immediately by solving a linear system of equations which
results from a least squares minimization error, resulting in an inverse problem which
crosses material scales. The result is physically interpretable and directly linked to the
micro-structure of the material, and the resulting polymer behavior may be employed in
any other finite element simulation. We give some demonstrative examples (academic
and from actual polymers) in which we demonstrate that we are capable of recovering
“unknown” analytical models and spline-based constitutive behavior previously obtained
from homogeneous tests.

Keywords: hyperelasticity, data-driven modeling, polymers, digital image correlation, machine learning, splines

1 INTRODUCTION

Modern applications and the easiness of 3D printing of polymers even at the micro-
scale (e.g., via dual-photon polymerization), have renewed the interest in large deformation
modeling of these entropic materials. Polymeric materials can now be found in a wide
range of biomedical applications (stents, sutures, spinal cages, soft tissue implants, and
tissue engineering scaffolds, … ), see Bergström and Hayman (2016). Even most human soft
biological tissues, which are made of a matrix (elastine, proteoglycans) plus fibers (collagen),
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withstand large reversible deformations within the physiological
range, and therefore, use hyperelasticity as ground for more
complex aspects; Chagnon et al. (2015), Chagnon et al. (2017).
As the simplest procedure to guarantee true elasticity (reversible,
non-dissipative processes) the cornerstone in hyperelasticity is
the free energy function, the state function, from which the
stresses are uniquely derived from the strains (or vice-versa),
regardless of path. Since the 3D strain energy function cannot be
measured directly, the classical approach in constitutivemodeling
establishes a predefined form for the free energy. This function
typically contains some parameters that are adjusted according
to the experimentally (stress-strain) observed material behavior.
Although it is relatively simple to tune model parameters to
predict (up to a desirable precision) a single experimental curve,
determining the parameters that produce accurate results for
different modes of deformation is not trivial, as it is apparent
from the unaccountable number of hyperelastic models available;
Volokh (2016). Theoretically, if the proposed model is correct,
this set of parameters should exist and although determined
for specific tests they should predict well other modes of
deformation. In practice, when parameters are obtained from
a single experimental curve, they fail to generalize to other
deformation states; this is the reason why in practice multiple
tests are recommended to determine the parameters of the free
energy function (Marckmann and Verron, 2006, 3, p.12). Using
multiple tests to calibrate the parameters alleviates the deviations
of the model for other modes of deformation (at the cost of
accuracy for a given test), but at the same time it raises the
question of whether the proposed form for the free energy really
captures the physical phenomena behind experimental data or
this assumed form is just a complex interpolation scheme that
adapts its parameters to fit the curves used during calibration.We
remark that if the physics behind were accurately represented, a
single curve should be sufficient to capture the general multiaxial
behavior of isotropic, incompressible polymers under reversible
deformations.

This kind of problems has encouraged many researchers
to pursue different approaches. One of them is the model-
free data-driven computing paradigm. In this approach,
basic conservation laws and essential constraints are satisfied
but the constitutive laws are eliminated in the benefit
of data; Kirchdoerfer and Ortiz (2016), Kirchdoerfer and
Ortiz (2018), Eggersmann et al. (2019), Ibañez et al. (2017),
Ibañez et al. (2018). Regarding the leading role of data for some of
these references, works that address the efficient handling of data
have also been published, see Zheng et al. (2020), Korzeniowski
and Weinberg (2021). On the other hand, other approaches
attempt to surrogate the constitutive law with an input-output
relation through Artificial neural networks (ANNs), Nguyen-
Thanh et al. (2020), Liu et al. (2020). Both approaches (model-
free data-driven and surrogate-like ones) show promising results,
however, the predictive capability of models that just rely
on data is strongly dependent on the amount and quality of
data being employed. In addition, since there is no expression
for the free energy function most of those models are very
difficult to interpret from a physical standpoint. It seems clear
that an approach solely based on data might not be the best

option for this kind of problems (the more the model needs
to learn, the more data is required). This need for introducing
physics information in full data-driven models has led to other
works based on Physics-informed neural networks (PINNs)
Liu et al. (2020) and on thermodynamically consistent data-
driven approaches; González et al. (2018). Still, the increased
generality of those approaches increase the amount of data
required when compared to classical constitutive modeling
techniques and their interpretability is much less direct. To
summarize, an optimal approach for the constitutive modeling
of polymers should: 1) include information about the physical
equations without assuming a fixed given form for the free energy
function; 2) use data to complement what we know about the
physical phenomena and fill in the gaps in our knowledge, but
without using more data than actually needed; 3) interpretability
is also very important because understanding the solution and
being able to identify its physical meaning avoids many pitfalls
allowing us to search for the answer within a smaller solution
space and identify spurious solutions. Interpretability also
facilitates the imposition of desired (physics-based) requirements
to the sought solution, for example, smoothness, monotonic
increase or decrease, isotropy, etc.

With all those requirements in mind we developed the
WYPiWYG (What-You-Prescribe is What-You -Get) approach
to constitutive modelling, Latorre and Montáns (2013), based
on some seminal ideas from the Sussman-Bathe model for
isotropic, incompressible materials, Sussman and Bathe (2009).
The WYPiWYG approach determines the free energy function
or its contributions, but in contrast to classical phenomenological
models, which presume a form for the energy function and fit the
model parameters to the experimental data, our approach starts
with some basic fundamental assumptions about the material
behavior (isotropy/anisotropy, Valanis-Landel decomposition,
invariant-based contributions to the energy function) and then
obtains numerically the constitutive equation from equilibrium
using a local approximation scheme based on splines. This local
approximation philosophy is similar to the way shape functions
in finite elements interpolate the displacement field, instead of
computing coefficients of predefined analytical functions as in the
Navier and Rayleigh methods. The generality of this approach is
demonstrated on themodels elaborated for anisotropicmaterials,
Latorre and Montáns (2014), auxetic materials Crespo and
Montáns (2018) and models for the active and passive response
of skeletalmuscle,Moreno et al. (2020). So far phenomenological
WYPiWYG hyperelasticity circumvents the need to prescribe
the shape of the energy function while maintaining the same
model interpretability that the phenomenological models have.
However, the amount of data required to characterize the
behavior of polymeric materials is similar to the amount of data
required by other parametric phenomenological models like the
Ogden Model, Ogden (1972).

