
Evaluating the predictive power
of machine learning model for
shear transformation in metallic
glasses using metrics for an
imbalanced dataset

Jaemin Lee and Seunghwa Ryu*

Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST),
Daejeon, South Korea

Plastic deformation of metallic glasses, which show no long-range structural

order, proceeds by shear transformation of a local group of atoms referred to as

the shear transformation zone (STZ). Unlike crystalline solids, it is difficult to

identify STZs and predict the onset of plasticity from a random atomic

configuration under a given loading. Recently, significant efforts have been

made to predict the shear transformation with initial atomic properties using

machine learning. However, despite the class imbalance, where the atoms

participating in shear transformation is much rarer compared to the others, few

studies have explored the issue of the proper predictive metric choice, with

most studies considering widely used metrics such as Recall or AUC in the

machine learning community. Therefore, here we train a graph neural network

that predicts the initially activated STZ and evaluate its predictive power using

various metrics considered to be proper for handling imbalanced datasets. We

find that the AUC value is significantly overestimated due to the class imbalance

and toomany atoms are misclassified as initial STZ, so other metrics such as the

precision, f1, MCC, and AP indicate very low predictive power close to zero.

Additionally, we reveal that the predictive performance changes significantly

over the threshold value of non-affine displacement, above which an atom is

classified as the initially activated STZ, due to the change in the degree of class

imbalance. Our study implies that it is crucial to use an identical threshold for

this type of classification (i.e., the class ratio) for a fair assessment of ML models

adapted in different studies and to holistically evaluate the predictive

performance based on various metrics.
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Introduction

Despite the superior elastic limit and strength exceeding their

crystalline counterparts, the application area of metallic glasses

has been limited due to catastrophic failures via the formation of

shear bands (Spaepen, 1977; Cheng and Ma, 2011; Wang, 2012;

Greer et al., 2013). The sites of potential shear transformations

are referred to as shear transformation zones (STZs) and are

defined by the presence of defects in amorphous solids (Argon,

1979; Argon and Shi, 1983; Schuh et al., 2007; Homer and Schuh,

2009; Falk and Langer, 2011; Hufnagel et al., 2016). Despite long

efforts over a few decades to deepen our understanding of plastic

deformation, it remains difficult to relate the strength and

ductility of metallic glasses to well-defined short- or medium-

range orders in metallic glasses. It has been revealed that several

atomic properties, such as the Cu-centered icosahedral structure,

an atomic-level modulus, and the participation fraction of low-

frequency vibrational modes are related to the activation of a STZ

(Cheng et al., 2008; Ding et al., 2014; Barbot et al., 2018; Xu et al.,

2018; Schwartzman-Nowik et al., 2019; Xu et al., 2021) to some

extent. Also, it was reported that the correlation between these

atomic properties and STZ activation is highest in initially

activated STZ and gradually decreases with the applied strain

(Patinet et al., 2016). However, the existing studies discuss the

correlations among the aforementioned atomic features and STZ

sites without providing definitive prediction accuracy.

Recently, the advancement of machine learning (ML)

algorithms for handling various complex problems with

nonlinearity or high dimensionality (Harrington et al., 2019;

Tian et al., 2020) has led to STZ prediction studies based on ML

algorithms, starting with Cubuk’s pioneering study which

defined “softness” using a support vector machine with the

geometric features of atoms (Cubuk et al., 2015). In this line

of studies, the predictive performance of a trained MLmodel was

evaluated by metrics such as the AUC (area under the curve) of

ROC (receiver operating characteristic) curve or with a

probability plot associated with recall (Schoenholz et al., 2016;

Cubuk et al., 2017; Wang and Jain, 2019; Wang et al., 2020).

