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Trained machine learning (ML) algorithms can serve as numerically efficient surrogate
models of sophisticated but numerically expensive constitutive models of material
behavior. In the field of plasticity, ML yield functions have been proposed that serve as
the basis of a constitutive model for plastic material behavior. If the training data for such ML
flow rules is gained by micromechanical models, the training procedure can be considered
as a homogenization method that captures essential information of microstructure-property
relationships of a given material. However, generating training data with micromechanical
methods, as for example, the crystal plasticity finite element method, is a numerically
challenging task. Hence, in this work, it is investigated how an optimal data-generation
strategy for the training of a ML model can be established that produces reliable and
accurate ML yield functions with the least possible effort. It is shown that even for materials
with a significant plastic anisotropy, as polycrystals with a pronounced Goss texture, 300
data points representing the yield locus of the material in stress space, are sufficient to train
the ML yield function successfully. Furthermore, it is demonstrated how data-oriented flow
rules can be used in standard finite element analysis.

Keywords: plasticity, data-driven methods, machine learning, data generation, uniform distribution, hypersphere,
homogenization

INTRODUCTION

The finite element method is one of the most popular methods used in solid mechanics to solve the
nonlinear partial differential equations describing mechanical equilibrium of a solid under arbitrary
boundary conditions. The solution of a solid mechanics problemmust satisfy equations of equilibrium,
compatibility of strains and displacements, and obey the constitutive laws for the materials represented
in the model (Chen and Saleeb, 1994; Pian and Wu, 2005). These constitutive equations describe the
relationships between stresses and strains, i.e., they quantify the material response under given
distortions. In the simplest case of elastic materials, this relationship assumes a linear form in
which stress and strain are proportional to each other, as described by Hooke’s law. For nonlinear
and irreversible material behavior, as it must be considered for plastic materials, elastic and plastic
strains need to be treated by separate constitutive models (Chen and Saleeb, 1994; Bonet and Wood,
1997). While for elastic strains, Hooke’s law is still valid, plastic strains need to be calculated in a way
that is consistent with the yield strength and the flow stress observed in tensile tests of the given
material. To accomplish this, a yield function is formulated that indicates whether a given stress state
results in a linear-elastic material response or whether plastic deformation needs to be considered. In
the linear elastic regime, the yield function takes negative values, and it reaches the value zero for those
stress tensors for which plastic yielding starts. Hence, the zeros of the yield function can be represented
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by a hypersurface in stress space, which embodies the convex hull
of the stress tensors leading to a linear-elastic material response. In
the Voigt notation, the six-dimensional (6D) stress space itself is
spanned by the six independent components of the stress tensor,
including normal and shear components. In the case of ideal
plasticity, this hypersurface in stress space, the so-called yield-
locus, remains unchanged by plastic deformation (Chen and
Saleeb, 1994). In contrast, in the case of strain hardening, it can
change its volume (isotropic hardening), location (kinematic
hardening), or shape (distortive hardening) (Helling and Miller,
1987; Kurtyka and Życzkowski, 1996).

This concept of the yield locus as geometrical representation of
the yield criterion can also be applied in cases of anisotropic
plastic deformation, as it occurs, for example, in polycrystalline
metals with specific crystallographic textures. This plastic
anisotropy of polycrystals can be described with the crystal
plasticity finite element method (CPFEM) (Roters et al., 2011),
for an overview, in which plastic slip on the discrete
crystallographic slip planes of each grain is considered. Such
methods also allow us to study the evolution of textures under
large plastic strains (Peranio et al., 2010), where certain
crystallographic planes tend to rotate concerning the direction
of the highest principal strain and, thus, cause a dynamic change
of the crystallographic texture and the resulting plastic
anisotropy, which is the origin of distortive hardening in these
materials.

While CPFEM methods represent a fundamental way of
describing plastic anisotropy of materials, they cause a high
numerical effort, limiting their application to relatively small
volumes. In the work of Vajragupta et al. (2017), it has been
shown that the results of CPFEM calculations can be homogenized
by fitting the parameters of an anisotropic yield criterion to data
obtained from CPFEM calculation of specific textures. Various
formulations of such anisotropic yield criteria have been published
in the literature (Karafillis and Boyce, 1993; Cazacu and Barlat, 2001;
Banabic et al., 2004). In this work, we refer to the formulation of Hill
(Hill, 1948) with six parameters describing the state of anisotropy,
which has been suggested as a generalization of the isotropic yield
criterion after Huber-Von Mises (Huber, 1904; v Mises, 1913), based
on the second invariant of the stress deviator (J2). The corresponding
equivalent stress can be compared to the scalar yield stress of the
material determined in a uniaxial test. Barlat et al. (2005) suggested a
yield function that contains 18 parameters (Yld 2004-18p) based on a
linear transformation of the stress deviator.