Other alternative to phenomenologicalmodels are those based
on the micro-structure which employ additional information
about the structure of polymers to get better predictive
capabilities with fewer data. Most micro-structural models
assume that the polymer is fully entropic and thus all the work
employed in its deformation directly translates into a variation of
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its entropy.This physical insight has been exploited by researches,
leading to well known models as the Neo-Hookean model,
Flory and Rehner (1943); Gent (1989); Treloar (1975), and the 8-
chain model, Arruda and Boyce (1993). The expressions of those
models depend just on the first invariant of the Green-Cauchy
tensor, IC1 and some material parameters, but in contrast to the
phenomenological ones, the material parameters are linked to
the micro-structure resulting in some additional physical insight.
Although they were conceived to be characterized from a simple
extension test, the results on other modes of deformation are
not satisfactory, even with the additional information about the
microstructural behavior.This fall from expectations added up to
the conclusions ofMooney and its Mooney plots Mooney (1940),
which showed that IC1 was not the right (or at least the
unique) variable to describe the polymer behavior due to the
controversial slope C2 that consistently appeared on simple
extension experimental data.

The extension of the WYPiWYG approach to microstructural
modellingwith the aimof overcoming those dificulties resulted in
a Macro-Micro-Macro (MMM) approach to obtain the polymer
constituents behavior directly from experimental data with no
assumptions about its analytical form or parameters to calibrate;
Amores et al. (2020). Just some basic assumptions were made:
1) homogenization of the chains free energy to obtain the
free energy of the continuumΨ(λ1,λ2,λ3) = ∫Sψch (λch)dS/S, and
2) the computation of the micro-stretch variable is obtained
from the continuum stretch tensor, λch = r ⋅U ⋅ r (a non-affine
measure of deformation in agreement with the lack of relevant
contribution of chains orientation change in the entropy
reduction). The MMM approach predicts well any general
deformation mode requiring just a single experimental curve
to characterize the chain behavior, see (Amores et al., 2020,
Figure 3). Since a similar Data-Driven MMM framework using
the affine deformation measure (λCch)

2 = r ⋅C ⋅ r was not able to
offer the same results, in Amores et al. (2021) we questioned
the affine micro stretch assumption from theoretical grounds,
which seems to be the most popular in micro-structural models;
Treloar (1975), Arruda and Boyce (1993), Alastrué et al. (2009),
Sáez et al. (2011), Khiêmand Itskov (2016). In that samework the
non-affinemeasure of deformation λch = r ⋅U ⋅ r did show to be in
accordancewith the “controversial”C2 slope observed byMooney
that up to the date could not be successfully explained from the
classical statistical theory.

The framework presented in Amores et al. (2020) seems
to be in accordance with both the chain statistical theory
and experimental results, but needs homogeneous tests to
characterize the chain behavior.Hence, ourwork here is to pursue
amore general approach by employing arbitrary continuumnon-
homogeneous tests and using Digital Image Correlation (DIC),
crossing scales from the continuum to the polymer constituent
macromolecules.

The procedure consists of linking two stages. One is the
previously introduced MMM method, and the other one is to
link thatmethod to a finite element analysis of non-homogeneous
continuum problems continuum problems, see (Cite to Figure
1) outline. We assume in the latter that the non-homogeneous
field of displacements (via DIC), plus the test loads (via load

cell) are known, the input data could be either 1D, 2D or 3D
depending on the case, but it is important to note that in 2D and
1D, it should be possible to employ reasonable assumptions to
determine the principal stretches and stresses in the eliminated
directions (incompressibility plus plane stress allow to determine
both the stretch and the stress out of the plane just from the
plane information).Then, the polymer chain behavior ismodeled
by P-splines, which vertices are to be determined—P-splines are
penalyzed interpolating B-splines to guarantee smoothness; see
Eilers and Marx (2021). That structure (the unknown vertices)
are transferred to the continuum scale via integration in all
the material directions and the result attached to the finite
element integration point (the continuum constitutive behavior).
Hence, the nodal forces of the finite element are set as a
direct, explicit function of the unknown P-spline vertices of
the polymer chains and the prescribed deformation gradient.
By a least squares formulation, a linear system of equations
is established, which allows for the immediate determination
(i.e., simply solving a linear system of equations) of the P-spline
vertices of the chain behavior from the macroscopic loads in
the specimen and the macroscopic field of deformation. The
physics equations present on the procedure include at the FEM
level the compatibility equations (computing the strain quantities
from the displacement field) and the equilibrium equations (null
force residual), incompressible hyperelasticity with volumetric-
deviatoric decoupling at the integration point level, properly
including themicro-macro connections (energy homogenization
and affine micro-stretch) at the chain level.

In the following sections we introduce the procedure, first
using a continuum hyperelastic formulation and then the
micromechanical one. We also demonstrate the applicability
through an academic example and an example using the well-
known Treloar’s rubber.

2 METHODOLOGY

2.1 Detailed Procedure Description
One way to obtain the displacement-based finite element
formulation is through the principle of virtual work, which for
the quasi-static case reads δW = δWint − δWext = 0. Considering
a conventional FEM discretization and interpolation of the
displacement field, both virtual works (internal and external)
could also be expressed in terms of the internal and external
nodal forces, δW = δu ⋅ (fint − fext) = 0 or equivalently f int = f ext.
To conclude, a weighted integration of the equilibrium equation
leads to an alternative expression for the virtual work, see
(Eq. 1), that if compared with δW = δu ⋅ (fint − fext) = 0 provides
an expression for the internal and external nodal forces. The
expression for the weighted integration of the equilibrium
equation in the reference configuration can be expressed as:

∫Ω
[δu⊗∇] ∶ P (u)dΩ =∫Ω

δu ⋅ bdΩ+∫Γ
δu ⋅ tdΓ (1)

where δu and u are the virtual displacement field, and the
displacement field, respectively, P, the 1st PK (First Piola-
Kirchhoff) stress tensor, b the volumetric forces and t the
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surface forces. The symbol ⊗ represents the dyadic production,
so [δu⊗∇] ∶ P (u) = P ∶ ∇δu is the internal virtual work density.

