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The conventional approach to elucidate the atomic structure of liquid and glass is to start
with local structural units made of several atoms, and to use them as building blocks to
form a global structure, the bottom-up approach. We propose to add an alternative top-
down approach in which we start with a global high-temperature gas state and then apply
interatomic potentials to all atoms at once. This causes collective density wave instability in
all directions with the same wavelength. These two driving forces, local and global, are in
competition and are mutually frustrated. The final structure is determined through the
compromise of frustration between these two, which creates the medium-range-order.
This even-handed approach on global and local potential energy landscapes explains the
distinct natures of short-range order and medium-range order, and strong temperature
dependence of various properties of liquid.
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INTRODUCTION

Liquids and glasses have strongly disordered atomic structures which are difficult to
characterize with precision. Explaining the origin of such structures is an even more
daunting task, which has been a subject of discussion for a long time (Egelstaff, 1967;
Croxton, 1974; Hansen and McDonald, 1976; Debenedetti and Stillinger, 2001; March and
Tosi, 2002; Parisi and Zamponi, 2010). In the absence of symmetry, the most popular approach
is the bottom-up approach, starting with local structural units, such as the nearest neighbors of
an atom (short-range order—SRO) and building up the global structure with preferred local
structures (Miracle, 2004; Sheng, et al., 2006; Robinson et al., 2019). The preferred structures,
such as icosahedral clusters, are often geometrically frustrated as a building unit (Sadoc, 1981;
Nelson, 1983; Sethna, 1983; Tarjus, et al., 2005), resulting in a disordered global structure.
However, in this approach the frustration condition depends on details of the cluster geometry,
and the universal principle of structure formation remains deeply hidden.

We propose a holistic concept to depict this frustration through global and local features of
potential energy landscape, by going beyond the idea of geometrical frustration. On top of the
bottom-up approach we add a top-down approach, in which we start with a high-density gas state
and apply interatomic potentials to all atoms at once. We show that a high-density gas state is
unstable against the global density wave state, once the interatomic potential is introduced in
reciprocal space. The local force to form atomic units and the global force to form density waves are
in conflict against each other. The real structure results from the competition and compromise
between these two frustrated driving forces. The medium-range order (MRO) in the oscillation in
density correlations beyond the nearest neighbors reflects this competition. The competition
depends on temperature. At high temperatures the local forces are dominant, whereas as
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temperature is reduced the importance of global force increases.
This change in their roles explains strong temperature
dependence in various properties of liquid.

NATURE OF THE MEDIUM-RANGE-ORDER

The atomic structure of liquid and glass is usually described in
terms of the pair-distribution function (PDF), g(r), which shows
the distribution of distances between two atoms. The PDF is
obtained by Fourier-transforming the structure function, S(Q),
where Q is the momentum transfer in scattering, determined by
x-ray or neutron diffraction (Warren, 1969). Figure 1 shows an
example of the PDF, that of Argon liquid model with the
Lennard-Jones (LJ) potential (Rowley, et al., 1975), with

34,461 atoms in the cubic supercell of the edge size, L =
112.01 Å. The first peak of the PDF describes the distribution
of the distances to the nearest neighbor atoms from a central atom
and describes the radial SRO. The oscillations in the PDF beyond
the first peak describes the MRO, and they decay with the form,

G(r) � 4πrρ0[g(r) − 1] � G0(r) exp(−r/ξs) (1)
where ρ0 is the macroscopic number density of atoms and ξs is the
structural coherence length, as shown in Figure 2.

The form of Eq. 1 was first suggested by Ornstein and Zernike.
(1914), but it can be derived by a more general argument (Ryu
and Egami, 2021). Also, whereas the OZ theory connects the SRO
directly to theMRO and regards theMRO as a consequence of the
SRO, we found that the nature of the MRO is substantially
distinct from that of the SRO. For instance, the variation of
the MRO with temperature shows a clear change at the glass
transition temperature, Tg, but the SRO is continuous through Tg
(Ryu and Egami, 2021). The first peak of the PDF is relatively
narrow (<1 Å) and describes the atom-atom distances to the
nearest neighbors, which number in the order of ten. But the
MRO peaks are wider (~1 Å), and cover hundreds of atomic
distances. Therefore, they describe the correlation between the
center atom and aggregates of atoms, or density fluctuations
(Egami, 2020). In other words, the SRO describes the point-to-
point correlation, whereas the MRO describes the point-to-set
correlation (Berthier and Kob, 2012).