In more recent approaches, data-driven computational
methods have been suggested in the literature to describe
anisotropic material behavior. In the data-driven method
suggested by Kirchdoerfer and Ortiz (2016), instead of
constitutive models for finite element analysis, experimental
material data can be used directly to satisfy the required
constraints and conservation laws for mechanical equilibrium.
In a similar approach, Eggersmann et al. (2019), Eggersmann
et al. (2021) have shown that a model-free data-driven
formulation of mechanical problems can be achieved. In the
work of Chinesta et al. (2017) the data-driven strategy was
extended for nonlinear material behavior, which includes not
only the plastic strain rate and the rate of accumulated plastic

deformation but also the kinematic hardening rate. Another
popular approach to develop a data-driven material model is
using machine learning algorithms that are capable of handling
large data sets. At the same time, they provide the possibility of
describing arbitrary mathematical functions, thus relieving the
restrictions for closed-form mathematical descriptions of
anisotropic yield criteria. Liu et al. (2018) employ a clustering
technique to solve the equilibrium equation on clusters of material
points with similar mechanical responses. In another approach
suggested by Ibañez et al. (2018), manifold learning methods were
used to define the constitutive manifold of a given material,
allowing the extraction of relevant information directly from
large experimental data sets. In Linka et al. (2021), a machine
learning-based hyperelasticity model is suggested using a feed-
forward neural network trained using experimental data. (Linka
et al. (2021) introduced constitutive artificial neural networks to
describe hyperelastic material behavior.

Following the method developed in (Hartmaier, 2020), the
present work uses Support Vector Classification (SVC) of the
elastic and plastic domains in the stress space as a data-oriented
yield function. The SVC algorithm is trained by using input data
in the form of critical stresses that mark the onset of plastic
yielding, thus representing the yield locus in a data-based
manner. In this way, a machine learning (ML) yield function
is obtained to determine whether a given stress state lies inside or
outside the material’s elastic domain. Getting a proper data-based
representation of the yield locus as a hypersurface in the 6D stress
space can be challenging. This holds in particular if the training
data is generated by numerically expensive methods as CPFEM.
Hence, in this work, we will use simpler methods for the
generation of various data sets that are the basis for the
development of an optimal strategy to distribute the training
data points over the entire yield locus with as small as possible
data sets. Based on these training data, an accurateML yield locus,
i.e., the hypersurface in the stress space on which plastic
deformation occurs, can be reconstructed from the SVC in the
form of a convolutional sum over a kernel function, from which
the gradient on this yield locus can be conveniently calculated.
Therefore, the standard formulations of continuum plasticity, as
the return mapping algorithm, can be applied in the usual way to
finite element analysis (FEA). Thus, it is demonstrated that the
new ML yield function can replace conventional FEA flow rules.

METHODS

Machine Learning Flow Rule
The elastic-plastic deformation of a material can be described using
stress and strain tensors denoted with σ and ε, respectively. The
stress tensor describes the force acting on the surface of a material,
and the strain tensor describes the deformation of the material.

In the Voigt notation, the symmetric tensor is defined by its six
independent components as

σ � (σ1, σ2, σ3, σ4, σ5, σ6) (1)
where σ1 � σ11, σ2 � σ22, σ3 � σ33, σ4 � σ23, σ5 � σ13, σ6 � σ12.
The yield function of a material is defined as
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f(σ) � σeq(σ) − σy (2)
and plastic deformation sets in at f � 0, i.e., when the equivalent
stress σeq equals the yield strength σy of the material. The
equivalent stress used here follows the definition of Hill for
anisotropic materials in the form

σeq(σ) � 1�
2

√ [H1(σ1 − σ2)2 +H2(σ2 − σ3)2 +H3(σ3 − σ1)2

+6H4σ
2
4 + 6H5σ

2
5 + 6H6σ

2
6]1/2 (3)

In this yield function, the anisotropy of the material’s flow
behavior is described in a Hill-like approach, where the
parameters H1, ..., H6 control the anisotropic flow behavior of
the material. Note that these parameters correspond to the
parameters used in the conventional Hill yield criterion (Hill,
1948).

E(σ2 − σ3)2 + G(σ3 − σ1)2 +H(σ1 − σ2)2 + 2Lσ24 + 2Mσ25
+ 2Nσ2

6 � 1
(4)

whenH � H1σ2y, E � H2σ2y, G � H3σ2y, L � 3H4σ2y ,M � 3H5σ2y,
N � 3H6σ2y. The special case H1 � H2 � . . . � H6 � 1 describes
isotropic plastic behavior, where the equivalent stress defined here
is identical to the von Mises (J2) equivalent stress.