2.1.1 Internal Force Term
As it has already been mentioned, a FEM discretization for
the internal force term, ∫ΩP ∶ ∇δudΩ, and the interpolation
of the displacement field in the reference unit element, δu =
∑nna=1h

a (0ξ)δua leads to the expression for the nodal internal
forces, see (Eq. 13). Note that ha (0ξ) are the shape functions, δua

the virtual displacement vector for the node a, and that in δua
i ,

a = 1,…,nn and i indicates the spatial dimension (i = 1,2 in 2D).
The expressions for the internal forces are described with depth
underneath, (Eq. 2) and (Eq. 3):

∫Ω
P ∶ ∇δudΩ =

nel

∑
e=1∫Ωe

P ∶ ∇δudΩe

=
nel

∑
e=1∫□

P ∶ ∇δuJed□

=
nel

∑
e=1

nqp

∑
j=1

Pj ∶ ∇δujJ
e
j wj

=
nel

∑
e=1

nqp

∑
j=1

nn

∑
a=1

Pj ∶ (δua ⊗∇ha (0ξj)) J
e
j wj (2)

where all the variables with subscript j are computed in the
integration point j.The previous equations can be rewritten doing
the sumover theDOFof the element (ndofs = nn × 2 in the 2D solid
elements) instead of doing the sum over the nodes:

∫Ω
P ∶ ∇δudΩ =

nel

∑
e=1

nqp

∑
j=1

ndofs

∑
i=1

δuiPj ∶ ∇h
i
jJ
e
j wj, (3)

In Eq. 3, i is the index that runs through the local degrees of
freedom in the element, for the cases studied here (2D plane
stress problems) i = 1,…,2nn, δui is the virtual displacement
at the local degree of freedom i and ∇hi

j is a second order
tensor that projects the contribution of Pj to the ith local degree
of freedom. Regarding ∇hi

j, for i = 2, ∇h2
j is the projector for

the second local degree of freedom of the element, this DOF
corresponds to the first node of the element a = 1 and the second
dimension 2, therefore,∇h2

j = e2 ⊗∇h
1 (0ξj). If i = 3 instead,∇h

3
j is

the projector for the third local degree of freedom of the element,
which corresponds to the second node of the element a = 2 and
the first dimension 1, therefore, ∇h3

j = e1 ⊗∇h
2 (0ξj). Now Eq. 3

is rewritten in matrix form to identify the components of the
internal force vector:

nel

∑
e=1

nqp

∑
j=1

ndofs

∑
i=1

δuiPj ∶ ∇h
i
jJ
e
j wj =

nel

∑
e=1
[(f eint)1 … (f

e
int)ndofs]
[

[

δue
1
⋮

δue
ndofs

]

]

=
nel

∑
e=1

f eint ⋅ δu
e (4)

where

(f eint)i =
nqp

∑
j=1

Pj ∶ ∇h
i
jJ
e
j wj (5)

Since the PK1 tensor is a two-leg tensor placed in 2
configurations at the same time (material in the right and spatial
in the left), it might be more suitable to rewrite the term Pj ∶ ∇h

i
j

in terms of the PK2 (Second Piola–Kirchhoff) stress tensor, S,
which lies completely in material configuration, P = XS, being
X = ∂tx/∂0x the deformation gradient:

Pj ∶ ∇h
i
j = (XjSj) ∶ ∇h

i
j = Sj ∶ X

T
j ∇h

i
j = Sj ∶ sym(X

T
j ∇h

i
j)

= sym(XT
j ∇h

i
j) ∶ Sj (6)

In order to simplify the notation we define lij ≔ sym(X
T
j ∇h

i
j),

on the other hand the double contraction will be computed using
the Voigt notation. Note that S3 = 0 since we are considering the
case of plane stress and that the components in the Voigt notation
are with respect to the principal directions of deformation/stress.
Then, wewrite in principal directions (denoted as theXppal system
of representation)

Pj ∶ ∇h
i
j = [l11 l22 2l12]

i
j,Xppal
[

[

S1
S2
0
]

]j,Xppal

(7)

To compute the principal stress components of a polymeric
and quasi-incompressible material, we assume that the
volumetric and deviatoric contributions of the energy can be
separated (a typical assumption in quasi-incompressibility),
Ψ (A) = U (J) +W (λd1 ,λd2 ,λd3), where the volumetric term U (J)
is just a penalization function, being J = det (X) = dtV/d0V
the volume ratio, and A = 1/2(XTX − I) the Green-Lagrange
strain tensor. A typical choice for the penalization could be
U (J) = κ/2 (J − 1)2 with the bulk modulus, κ, selected such that
the stress produced by a volumetric deformation grows rapidly. If
an estimation for the shear modulus of the material, μ, is known,
κ/μ∼104, might suffice to ensure the satisfaction of the quasi-
incompressibility condition J = λ1 ⋅ λ2 ⋅ λ3 ≈ 1. The decoupling
of the energy in a volumetric and deviatoric energy results in
a similar decoupling for the PK2 stress tensor, S = Sv + Sd. We
note that Sv and Sd are not the volumetric and deviatoric part,
respectively, of a second order tensor S (as obtained from the
respective mathematical operators), but Sv is the contribution
to S that comes from the volumetric energy U(J), and Sd is
the contribution to S that comes from the deviatoric energy,
W(λd1 ,λd2 ,λd3):

S = dΨ
dA
= dU

dJ
dJ
dA
+

3

∑
i=1

∂W
∂λdi

dλdi
dA

(8)

= Sv + Sd = pJC−1 +∑
i
∑
k

WkJ
−1/3

λ2i
(λiδik −

1
3
λk)Ni ⊗Ni (9)

where N i are the principal referential directions of deformation,
Wk = ∂W/∂λdk and λdi = λiJ

−1/3, the isochoric stretches. As we
have already mentioned the test cases are plane stress and
therefore, S3 = 0 = S ∶ (N3 ⊗N3):