Unfortunately, STZ prediction is a classification problem with an

inherently large class imbalance because a very small fraction of

atoms undergoes shear transformation, whereas AUC and recall

are known to be inadequate if used to evaluate the ML model in

the presence of a large class imbalance (Davis and Goadrich,

2006; Lobo et al., 2008). For example, when evaluating the

performance of a test kit for the COVID-19 virus for

1,000 people with 990 normal and 10 positive cases (i.e., a

class ratio of 99:1), a test kit correctly classifying all ten

patients but incorrectly classifying 90 normal cases as positive

will have the recall of 100%. In contrast, the precision, which is

the ratio of actual positive cases among those predicted to

positive, becomes 10%. Therefore, in most class-imbalance

classification problems, various complementary metrics, such

as precision, the f1-score, the Matthews correlation coefficient,

and AP (average precision) as well as recall and AUC are used for

performance evaluations of ML models (Davis and Goadrich,

2006; Boughorbel et al., 2017; Johnson and Khoshgoftaar, 2019;

Chicco and Jurman, 2020).

In this paper, therefore, we predict the initially shear

transformed atoms for the Cu64Zr36 metallic glass system via

aMLmodel trained on atomic features and evaluate its predictive

performance with various metrics for a fair assessment of the

predictive power of a ML model for the occurrence of shear

transformation. Because existing studies show that the atomic

features of neighboring or closely located atoms also play

important roles (Cheng et al., 2009; Wakeda and Shibutani,

2010), we chose the graph neural network (GNN) as our ML

model to classify the initially activated STZ atoms (atoms with

non-affine displacement values higher than a threshold) and

normal atoms (atoms with non-affine displacement values lower

than a threshold) by reflecting the features of neighboring atoms.

Because the performance of a graph neural network may greatly

depend on its hyperparameters, we carried out the optimization

of the hyperparameter set via a grid search method. The

performance of our GNN model is comparable to those in the

literature, as indicated by the recall and AUC-ROC values, which

are as high as those in existing studies. However, the other

metrics show very low values close to zero. From an in-depth

investigation of a confusion matrix after classification, we find

that the number of false positives, i.e., normal atoms incorrectly

predicted as STZ atoms, is high and that the ratio of true STZ

atoms among predicted STZ atoms is low. This is a commonly

observed problem when training a ML model for classification

problems with large class imbalances. Additionally, we reveal that

the predictive performance changes significantly over the

threshold value of non-affine displacement upon a change in

the degree of the class imbalance. Interestingly, for the atoms in a

true STZ cluster, the confidence of an atom belonging to the STZ

is positively correlated with the non-affine displacement, which

suggests that our ML model learnt some realistic features of STZ

clusters. However, too many normal atoms are falsely predicted

to be true STZ atoms, making the applicability of the ML model

very limited when predicting STZ clusters in the early stage

deformation.

Methods

Molecular dynamics simulation and atom
labelling

A schematic diagram of the overall procedure for predicting

shear transformed atoms is shown in Figure 1. First, a Cu64Zr36
metallic glass specimen composed of 10,000 atoms was prepared

using the EAM potential (Sheng et al., 2011) for the interatomic

interaction via molecular dynamics simulation package

LAMMPS (Plimpton, 1995). A periodic boundary condition
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was applied to all three directions of the supercell. During the

equilibration period of the liquid-state sample for 10 ns through a

NPT ensemble at 2,000 K and 0 atm, we randomly choose 75 out

of 1,000 microstates (snapshots taken every 10 ps). These were

quenched to 300 K at a rate of 1010K/s to produce 75 different

solid specimens. Given that shear transformation occurs at very

distinct locations depending on the applied shear direction, an

athermal quasi-static shear simulation was performed on

75 specimens in the six directions of xy, yz, xz, -xy, -yz, and

-xz, until the shear strain reaches 4 × 10−2 with a shear strain

increment of 10−4 . The non-affine displacement of atom i is

defined as

D2
min ,i � ∑

j ∈ Ni

∣∣∣∣dji(t − Δt)Jpi − dji(t)
∣∣∣∣2

where Ni is the number of atoms neighboring atom i, dji is a

displacement vector between atom j and atom i, and Jpi is the

affine transformation tensor that minimizes

∑
j∈Ni

|dji(t − Δt)Ji − dji(t)|2 (Falk and Langer, 1998). As the

applied shear strain was increased, the non-affine

displacement (D2
min) values of all atoms were calculated for

every shear step. When a group of atoms with D2
min greater

than D2
thres initially occurred, those atoms were labeled as the

initially shear transformed atoms (label 1), with the others

labeled as normal atoms (label 0).