The gradient of the yield function with respect to the stress
components is needed for calculating the plastic strain
increments in the return mapping algorithm of continuum
plasticity and can be evaluated analytically as

zf

zσ1
� zσeq

zσ1
� (H1 +H3)σ1 −H1σ2 −H3σ3

2σeq
(5)

zf

zσ2
� zσeq

zσ2
� (H2 +H1)σ2 −H1σ1 −H2σ3

2σeq
(6)

zf

zσ3
� zσeq

zσ3
� (H3 +H2)σ3 −H3σ1 −H2σ2

2σeq
(7)

zf

zσ4
� zσeq

zσ4
� 3H4

σ4

σeq
(8)

zf

zσ5
� zσeq

zσ5
� 3H5

σ5

σeq
(9)

zf

zσ6
� zσeq

zσ6
� 3H6

σ6

σeq
(10)

In the case of isotropic plasticity, i.e.,H1 � H2 � . . . � H6 � 1 the
gradient takes the simple form

zf

zσ
� 3
2
σdev

σeq
(11)

Where σdev � (σ1 − p, σ2 − p, σ3 − p, σ4, σ5, σ6 ) is the deviatoric
stress tensor and p � (σ1 + σ2 + σ3)/3 is the hydrostatic stress.

Data-Oriented Yield Function
In the data-oriented approach followed in this work, the yield
function fML(σ) is described in the form of a machine learning
(ML) algorithm, which uses Support Vector Classification (SVC)
for categorizing any given stress tensor σ into the categories

“elastic” (fML(σ) � −1) and “plastic” (fML(σ) � +1)
(Hartmaier, 2020). The purpose is to find the optimal
hypersurface which separates these two regions from each
other. This hypersurface is the yield locus defined by the
zeros of the yield function. Based on the SVM algorithm, the
optimal hypersurface is the one in which the margin between
training data points of the respective classes “elastic” and
“plastic” is maximum. This margin is defined as the distance
between the separator and the closest data points to it from both
classes. These data points in the vicinity of the separator are
called support vectors. Given a training set of N data points
{yi, σ i}Ni�1 where σ i εR

6 is the ith input stress and yi � fML(σ i)
is the ith output term required for the supervised training
algorithm. Note that this data-oriented yield function fML

can be considered as the signum function of the physical
yield function defined in Eq. 2, thus fML(σ) � sgn(f(σ)).
This has the advantage that the input data can be given in
terms of critical stresses marking the onset of plastic yielding.
Each of these stresses can then simply be scaled proportionally
into the elastic or plastic region of the stress space during the
training procedure. Furthermore, once the categorial yield
function fML(σ) is known, the value of the true yield
function can be reconstructed by calculating the distance of
the given stress tensor to the yield locus in stress space.

The support vector method aims to construct a classifier in
form

fML(σ) � ⎡⎣ ∑NSV

k�1
αkykψ(σ, σk) + b⎤⎦ (12)

where NSV is the number of the support vectors σk and αkyk are
the so-called dual coefficients and b is an offset. These parameters
are defined during the training procedure of the SVC. For
nonlinear problems ψ(σ, σk) should be chosen as the radial
basis function (RBF) kernel, which is defined as (Suykens and
Vandewalle, 1999).

ψ(σ, σk) � exp[ − γ‖σ − σk‖2] (13)
Since theML yield function is defined as convolution sum over

support vectors, the gradient to the SVC decision function can be
calculated as

zfML(σ)
zσ

� ⎡⎣ ∑NSV

k�1
−2γαkyk exp( − γ

����σ − σk

����2)(σ − σk)⎤⎦ (14)

When using the RBF kernel for training, γ and C are the two most
important hyperparameters to be defined. γ indicates the width of
the kernel function and, thus, the extent to which a single training
point has an impact. A smaller value of γ leads to a short-ranged
influence. Any misclassified data point is penalized by parameter
C. When C is small, the penalty for misclassified points is also
small such that a wide-margin decision function on the boundary
is chosen at the expense of a larger number of misclassifications. If
C is large, the training algorithm limits the number of
misclassified cases by using a high penalty and a smaller
decision boundary. Thus, a higher value of C produces a
“softer” boundary of the classifier, i.e., a function with more

Frontiers in Materials | www.frontiersin.org April 2022 | Volume 9 | Article 8682483

Shoghi and Hartmaier Optimal Data-Generation Strategy

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


undulations and an irregular gradient, whereas a smaller value of
C results in a “stiffer” classifier function, i.e., in a rather straight
boundary, which might, however, be less accurate.

A high training quality relies on providing sufficient training
points on the yield locus, as the SVM algorithm creates support
vectors only in the areas covered by training points. While in
previous work (Hartmaier, 2020) only the three-dimensional
space of principal stresses was considered, where the coverage
of the yield locus with data points is a rather trivial task, it is quite
a challenge to create data points efficiently in the full 6D stress
space. An optimal strategy to create as few as possible data points
representing the yield locus in the best possible way is necessary,
particularly when data points are created with numerically
expensive methods such as CPFEM.