For metallic liquids the structural coherence length, ξs, which
characterizes the MRO, obeys the Curie-Weiss law (Ryu, et al.,
2019),

ξs(T) � aC

T − TIG
(2)

where a is the nearest neighbor distance, and TIG (<0) is the ideal
glass temperature. At T = TIG, ξs diverges and G (r, TIG) = G0(r).
Therefore, G0(r), Figure 3, describes the structure of an ideally
coherent glass state (Ryu, et al., 2019), which has long-range

FIGURE 1 | The PDF, g(r), of liquid Argon at Tg = 40 K.

FIGURE 2 | The absolute values of the reduced PDF, |G(r)|, of liquid
Argon at Tg = 40 K. The dashed line shows the exponential decay by Eq. 1.

FIGURE 3 | The G0(r) of liquid Argon at Tg = 40 K obtained by Eq. 1.
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positional correlation without periodicity. Its Fourier-transform,
the structure function S0(Q) shown in Figure 4, has a Bragg-like
sharp first peak at Q1, of which height depends on the model size.
Small sharp peaks are noise due to the finite model size. Because
the structure is isotropic, in three-dimensions the first peak forms
a Bragg sphere.

INTERATOMIC PSEUDO-POTENTIAL AND
DENSITY WAVE

The ideally coherent glass state exists only in extrapolation,
because TIG is negative and the structure freezes at Tg.
However, the Curie-Weiss temperature dependence of the
structural coherence length, ξs, suggests that there is a driving
force for a liquid towards this state. We suggest that the origin of
such a force is the attractive interatomic potential. Let us consider
a simple monoatomic liquid of atoms interacting with a two-body
spherical potential, ϕ(r).We express the local atomic density, ρ(r),
in terms of the density waves,

ρ(r) � ∫ ρ(q) exp(iq · r)dq (3)

In order to make the density real, we assume, ρ(−q) � ρ*(q). The
ρ(q) is a complex number,

ρ(q) � ∣∣∣∣ρ(q)∣∣∣∣ exp(iδ(q)) (4)
and the phase factor, δ(q), has a nearly random distribution to
avoid wave pile-up which would put more than one atom at a
place. The total potential energy is given by

U � ∫ ∣∣∣∣ρ(q)∣∣∣∣2ϕ(q)dq � ρ20 ∫ S(q)ϕ(q)dq (5)

where ϕ(q) is the Fourier-transform of ϕ(r),

ϕ(q) � ∫ ϕ(r) exp(−iq · r)dr (6)

For a spherical potential, ϕ(r) = ϕ(r), r � |r|, and ϕ(q) = ϕ(q),
q � |q|. The ϕ(q) is dominated by the strong repulsive part of ϕ(r)
at small r. However, the strongly repulsive part of the potential
with the energy much larger than kBT is irrelevant, because atoms
never come so close to each other. Therefore, we define a
“pseudopotential,” ϕpp(r), in which the strongly repulsive part
of ϕ(r) is removed and ϕpp(r) � ϕ(rc) is assumed for r < rc,
where rc is the cut-off distance. This is equivalent to disregarding
the inaccessible high energy states from the potential energy
landscape. It is also similar to the concept of the pseudopotential
in the quantum scattering theory: A strong attractive potential
simply adds a multiple of 2π to the scattering phase shift, and
taking just the principal part of the phase shift corresponds to
replacing it with the pseudopotential (Wu and Ohmura, 1962).
For electrons removing the redundant phase shift is equivalent to
reinforcing orthogonality to the core states (Phillips and
Kleinman, 1959). For a repulsive potential we remove the

FIGURE 4 | The S(Q) of liquid Argon at Tg = 40 K. The height of the first
peak depends on the model size, and extrapolates to a δ-function for a
macroscopic model.