Atomic features

Next, for the initial state before applying shear deformation, the

atomicproperties of each atomwere calculated and assigned as a feature

vector, fi � [f1
i , f

2
i , . . . , f

19
i ] (fj

i : jth properties of atom i) .
First, with one-hot encoding, the type of atom was assigned

as a feature: [1,0] (f1 � 1, f2 � 0) for Cu and [0,1] (f1 �
0, f2 � 1) for Zr. Also, because the Cu-centered icosahedron is

known to be a locally stable structure, the feature is set to [1 0]

(f3 � 1, f4 � 0) for the atoms whose Voronoi index is <
0,0,12,0>, and [0 1] (f3 � 0, f4 � 1) otherwise (Lee et al.,

2011; Ding, 2014). In addition, certain scalar atomic

properties, in this case the Voronoi volume, potential energy,

and participation fraction for vibrational normal mode, were

calculated and assigned as features (f5, f6, f7), and the tensor

FIGURE 1
Schematic diagramof the overall procedure for predicting shear transformed atoms.We conducted an AQS (athermal quasi-static shear) test of
six different directions with 75 different Cu64Zr36 bulk metallic glass specimens. Then, we defined the initially STZ activated atoms as label 1 and the
others as label 0. To predict the initially shear transformed atoms, we calculate various atomic properties and assigned those values as node features
of a metallic glass graph structure. The graph structure with the node features is given as the input of a model with a GAT (graph attention
network) and fully connected layers.
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composites of the atomic-level stiffness tensor

(f8 ~ f13: C14, C24, C34, C44, C54, C64) and stress tensor

( f14 ~ f19: σ11, σ22, σ33, σ12, σ23, σ31) were assigned as

features after properly accounting for relative orientations

compared to the applied shear. Then, we made a graph

structure in which each atom is a node and the nearest

neighbor atoms obtained from Voronoi tessellation are

connected by edges, with the fi feature vector then assigned

to each node. Finally, 450 graphs, each of which consisting of

10,000 nodes with 19-dim node features, were generated by

considering 75 specimens and six different shear directions.

These graphs were divided into training, validation, and test

sets at a ratio of 3:1:1. Specifically, although it is true that STZ

activation depends on the applied shear direction, there may be

some correlation between STZs activated from different shear

directions. Therefore, 75 specimens were divided into 3:1:1 and

the data for six shear directions of a specimen were made to

belong to the same set.

Machine learning algorithm and
evaluation metrics

As a machine learning model for predicting the initial STZ

activation, a graph attention network (GAT) was selected to

account for the features of surrounding atoms efficiently. In each

layer of GNN, the feature vectors of neighbor nodes are

aggregated and multiplied by a trainable weight matrix.

Therefore, as the number of layers increases, the features of

farther atoms can be aggregated. Through this, medium-range

features, which are known to be important in predicting STZ, can

be applied. Also, Unlike a graph convolutional network (GCN),

which aggregates feature vectors of neighboring nodes equally,

the GAT shows better performance because it performs a

weighted sum using trainable attention vectors (Veličković

et al., 2017). In terms of the architecture, like most graph

neural network structures, fully connected layers were

combined after several GAT layers, and Mish was used as an

activation function (Misra, 2019). In addition, because the

performance of a neural network changes greatly according to

the structure of the network or the hyperparameters, the number

of GAT layers (L: [2,4,6,8,10,12]), the output dimension of each

layer (M: [10, 15, 20,25, 30, 35,40]), and the number of attention

vectors (N: [6, 9, 12, 15]) are optimized by means of grid search

and four-fold cross-validation. In addition, in order to prevent

the model from being biased toward the major class during

training due to the class imbalance, the weighted cross-entropy is

used as a loss function.