S3 =
pJ
λ23
+ 2
3
W3J
−1/3

λ3
− 1
3
(
W1J
−1/3

λ23
λ1 +

W2J
−1/3

λ23
λ2) = 0 (10)
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From the previous equation, the pressure term could be
isolated and introduced in the equations for S1 and S2:

Sj = J−2/3
1
λdj
(∂W
∂λdj
−
λd3
λdj

∂W
∂λd3
) for j = 1,2 (11)

Once the principal stretches are known for a particular
integration point, the principal PK2 stress components in that
same point could be determined through evaluation of the
deviatoric contribution derivatives. When the stress tensor has
been computed in all the integration points of the element,
the internal nodal forces for that element are computed using
(Eq. 4). On the other hand, if the functions for the deviatoric
contribution derivatives are unknown, a cubic P-Spline local
approximation can be employed, see Amores et al. (2019), Eilers
and Marx (2021). The B-splines (or its penalized version, P-
splines) are one of the approaches for expressing any general
function y(x) as the product of a set of known basis functions
(cubic in this case),Bi (x) and it’s a priori unknown corresponding
weights (also called vertices), ̂vi, if the number of vertices of the
B-Spline is nvert, the expression for the unknown function is a
scalar product, y (x) = ∑nverti=1 Bi (x) ̂vi = B (x) ⋅ ̂v. In contrast to the
basis of features proposed in Flaschel et al. (2021), where a basis
of preassumed functions is used, the local B-Spline basis is general
with no assumptions about the possible function expressions (the
only assumption would be that locally the function is at most a
cubic function when cubic B-Splines are used). Additionally, the
local P-Spline approximation in this work is typically performed
directly on the derivatives so there is no need to compute
derivatives of the approximated function. With the mentioned
P-Spline for the derivative of the energy function, the principal
stresses could then be represented as Si (λ

d
1 ,λ

d
2) = S

i
row (λ

d
1 ,λ

d
2) ⋅ ̂v

where Sirow is a vector defined with 1D P-Splines basis vector
(B(λd1), B(λ

d
2)), see Section 3.1 and Section 3.2 for specific

expressions of this vector. Therefore, depending on the approach
that is used to compute the continuum principal stresses, the
unknown vertices, ̂v, could represent the derivative of the energy
either on the macro-structure or in the micro-structure:

Pj ∶ ∇h
i
j = sym(X

T
j ∇h

i
j) ∶

Sj = [l11 l22 2l12]
i
j,Xppal

[[

[

[S1row (λ
d
1 ,λ

d
2)]

T

[S2row (λ
d
1 ,λ

d
2)]

T

[0]T
]]

]j

[ ̂v]

= (l11S1row (λ
d
1 ,λ

d
2) + l22S

2
row (λ

d
1 ,λ

d
2))

i

j
⋅ ̂v

= (∗Srow)
i
j (λ

d
1 ,λ

d
2) ⋅ ̂v (12)

and for the element local degree of freedom i

(f eint)i = [
nqp

∑
j=1

Jej wj(∗Srow)
i
j (λ

d
1 ,λ

d
2)] ⋅ ̂v (13)

which means that every component of the elemental nodal force
vector is obtained as the product of a known row multiplied by
the unknown vertices, or expressed in a different manner:

f eint = F
e
int ⋅ ̂v (14)

where Feint is a known matrix, given in square brackets in Eq. 13.

2.1.2 External Forces Term
In case the body forces and the tractions are not zero, the external
force vector for each element, f eext has also to be computed and
assembled into f ext, looking at the right hand side of (Eq. 1).

(f eext)i =
nqp

∑
j=1

hi
j ⋅ bJ

e
j wj +

nesbound

∑
s=1

nqps

∑
j=1

h
i
j ⋅ tJ

s
jw

s
j (15)

fext =
nel

⋀
e=1

f eext (16)

On the previous equations, the reaction forces on the
boundary where displacements are imposed are accounted in the
traction term, for the sake of simplicity we are going to consider
that those nodal reaction forces are known, while this is not
typically the case in a experimental setting, instead, the total
reaction forces are known rather than the nodal forces. To deal
with this fact, 2 different approaches can be followed: 1) take
another artificial boundary far enough from the original one in
which we can suppose that the reaction force is evenly distributed
according to the Saint-Venant’s principle or 2) consider two
independent set of equations one for the free dofs and other for
theDOFwith fixed displacements, in the fixed displacementDOF
the resultant of the internal forces equals the reaction force at each
of the boundaries.

2.1.3 System of Linear Equations for the P-Spline
Vertices
The problem to solve is an overdetermined linear system of
equations Fint ⋅ ̂v = fext, where ̂v are the unknown vertices of
the P-Spline that approximates the derivative of the energy
function at the macro-scale (phenomenological energy function)
or the derivative of the energy function of the constituents at
the micro-scale. The solution process consists of finding the
vertices, ̂v, that minimizes the mean square error, MSE, in the
force residual:

MSE ( ̂v) = (Fint ⋅ ̂v − fext) ⋅ (Fint ⋅ ̂v − fext) (17)

The solution for the previous minimization problem is
analytical and result in the mentioned linear system of equations:

̂v = A−1sysbsys; Asys = FTintFint, bsys = F
T
intfext (18)