FIGURE 5 | (A) The pseudopotential of the Lennard-Jones potential with
various cut-off levels, ϕpp(r), and (B) their Fourier transforms, ϕpp(q).
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strongly repulsive part. We separate ϕ(r) into two parts; ϕpp(r)
and the repulsive part, ϕR(r),

ϕ(r) � ϕR(r) + ϕpp(r) (7)
then, the potential energy is,

U � UR + Upp (8)
UR � 1

V
∫∫ ϕR(r)ρ(r′)ρ(r + r′)drdr′ (9)

Upp � 1
V

∫∫ ϕpp(r)ρ(r′)ρ(r + r′)drdr′ (10)

where V is volume. The ρ(r) of the ground state is determined by
minimizing U. However, for the range r < rc where ϕR(r) is non-
zero, there is no pair of atoms with such small separations because
of the strong repulsion. Therefore,

UR � 0, U � Upp, (11)
and the structure is determined by minimizing Upp with,

ϕpp(q) � ∫ ϕpp(r) exp(−iq · r)dr (12)

The pseudopotentials of the Lennard-Jones potential for
Argon with various cut-off values and their Fourier-transforms
are shown in Figure 5. Interestingly ϕpp(q) has a minimum at q1,
which is not too far from the position of the maximum in S(Q) at
Tg, Q1 = 2.06 Å-1. The dependence of q1 on ϕ(rc) is shown in
Figure 6. The value of Q1 decreases with increasing temperature,
down to 1.93 Å−1 at T = 100 K. Aminimum in ϕpp(q) at q1 implies
that a density wave with q1 would be energetically preferred.
Because both S(Q) and ϕ(q) are dominated by the region in q
around Q1 (q1), a density wave which minimize U must be that
with q close to q1. Thus, in the zero-th order the structure is
dominated by the global density waves with q1. In other words, a
high-density gas state is unstable against the global density wave
state with q1.

However, the density wave with q1 has a fairly long
wavelength, which results in a wide first peak of the PDF, as
wide as the higher order PDF peaks. This is in conflict with the
real-space requirement that the first peak of g(r) should be narrow
around the bottom of ϕ(r) at r = a to reduce the potential energy.
Thus, the requirement to reduce the potential energy in q space by
density waves and the same requirement in real space by better
SRO are orthogonal, resulting in frustration. This is a more
general energetic statement of the geometrical frustration
discussed by many in more specific forms, such as formation
of icosahedral clusters (Sadoc, 1981; Nelson, 1983; Sethna, 1983).
This conflict also explains the distinct natures of the MRO and
SRO (Ryu and Egami, 2021). The final structure results from the
compromise between the two, requiring additional density waves
with high q values.

DISCUSSION

The conventional approach to elucidate the structure of liquid is
the bottom-up approach, in which the interatomic potential is
applied to a small number of atoms to form a good local cluster,
and the structure is extended by adding more clusters (Miracle,
2004; Sheng, et al., 2006; Robinson, et al., 2019). A major problem
of this approach is that by starting with good clusters the
boundaries between good clusters become strongly strained.
This heterogeneous strain concentration increases the total
strain energy. Actually, in an extended structure the peripheral
atoms in one cluster are also central atoms in other clusters, thus
the clusters are overlapping. Focusing just on “good” clusters is
biased and dangerous. An orthogonal top-down approach is to
consider all atoms at once, and to apply the potential
simultaneously to all atoms. This can be done more effectively
in reciprocal space. By removing the irrelevant strongly repulsive
part of the interatomic potential to form the pseudopotential, the
Fourier-transform of the potential, ϕpp(q), was found to have a
minimum at q1, close to the position of the maximum in S(Q) at
Q1. This means that there is a driving force to form a density wave
at q1. A small set of coherent density waves can form the basis for
a crystal structure (Alexander andMcTague, 1978), but a large set
of density waves with random phase factors can form a state with
long-range correlation without periodicity, the structurally
coherent ideal glass state. The nature of such a state will be
discussed elsewhere. Quasicrystal was the first of such state with
long-range correlation without periodicity, which has a periodic
crystalline lattice in six-dimensions (Levine and Steinhardt,
1984). The ideal glass forms a crystal in infinite dimensions.