Finally, unlike previous studies, the predictive power of the

trained machine learning model is measured with the six

evaluation metrics of recall, precision, the F1 score, the

Matthews correlation coefficient (MCC), AUC-ROC and the

average precision (AP). The test dataset was evaluated by the

trained model and the results were classified as true positives (TP,

true: label 1 and predict: label 1), false positives (FP, true: label

0 and predict: label 1), false negatives (FN, true: label 1 and

predict: label 0), and true negatives (TN, true: label 0, predict:

label 0). With these values, recall (� TP
TP+FN), precision (� TP

TP+FP),
the F1 score (� 2TP

2TP+FP+FN), and MCC (�
TP × FN−FP × TN������������������������

(TP+FN)(TP+FP)(TN+FP)(TN+FN)
√ ) are calculated. The receiver

operating characteristic (ROC) curve is drawn and the AUC

value is obtained as the area below the curve. The AP is calculated

by averaging the precision of the precision-recall (PR) curve.

Results and discussion

The evaluation of model performance
using various metrics

The performance of the model was evaluated with the six

metrics of recall, precision, the f1-score, theMatthews correlation

coefficient (MCC), AUC-ROC, and the average precision of the

precision-recall curve (AP). The reference value, D2
thres, the

threshold value with which to classify the atoms as initially

shear transformed atoms (label 1) or normal atoms (label 0),

was set to 0.1�A2. Table 1 shows the hyperparameter sets of the

GAT models optimized for the six different metrics and their

performance outcomes. Depending on the model, the evaluated

metrics vary by approximately 10–20%, but no dramatic changes

were observed after hyperparameter optimization. For the model

optimized for AUC (L = 4, M = 15, N = 9), the AUC of the test

dataset was found to be 0.8508 (Figure 2A), which is higher than

that in a previous study (Wang and Jain, 2019;Wang et al., 2020).

However, the other metrics were nearly equal to zero, except for

recall (Recall = 0.7002, Precision = 0.0086, f1-score = 0.0169,

MCC = 0.0662, and AP = 0.0160), meaning that the predictive

power of the trained model is extremely low.

To better understand the prediction results, we plotted the

ROC curve of the test dataset and visualized the true and

predicted STZ atoms in a supercell, as shown in Figure 2.

Figure 2B visualizes all atoms predicted as STZ atoms, while

the true STZ atoms among them are shown in red. In Figure 2C,

all true STZ atoms are shown, while the correctly predicted STZ

atoms among them are shown in red. Our results indicate that a

large proportion of true STZ atoms are correctly predicted as

STZs, whereas only a small portion of the predicted STZ atoms

are true STZ atoms. More quantitatively, for the classification

task of our test dataset atoms, true positives (TP) numbered

1,134, false positives (FP) amounted to 126,180, false negatives

(FN) numbered 486, and true negatives (TN) amounted to

772,200. Because the number of false positives (FP), referring

to the number of erroneous predictions of normal atoms as STZ

atoms, was very high, the precision score, which is the ratio of the

true STZ atoms among the predicted STZ atoms, was

significantly low. Therefore, even if the AUC is relatively high
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at 0.85, it may have been overestimated due to the class

imbalance, and various metrics such as precision must be

considered together to assess the predictive power of a ML

model fairly.

Correlation between non-affine
displacement field and prediction
confidence of machine learning model

As shown in Figure 3A, the prediction results were also

evaluated with a probability plot while varying the non-affine

displacement value. In many existing studies, the validity of

machine learning models was evaluated with this plot,

although only the recall of atoms with a specific non-affine

displacement value can be assessed. As the non-affine

displacement increases, the accuracy of the trained model

(evaluated only with the recall metric) converges to a value

over 70%, but approximately 20% of the atoms with low non-

affine displacement are incorrectly predicted as STZs. However,

as shown in Figure 3B, with an increase in the non-affine

displacement value, the number of atoms undergoing that

amount of non-affine displacement exponentially decreases.