As we have already mentioned, one of the advantages of using
the P-Spline-based local approximation is that althoughwedonot
assume the form of the energy function, additional requirements
can be added to the solution, a typical one is smoothness, which
can be translated into a penalization on the second order finite
differences of the P-spline vertices, if the solution obtained is not
monotonically increasing, this property could also be imposed
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FIGURE 1 | On the right side the FEM part (green contour), from bottom to top there are different levels, first at the solid level, the nodal displacement vector, u, the
nodal internal forces, fint, and the external nodal forces, fext, are encountered. Second, at the element level, the elemental nodal displacement vector, ue, the
elemental nodal internal forces, f eint, and the elemental external nodal forces, f eext. Finally, the integration point (at the macro-scale) characterized by the Right Green
Cauchy tensor C, and the PK2 stress tensor, S, at this point. On the left hand side the Macro-Micro-Macro approach (magenta contour), the general idea would be
“zooming” (hence the magnifying glass) on the integration point and consider that for polymeric materials, the chains oriented in a certain direction (representative
direction) suffer a deformation described by the continuum stretches ellipsoid (upper left). The a priori unknown chain mechanical behavior, Pch (λch) (bottom left), will
be evaluated for each direction and the effect in each representative direction will be integrated for all the representative directions on the reference unit micro-sphere
(center left) to obtain the continuum principal stress components. Finally, the Macro-Micro transition (center of the figure) dictates how the continuum energy is
obtained from the constituents free energy and how the micro-structural stretches (non-affine chain stretch) are obtained from the continuum deformation measures.
From a more practical perspective: 1) The Macro-Micro-Macro approach expresses the continuum principal stresses in terms of the unknown P-Spline vertices for
the constituents mechanical behavior, S ( ̂v), and 2) A classical FEM assembly process is employed to write nodal equilibrium equations from the information at the
integration points, Fint ⋅ ̂v = fext. The substeps involved are: 1.1) The continuum strain, C, tensor defines the micro-structural deformations, λch on the representative
directions; 1.2) The micro-mechanical behavior (unknown a priori) is evaluated in all the representative directions in terms of the unknown vertices ̂v,
Pch (λch) = Brow (x) ⋅ ̂v; 1.3) The constituents mechanical behavior in all directions is integrated over the unit micro-sphere to obtain the continuum principal stresses at
the integration point, S ( ̂v); 2.1) The integration point stress S ( ̂v) is integrated over the element volume to obtain the elemental nodal internal forces, f eint ( ̂v); 2.2) The
elemental nodal internal forces are assembled to obtain the nodal internal forces of the solid, fint ( ̂v); 2.3) The unknown vertices are determined from equilibrium,
fint ( ̂v) = Fint ⋅ ̂v = fext.

by iterative penalization on the vertices that do not satisfy the
condition see Amores et al. (2019), Eilers andMarx (2021). With
all the penalizations, the general system of equations to solve
would be:

̂vk = (Ak
sys)
−1 bsys;

Ak
sys = FTintWFint +DT

2Ω2D2 +DT
1Ω

k
1D1,

bsys = FTintWfext,

(19)

whereW is a diagonalmatrix that weights the relative importance
of the equations in Fint, D1 and D2 are the first and second
differences matrices respectively, Ω2 and Ω1, are also diagonal
weight matrices for the penalizations in the second and first
differences of the vertices, note that k indicates the step of
the iterative penalization for monotonic smoothing. When

all the intervals are monotonically increasing the weighting
matrix Ωk

1 = 0 and that penalization automatically disappears.
In contrast to the overdetermined system of linear equations
produced by piecewise approximation presented in this work,
the methodology in Flaschel et al. (2021) employs a basis of
functions which extend over the whole function domain,
although this procedure seems similar to the local one, the
global support typically leads to dense solutions which are less
interpretable. For the sake of interpretability Flaschel et al. (2021)
proposes a sparsity promotion with ℓp regularization, but at the
price of requiring a fixed point iteration procedure to obtain the
solution and introducing p as an hyperparameter that has also
to be determined in the solution process. On the other hand,
the additional matrices added to the system matrix in our work
ensure smoothness of the solution (making the solution more
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robust against noise) and allows penalization in monotonicity if
required (this penalization has not been required for the examples
presented in this article).

3 RESULTS

3.1 Toy Example: Recovering an Analytical
Neo-Hookean With a P-Spline
for the Continuum Free Energy
In this section we are going to demonstrate just the FEM part of
the methodology using a P-Spline based approximation for the
functions that form the deviatoric continuum free energy. The
experimental data is a virtual test (FEM results) of an analytical
quasi-incompressible Neo-Hookean model with parameters
μ = 3.5MPa and κ = 1× 105MPa. The FEM model employed
for the virtual tests is a 2D plate with a hole on plane stress
conditions. The solicitation is an imposed displacement in the
upper border with u = 4. The dimensions of the plate and the
mesh employed in the simulation is shown in Figure 2, the
elements are quadratic quadrilaterals with nine integration
points. The formulation employed for plane stress in large
deformations is detailed in Supplementary Appendix SA,
the reader can also find the details about the Neo-
Hookean material model in Supplementary Appendix SB.
Regarding the software employed, Julia programming language,
Bezanson et al. (2017) has been used, in particular the
package FerriteFem.jl, see Carlsson and Ekre (2021), for
the FEM simulations and Amores (2022) for the P-Splines
functionality.

A typical assumption made on the phenomenological
approach for isotropic incompressible solids is the Valanis
Landel decomposition, W (λd1 ,λd2 ,λd3) = ω(λd1) +ω(λd2) +ω(λd3).
With that assumption, the expressions for the principal PK2
stresses can be obtained in terms of an unknown function
ω′ (x):

Sj = J−2/3
1
λdj
(ω′ (λdj ) −

λd3
λdj

ω′ (λd3)) for j = 1,2 (20)

Once ω′ (x) is obtained, the principal stresses are determined
for any deformation state under the plane stress hypothesis or the
contribution to the principal stresses coming from the deviatoric
energy for any general case (not in plane stress), see (Eq. 8), this
is all that can be determined from a constitutive point of view
because for an incompressible solid, the pressure does not come
from the constitutive equation but from equilibrium conditions.
Using P-splines, the unknown function can be written in terms
of some known basis functions and some unknown vertices in
a similar manner that it is done in FEM formulation with the
displacement field:

ω′ (x) =
nvert

∑
i=1

Bi (x) ̂ωi = [B1 (x) … Bnvert (x)][

[

̂ω1
⋮
̂ωnvert

]

]
= Brow (x) ⋅ ̂ω′ (21)

FIGURE 2 | FEM model used during virtual tests. The elements employed
are quadratic quadrilateral with nine integration points.

FIGURE 3 | Comparison of the Neo-Hookean ω′NH (λ
d) and the ω′ (λd)

obtained from the non-homogeneous virtual test.