A model of the coherent ideal glass state can be constructed by
using G0(r) as a guide. It was found the model has very diverse
local structures (Ryu et al., 2019). For instance, the fraction of the
icosahedral local environment is only 0.7%. Apparently, in order
to maintain long-range density correlation the local structure is
sacrificed. This is another proof of the conflict between the force
to produce long-range density wave state and the force to create
short-range atomic order. The final structure is determined
through the compromise between these two conflicting forces.
The balance between the two is reflected to the coherence length;

FIGURE 6 | The q1 of liquid Argon pseudopotential as a function of the
cut-off energy. Q1 = 2.06 Å-1.
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the stronger the SRO is, for instance because of covalency, the
shorter the ξs is. The extent of this balance can be expressed as the
ideality of the structure (Ryu, et al., 2020). Furthermore,
temperature also affects this balance. Local density fluctuations
due to the atomic-level pressure fluctuations reduces the
coherence of the density wave. This argument quantitatively
explains the Curie-Weiss law, Eq. 2 (Egami and Ryu, 2021).

The idea of geometric frustration is based on the hard-
sphere (HS) packing argument (Nelson, 1983). In the DRP-HS
model dynamics is controlled by jamming, because no
potential energy is involved. To keep the density constant
external pressure is applied, which plays the role of the
attractive potential. It is interesting to note, however, if we
use the pseudopotential, ϕHS(q) has a minimum at q1,HS as
shown in Figure 7, with DHSq1,HS = 5.76, where DHS = 2RHS

and RHS is the hard-sphere radius. This value is not far from
the value of DHSQ1,HS = 6.9 for the hard-sphere model, where
Q1,HS is the Q1 for hard-spheres (Lange, et al., 2009). It could
also be related to the long-range oscillation found recently
(Rissone et al., 2021), but its value, DHSQl = 7.5, is
considerably higher. If the pseudopotential concept applies
even for the hard-sphere mode, it means that the mere action
of exclusion on a gas under pressure may induce a density
wave state. The height of the pseudopotential is irrelevant as
long as it is substantially larger than kBT. The ϕHS(q) has a
long oscillating tail, and it influences the structure through the
high Q part of S(Q). However, the strong minimum of ϕHS(q)
has a dominant effect on the first peak of S(Q), producing the
density wave and the MRO even in the hard-sphere model.

Thus, the idea of the minimum of ϕ(q) producing the density
wave and the MRO appears to work widely, independent of
details of the interatomic potential, possibly including even the
hard-sphere model. As will be described elsewhere the dynamics

of the density wave, through the amplitudons and phasons, is
directly related to atomic dynamics. Thus, the stiffness of the
density wave controls the cooperative atomic dynamics, affecting
many physical properties of liquid. To what extent the same
argument applies to covalently bonded network glass needs to be
examined.

CONCLUSION

To characterize the atomic structure of liquid and glass, it is
customary to start with focusing on the local structural units
made of several atoms, and to consider adding them up to form
the global structure. This bottom-up approach is so prevalent that
its wisdom has not even been questioned. However, glasses are
not formed in such a manner. In the process of glass formation
through the glass transition all atoms equally contribute to glass
formation during cooling through cooperative processes. To
capture this many-body aspect of global glass formation, we
propose a new holistic concept, made of dual bottom-up and
top-down approaches. In the top-down approach we consider an
assembly of many atoms in a high-density gas state and apply
interatomic potentials to all atoms at once. The interatomic
potential in reciprocal space causes collective density wave
instability, which tries to create the ideal glass state. The final
structure is determined through the competition and
compromise of frustration between these two, local and global,
driving forces. The balance between the two driving forces can be
quantified in terms of the coherence length of the MRO, ξs, and
the ideality of the liquid structure (Ryu et al., 2020). This
approach explains the distinct natures of short-range order
and medium-range order, and strong temperature dependence
of various properties of liquid.
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