Hence, the probability plot indicates that very few of

predicted STZ atoms are true STZ.

However, the fact that the model more correctly classifies

atoms with large non-affine displacement has certain

implications. Figure 3C shows a true STZ cluster and its

cross-section view, and the non-affine displacement value of

each atom is expressed in color. It can be seen that in a STZ

cluster, atoms located at the center tend to have a larger non-

affine displacement value. Also, Figure 3D shows atoms classified

TABLE 1 Hyperparameter optimization results. The columns of the table are the values of each metric for an imbalanced dataset. The rows are the
metrics used for optimization and the corresponding optimized hyperparameters. A D2

thres value of 0.1�A2 is used here.

Optimized for Recall Precision f1 MCC AUC AP

Recall (L = 10,M = 25,N = 12) 0.7333 0.0074 0.0147 0.0615 0.8451 0.0150

Precision optimized (L = 6,M = 35, N = 9) 0.6821 0.0089 0.0175 0.0668 0.8488 0.0160

f1 optimized (L = 6,M = 35, N = 9) 0.6821 0.0089 0.0175 0.0668 0.8488 0.0160

MCC_opt (L = 4, M = 40, N = 9) 0.6931 0.0088 0.0173 0.0670 0.8491 0.0161

AUC_opt (L = 4, M = 15, N = 9) 0.7002 0.0086 0.0169 0.0662 0.8508 0.0160

AP_opt (L = 8,M = 20,N = 12) 0.7030 0.0084 0.0165 0.0654 0.8494 0.0167

FIGURE 2
Prediction results of themachine learning model: (A) The receiver operating characteristic (ROC) curve of the test specimens. (B) The predicted
shear transformed atomswhich themodel classified as label 1. The red atoms are true positive atoms and thewhite atoms are the atoms predicted as
label 1 but that are actually label 0. (C) The true shear transformed atoms which we labeled as 1. The red atoms are both true and correctly predicted
(true positive atoms) and the white atoms are shear transformed atoms that the model incorrectly classified as label 0.
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as STZs by our ML model for the same specimen shown in

Figure 3C; the figure on the right is a cross-section at the same

height (i.e., an identical z value) as that shown in Figure 3C. In

Figure 3D, the confidence (probability that the model classifies

the atom as STZ) is shown in color. We note that the probability

in Figure 3D differs from that in Figure 3A. Probability (ratio) in

Figure 3A refers to the proportion of atoms classified as STZ

atoms by the model among atoms with a specific non-affine

displacement value. On the other hand, the confidence in

Figure 3C is the ‘probability that an atom is STZ’ obtained by

the softmax function in the last layer of the ML model, and if the

confidence is 0.5 or more, the model determines that the atom

is STZ.

As mentioned above, the model misclassifies too many

normal atoms as STZ atoms. However, in clusters predicted

as STZ, it can be seen that the atom located at the center has a

higher probability value, which means that the model classified

central atoms with greater confidence. Not only for true STZ

atoms but also the incorrectly classified STZ clusters, the

confidence level is higher for atoms located closer to the

center of each cluster. Hence, we can conclude that the ML

model learned some characteristics of the STZ cluster, i.e., that

the non-affine displacement is larger towards the center. It is

plausible that incorrectly classified STZ clusters may undergo

shear transformation under greater shear strain. However, even

if this is the case, because we only learn and evaluate the ML

model with the initially activated STZs, those must be counted

as false prediction cases. Additionally, most atomic features

used in the present study have scalar values, and it can be

inherently difficult to predict STZs that occur in different

patterns under different shear strain directions for an

identical specimen.

The effect of D2
min threshold value

Additionally, we trained the GAT model while varying the

threshold value of the non-affine displacement and evaluated its

predictive power with six different metrics. The non-affine

displacement of an atom is a value indicating how

inhomogeneously the atom is displaced relative to its

neighbor, and its distribution is a monotonically decaying

function with a long tail. Because there is no abrupt change in

the histogram, existing studies chose a certain threshold value

above which the recall of the ML model converges (Cubuk et al.,

2015) or an arbitrary threshold value (Wang and Jain, 2019).