With the previous expression, the principal stresses could be
written as:

Sj = J−2/3
1
λdj
(Brow (λ

d
j ) −

λd3
λdj

Brow (λ
d
3)) ⋅ ̂ω

′ = Sjrow (λdj ,λ
d
3) ⋅ ̂ω
′

for j = 1,2 (22)
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FIGURE 4 | Plot comparing the results of σVM for the reference Neo-Hookean continuum model and the reverse-engineered one. (A) σVM using the Neo-Hookean
model. (B) σVM using the ω′ (λdi ) reverse-engineered from the non-homogeneous virtual test.

[

[

S1
S2
0
]

]j,Xppal

= [[

[

[S1row (λ
d
1 ,λ

d
3)]

T

[S2row (λ
d
2 ,λ

d
3)]

T

[0]T
]]

]j

[ ̂ω′]T (23)

Pj ∶ ∇h
i
j = sym(X

T
j ∇h

i
j) ∶ Sj = [l11 l22 2l12]

i
j,Xppal
[

[

S1
S2
0
]

]j,Xppal

= (l11 ⋅ S1row (λ
d
1 ,λ

d
3) + l22 ⋅ S

2
row (λ

d
2 ,λ

d
3))

i

j
⋅ ̂ω′

= (∗Srow)
i
j (λ

d
1 ,λ

d
2 ,λ

d
3) ⋅ ̂ω
′

(24)

Referring again to Eq. 13, internal nodal forces of the element
can be written as the product of a known matrix by a vector of
unknown vertices:

f eint = F
e
int ⋅ ̂ω
′ (25)

Doing the assembly of the internal nodal forces of the elements
in the mesh:

fint =
nel

⋀
e=1

f eint = (
nel

⋀
e=1

Feint) ⋅ ̂ω
′ = Fint ⋅ ̂ω′ (26)

From the overdetermined linear system of equations
Fint ⋅ ̂ω′ = fext we can solve for ̂ω′:

( ̂ω′)k = (Ak
sys)
−1 bsys;

Ak
sys = FTintWFint +DT

2Ω2D2 +DT
1Ω

k
1D1,

bsys = F
T
intWfext (27)

The number of vertices has to be enough to capture the
complexity of the curve, typically nvert = 14 suffice, but additional
vertices can be added. If more and more vertices are added, the
number of equations required to determine them increases and
the problem can become ill-conditioned, this is solved by the
smoothing termwhich adds the information of smooth transition
between vertices and links the vertices to its neighbours. In
the homogeneous case, just a single equation is obtained for
every load/displacement step, therefore, in order to obtain

information for the function on the considered domain (from
the minimum principal stretch to the maximum principal
stretch on the simulation), it would be necessary to sweep a
whole range of load/displacement steps. On the other hand, for
the non-homogeneous case, in principle, it would be possible
to employ just a single load/displacement step if the step
under consideration is rich enough (in this case, just the last
step, u = 4 was used). In case that additional information is
needed to determine the function on the considered range, it
is also possible to add more steps between u = 0 and u = 4.
Since the initial solution was directly monotonically increasing,
Ω1 = 0 and it was not necessary to follow an iterative process,
̂ω′ was directly obtained from the simple initial system of

equations:

( ̂ω′) = (Asys)
−1 bsys; Asys = F

T
intWFint +D

T
2Ω2D2, bsys = F

T
intWfext

(28)

With the vertices obtained, the P-Spline could be
reconstructed and compared to the original one, see Figure 3.

Since the function ω′ (x) has been reverse-engineered exactly,
the values for the free energy partial derivatives for any state of
deformation can be determined, andwill be exactly equal to those
obtained with the original Neo-Hookean model. If desired, the
FEM simulations can be run again with the reversed-engineered
derivatives of the energy function and the σVM plot could be
compared with the one obtained for the original analytical Neo-
Hookean, see Figure 4. As it can be seen in Figure 4 the
plots are exactly the same as it might be expected from having
obtained the exact same ω′ as the one from the original Neo-
Hookean.

In this particular example, the matrix of the system
Asys ⋅ ̂ω

′ = bsys, presents a null eigenvalue with its corresponding
associated eigenvector, i.e., there is a certain subspace of
possible solutions ̂ω′0 (containing just the direction of the
eigenvector associated to the null eigenvalue) such that added
to the solution, ̂ω′, produce null effect on the independent
term, bsys and therefore ̂ω′ + αω̂′0, for an arbitrary scalar α,
is also a solution of the system. Looking at Eq. 20, to not
produce any effect, such function has to satisfy the condition
ω′ (λdi ) − λ

d
3/λ

d
i ⋅ω
′ (λd3) = 0 ∀ λ

d
1 ,λ

d
2 ,λ

d
3 . Regarding the

functions that satisfy this condition, there is a specific
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form of function that complies (which at the same time
must be smooth due to the regularization) ω′ (λdi )λ

d
i =

ω′ (λd3)λ
d
3 ∀ λ

d
1 ,λ

d
2 ,λ

d
3 . The only way two functions of different

independent variables can be equal ∀ λd1 ,λ
d
2 ,λ

d
3 is that those

functions are constant ω′ (λdi )λ
d
i = ω
′ (λd3)λ

d
3 = β0→ ω′ (λ) =

β0/λ. Since the shape of the eigenvector associated to the
null eigenvalue exactly matches the shape of the function,
ω′ (λ) = β0/λ, we would like to understand physically the origin
of this null contribution to the system. Looking at Eq. 8, we
can see that the pressure term is of the form p(λ1,λ2,λ3)/λ2i ,
the same form of the term resulting from introducing an
additional β0/λ

d
i to the function ω′ (λdi ). From a more general

perspective we can see that this indetermination comes from
the split of the energy into a volumetric and a deviatoric
contribution:

S = Sv + Sd; Sd = 2dW
dC
= 2J−2/3ℙ ∶ dW

dCd
= J−2/3ℙ ∶ S∣d (29)

where C = XTX is the right Cauchy-Green tensor and ℙ is the
fourth order projector tensor, see Supplementary Appendix SB.
Since ℙ ∶ (αC−1) = 0, from (Eq. 29) it can be seen that there
are multiple S∣d = ∂W/∂Cd that produce the same Sd and the
undetermined part has the form of a volumetric-like PK2
stress tensor. Any contribution of this form has no effect on
the solution since it is going to be finally eliminated by the
projector ℙ.