However, as discussed earlier, the performance of the

classification model for class imbalance problem cannot be

assessed by a single metric; therefore we ran the evaluation

with all six metrics, as depicted in Figure 4.

Figure 4A shows the class ratio, the ratio of STZ atoms to

normal atoms as a function of the threshold value. Because the

FIGURE 3
Correlation between non-affine displacement and the probability that the model classifies atoms of specific non-affine displacements as STZ:
(A) the x-axis is the non-affine displacement of atoms and the y-axis is the probability (ratio) that the trained model classifies atoms with a
corresponding non-affine displacement value as STZ atoms. (B)Histogram of non-affine displacement values (normalized as the probability density
function). (C) The figure on the left is the true STZ atoms and the corresponding non-affine displacement values. A cross-section view at a
constant z value is displayed in 2D in the figure on the right. (D) The figure on the left shows the predicted STZ atoms and the probability that the
model predicted them as STZ atoms (i.e., confidence). Also, the cross-section view at the same z value in (C) is displayed in 2D on the right.
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non-affine displacement value increases as an atom is located

closer to the core of a STZ cluster, the class ratio decreases

quickly with an increase of the threshold. Hence, all metrics

change dramatically with a change of the threshold value

(Figures 4B–G). As the threshold increases, recall and AUC

increase, whereas precision, F1, and AP decrease. We note that

although AUC is often used as a metric in many existing studies

(Wang and Jain, 2019; Wang et al., 2020), it is questionable if

AUC can serve as a reasonable metric, as it changes from 0.7 to

0.85 (note that this is a dramatic change, considering its bound

FIGURE 4
For various non-affine displacement threshold values, the (A) class ratio, (B) recall, (C) precision, (D) AUC, (E) AP, (F) f1, and (G)MCC are plotted.
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of [0.5, 1]) with an adjustment of the threshold. Interestingly,MCC

shows amaximum at an intermediate value of the threshold, which

appears properly to reflect the increase in the recall and the

decrease in the precision with a change of the threshold. Unlike

AUC, which overestimates the model’s performance with a

decrease of the class ratio, MCC reflects the limited predictive

power of our GAT model and can be considered as a more

comprehensive and proper metric. Our results imply that the

performance of aMLmodelmust be analyzed with various metrics

to account for the class imbalance.

Conclusion

In this paper, we trained a GAT model to predict STZ atoms

with various atomic features and evaluated its performance with

various metrics for the class imbalance problem. Although the

trained GAT model shows a superior AUC value, other metrics

are found to be close to zero, which indicates that the actual

predictive power of the model is very limited. We find that

although our model was able to learn several features of STZ

clusters, such as ‘higher non-affine displacement for atoms closer

to the core of a STZ cluster’, it predicts too many false positives;

i.e., toomany predicted STZ atoms turn out to be normal atoms. It is

well known that similar limitations exist for ML models trained for

classification tasks of datasets with high levels of class imbalance in

general. Our study implies that the class imbalance problem can

serve as a fundamental barrier preventing realistic predictions of the

onset of plasticity in metallic glasses and that a multifaceted analysis

is thus required when assessing the performance of a ML model for

STZ predictions. In the future, we plan to apply more strategies for

overcoming the class imbalance, such as under-sampling the major

class, over-sampling the minor class, and using focal loss.

Additionally, we note that the large class imbalance does not

always causes a challenge in the classification task if a

distinguishable feature exists as in the case of defects in the

crystalline solids. A recent paper (Yang et al., 2021) reported that

the STZ formation may be associated with thermodynamic feature

beyond the structural origin considered here. Likewise, it is expected

that the performance of prediction model will significantly improve

as features associated with the shear transformation are developed

through the constant efforts of the material science community.
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