3.2 Micro-Mechanical Approach Based
on the Non-Affine Deformation Chain
Model
In this section the complete methodology described in Section 2
(Macro-Micro-Macro first, FEM second) is demonstrated.
In contrast to the procedure described in Section 3.1, here
the P-Spline will approximate the derivative of the chain
energy function Pch (λch) = dψch/dλch (mechanical behavior of
the material constituents at the micro-scale) rather than the
continuum contributions to the energy. The experimental data
is obtained from a virtual (FEM simulation) using the analytical
structure-based material model in Amores et al. (2020). To be
more precise, the Pch (λch) that will be employed to perform
the virtual test is the one obtained for the Treloar test data for
unfilled rubber, Treloar (1944), that function is displayed in
(Amores et al., 2020, Figure B.1). The FEM model employed for
the virtual tests is again the 2D plate with a hole on plane stress
conditions with an imposed displacement in the upper border
(u = 8). All the required dimensions and the mesh employed in
the simulation is shown in Figure 2. The reader can find further
details about the non-affine deformation chain material model
in Supplementary Appendix SC and Amores et al. (2020), a
discussion about the suitability of the non-affine stretch employed
in the model (free-fluctuating network assumption) is presented
in Amores et al. (2021).

In Amores et al. (2020) a way was established to compute the
strain energy function of the continuumwith an homogenization
of the micro-structural chain free energy function in polymeric
like materials under the assumption of incompressibility

(λ1 ⋅ λ2 ⋅ λ3 = 1):

W (λ1,λ2,λ3) =
1
S ∫S

ψch (λch)dS (30)

For FEM simulations even pure incompressible solids are
simulated with the quasi-incompressible material framework:

Ψ (A) = U (J) +W (λd1 ,λd2 ,λd3)

in which U (J) is a penalization function that leads to
incompressibility for κ→∞ like U (J) = 1

2
k (J − 1)2 and

where W (λd1 ,λd2 ,λd3) is the same as the one used in pure
incompressibility but with the deviatoric stretches instead of
the total ones:

W (λd1 ,λd2 ,λd3) =
1
S ∫S

ψch (λ
d
ch)dS;

λdch = U
d ∶ (r ⊗ r) = λd1r

2
1 + λ

d
2r

2
2 + λ

d
3r

2
3 (31)

Wk =
∂W
∂λdk
= 1
S ∫S

dψch (λ
d
ch)

dλdch

dλdch
dλdk

dS = 1
S ∫S

Pch (λ
d
ch) r

2
kdS (32)

The unknown function that will be approximated using
P-Splines is Pch (λ

d
ch), as described above, the P-Splines

representation expresses the unknown function in terms of some
known basis vector multiplied by a vector of unknown vertices:

Pch (x) =
nvert

∑
i=1

Bi (x) ̂Pchi

= [B1 (x) … Bnvert (x)][

[

̂Pchi
⋮
̂Pchnvert

]

]
= Brow (x) ⋅ ̂Pch (33)

Introducing the expression for Pch (x) in (Eq. 32) and then
all the derivatives of the form Wk in (Eq. 11) a expression for
the principal stresses in terms of the vertices that define the
Polymeric-chain response function can be obtained:

Sj = J−2/3
1
λdj
{1
S ∫S

Brow (λ
d
ch)(r

2
j −

λd3
λdj

r23)dS} ⋅ ̂Pch

= Sjrow (λd1 ,λ
d
2) ⋅ ̂Pch for j = 1,2 (34)

Note that the previous integral in themicrosphere is computed
by a numerical quadrature, ∫S f (r)dS = ∑

nqS
j=1f (r)w

S
j an that

although λdch depends on λd1 , λ
d
2 and λd3 , since λ

d
1 ⋅ λ

d
2 ⋅ λ

d
3 = 1, there

are just 2 independent variables. Again a procedure similar to the
one in the toy example, Section 3.1, is followed:
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FIGURE 5 | Plot comparing Pch (λ
d
ch) extracted from (Amores et al., 2020,

Figure B.1) and the reverse-engineered Pch (λ
d
ch) obtained with the

methodology described in the article.

[

[

S1
S2
0
]

]j,Xppal

= [[

[

[S1row (λ
d
1 ,λ

d
2)]

T

[S1row (λ
d
1 ,λ

d
2)]

T

[0]T
]]

]j

[ ̂Pch] (35)

Pj ∶ ∇h
i
j = sym(h

T
j ∇h

i
j) ∶ Sj

= [l11 l22 2l12]
i
j,Xppal
[

[

S1
S2
0
]

]j,Xppal

= (l11 ⋅ S
1
row (λ

d
1 ,λ

d
2) + l22 ⋅ S

2
row (λ

d
1 ,λ

d
2))

i

j
⋅ ̂Pch

= (∗Srow)
i
j (λ

d
1 ,λ

d
2) ⋅ ̂Pch (36)

Looking at the previous matrix equation and using again
(Eq. 13), it is straightforward to write the internal vector force
for an element as

f eint = F
e
int ⋅ ̂Pch (37)

where Fe
int is a matrix. Now in the same way that the components

that the components of f eint can be assembled to obtain the global
internal forces vector, f int. The rows of Feint can be assembled to
obtain a global internal force matrix Fint.

fint =
nel

⋀
e=1

f eint = (
nel

⋀
e=1

Feint) ⋅ ̂Pch = Fint ⋅ ̂Pch (38)

At that point it is important to note that if compared to
the procedure followed in Section 3.1, now the internal force
term is linked with the unknown vertices that correspond to the
constituents behavior at the micro-scale. With that approach we
show that scales can be crossed and information in one scale can
be pushed up to other scales, that of course taking into account
that the macro to micro connection has already been established.

From the overdetermined linear systemof equations Fint ⋅ ̂Pch =
fext a solution can be obtained for ̂Pch:

̂Pk
ch = (A

k
sys)
−1 bsys;

Ak
sys = FTintWFint +DT

2Ω2D2 +DT
1Ω

k
1D1,

bsys = F
T
intWfext

(39)

The discussion about the number of vertices and steps of
load/displacement required in Section 3.1 is also applicable here.
In this particular case, just the last step of deformation (u = 8)
was used. Again, in case that additional information is needed
to determine the function on the considered range, it is also
possible to add more steps between u = 0 and u = 8. Since the
initial solution was directlymonotonically increasing, Ω1 = 0 and
it was not necessary to follow an iterative process, ̂Pch was directly
obtained from the simple initial system of equations:

̂Pch = (Asys)
−1 bsys; Asys = F

T
intWFint +D

T
2Ω2D2, bsys = F

T
intWfext

(40)

With the vertices obtained, the P-Spline could be
reconstructed and compared it to the original one, see
Figure 5.

As it is shown in Figure 5, the Pch (λ
d
ch) extracted from

(Amores et al., 2020, Figure B.1) and the one obtained through
the methodology described in the paper are practically identical.
Looking closely, there are some small deviations close to λdch = 1

FIGURE 6 | Plot comparing the results of σVM for the reference micro-mechanical model in Amores et al. (2020) that uses (Amores et al., 2020, Figure B.1) and the
reverse-engineered one described in the article. (A) σVM using the Pch (λch) obtained for unfilled rubber, Treloar (1944) extracted from (Amores et al., 2020, Figure
B.1). (B) σVM using the Pch (λch) reverse-engineered from the non-homogeneous virtual test using the methodology described in this article.
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on the compression range. As it has already been mentioned,
the origin of those deviations is the eigenvector linked to an
almost zero eigenvalue on the reduced matrix of the system, this
matter has been carefully justified at the end of Section 3.1. With
the obtained Pch (λ

d
ch) the partial derivatives of the free energy

can be determined for any state of deformation, with them, it is
possible to re-run the FEM simulations and compare for example,
the σVM plot. Figure 6 compares the σVM with Pch (λ

d
ch) extracted

from (Amores et al., 2020, Figure B.1) and the Pch (λ
d
ch) with the

methodology described in this paper. As we can see, although the
functions are slightly different, that discrepancy has no effect on
the final stresses, this is so because the additional spurious term
that appears in the solution corresponds to a pressure term (in the
cauchy stress sense) and therefore, it will not appear in the final
computed stress due to the projector ℙ.

4 CONCLUSION

We have proposed a numerical method for determining both
the continuum free energy and the polymer macromolecules
behavior from arbitrary non-homogeneous DIC-based tests at
the continuum scale. The procedure consists of a combination of
our Macro-Micro-Macro approach and a Finite Element model.
As a novel contribution of this approach, we show that by crossing
scales transferring the microscale unknowns to the finite element
formulation it is possible to determine the mechanical chain
behavior from non-homogeneous experiments at the continuum
scale by simply solving a linear system of equations (i.e., in an
even more efficient manner than the subsequent simulations
of the polymer behavior). Another key aspect is that Penalized
B-splines (P-splines) preserve the general form of the energy
function while retaining sufficient tools for enforcing specific
desired conditions on the sought functions. The methodology
at hand recovers the analytical free energies used as starting
point in the virtual tests.Therefore, any finite element simulation
performed with the reversed-engineered energy function will

provide identical results to the original material model. From the
authors perspective, this new approach opens new possibilities
for data-driven characterization of themicro-structure fromnon-
homogeneous tests at the macro-scale. Further research has to
be conducted to evaluate the generalization of the approach in
Amores et al. (2020) to more complex material behaviors from
which the applicability of this same methodology has to be
assessed.
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GLOSSARY

Ω1 Weight matrix for the first differences

Ω2 Weight matrix for the second differences

A Green Lagrange strain tensor

b Volumetric forces

C Right Cauchy Green tensor

D1 First differences matrix

D2 Second differences matrix

f eext Element external nodal forces

f eint Element internal nodal forces

f ext External nodal forces

f int Internal nodal forces

N i Principal referential direction of deformation number i

P PK1 (First Piola-Kirchhoff) stress tensor

r Arbitrary direction of the unit sphere in the reference
configuration

S PK2 (Second Piola-Kirchhoff) stress tensor

t Surface forces

u Displacement field

ua Displacement vector of node a

W Weight matrix for the system of equation

X Gradient of deformation tensor, X = ∂tx/∂0x

∇ Nabla operator, ∇ = ∂iei
δu Virtual displacement field

δW Virtual work

δWext External virtual work

δW int Internal virtual work

Γ Area in the reference configuraion

κ Bulk modulus

ℙ Fourth order projector tensor ℙ = 𝕀S − 1/3C−1 ⊗C

0ξ Local coordinates for the unit reference element

μ Shear modulus

Ω volume in the reference configuraion

Ω volume in the reference configuraion

Ψ Continuum free energy function

ψch Chain free energy function

□ Volume of the unit reference element

Bi (x) B-Spline basis function corresponding to the vertex i

ha Shape function of node a in the reference unit element

IC1 First principal invariant of C, IC1 = λ
2
1 + λ

2
2 + λ

2
3λ

J Volume ratio J = det (X)

Jej Jacobian of the element e at integration point j

MSE Mean square error

ndofs Number of DOFs per element

nvert Number of vertices of the BSpline

nel Number of elements

nn Number of nodes

nqp Number of quadrature points per element

nqS Number of quadrature points on the microspheres

Pch Chain mechanical behavior function, Pch = dψch/dλch
ri Director cosine of the vector r with respect to N i

Si Principal value i of the PK2 stress tensor

wj Quadrature weight for the integration point j of the element

wS
j Quadrature weight for the integration point j on the sphere

λCch Affine chain stretch, λCch = √r ⋅C ⋅ r

λdi Deviatoric principal stretch i

λch Non-affine chain stretch, λch = r ⋅U ⋅ r

λi Principal stretch i

U Volumetric contribution to the free energy function

W Deviatoric contribution to the free energy function
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