Data-Generation Model
Creating a set of yield stresses in the full stress space that serves as
the ground truth is required to train the ML yield function. In a
first step, unit stresses need to be generated that define the load
cases, i.e., the directions in which the load is applied. Then, each
unit stress is proportionally increased until the value of the yield
function f(σ) defined in Eq. 2 is zero, indicating the start of
plastic yielding for the stress tensor σ.

Finally, the full set of stress tensors at the onset of plastic
yielding represents the ground truth for the training of the ML
yield function (Hartmaier, 2020). The task of finding the zeros of
the yield function, i.e., the critical stress tensor at the onset of plastic
yielding, for each load case needs to be done by a fundamental
method, such as CPFEM or mechanical testing that captures the
yielding behavior of the material under investigation. Hence, the
effort for funding this ground truth is a considerable task that
represents the major effort for training an ML flow rule. Thus,
finding an optimal strategy for creating the unit stresses is the
primary goal of this work. The starting point is creating different
distributions of unit stresses on the surface of a unit sphere in a full
6D stress space. After this, the quality of the ML yield criterion
resulting from the training with these data points is verified to
identify the optimal strategy for data generation.

There are different methods for distributing points on the
surface of a unit sphere, but not all of them can be extended to
dimensions higher than 3. Different algorithms have been
proposed to solve the problem of distributing points uniformly
over the surface of a unit sphere in higher dimensional spaces
because it is a common but highly non-trivial task with many
applications in science and engineering. In many proposed
solutions, the initial idea is to uniformly distribute points over
a rectangular area that is then mapped to a sphere using the
cylindrical projection (Hannay and Nye, 2004). In the next part,
four different methods are introduced and the dimensions where
they can be used are investigated.

One of the most common and simple methods for distributing
points on a 3-dimensional sphere is based on the Fibonacci
lattice. Based on the work of Marques et al. (2013), Fibonacci
lattice points are constructed through a mapping process from
the unit square to the unit sphere. A Fibonacci lattice in the unit
square is a set Qm of Fm points (x, y) defined as

xj � {j Fm−1
Fm

}
yj � j

Fm

0≤ j<Fm

(15)

where Fm and Fm−1 are the two last members of the Fibonacci
sequence for a given m> 1, as defined by the recurrence equation
Fm � Fm−1 + Fm−2, with the starting numbers F0 � 0 and F1 � 1.
In this equation, {x} � x − [x] is the fractional part for non-negative
real numbers x, where [x] is the integer part of x (Marques et al.,
2013). Mapping this lattice to the unit sphere is done based on the
Lambert mapping or equal area north pole projection which is
visualized in Figure 1. In this projection, the points

θj � arcsin(2j/2Fm + 1)
ϕj � 2π{j Fm − 1

Fm
} (16)

given by the polar angle θj and the azimuthal angle ϕj are first
moved to (12 θ, ϕ) on the northern hemisphere and then projected
perpendicularly on to the equatorial plane. It can be shown that
equal areas on the sphere’s surface transform into equal areas on
the projection. The south pole becomes the whole circumference
(Hannay and Nye, 2004). The resulting equatorial plane is shown
in Figure 1with 378 points using the Fibonacci number F15 � 377.

As m increases, the Fibonacci ratio Fm/Fm+1 approaches the
golden ratio φ � (1 + �

5
√ )/2 and, as a result, the asymptotic

azimuthal angle.

lim
m→∞

ϕj � 2jπφ−1 (17)

is obtained due to the periodicity of the spherical coordinates
(Marques et al., 2013). This relation can be exploited to release the
requirement that the number of points has to be a Fibonacci
number by defining the coordinates of a spherical point set with
an arbitrary, but sufficiently large number N of points as:

FIGURE 1 | Equal area north pole projection of points on the surface of a
sphere (Hannay and Nye, 2004).
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θj � arcsin(2j/2N + 1)
ϕj � 2jπφ−1

0≤ j<N
(18)

Based on these angles, the cartesian coordinates of the set of
equally distributed points on the 3D unit sphere can be
calculated as(xj, yj, zj) � (cos θj sin ϕj, sin θj sin ϕj, cos ϕj) (19)

The even arrangement of points divides the sphere into equal-
area spherical rings due to the area-preserving property of the
Lambert map. In this arrangement, each ring contains a single
lattice node (Swinbank and James Purser, 2006; González, 2010;
Marques et al., 2013). A major disadvantage of this formulation
for finding equally distributed points on a sphere based on
Fibonacci lattice points is that it cannot be extended directly
to dimensions higher than 3.

To overcome this limitation, Marsaglia (1972) has suggested a
method that allows the selection of uniformly distributed points
on the surface of a 4D-sphere. This method is conducted by
picking two points as (x1, x2) and (x3, x4) and rejecting any
points if (x2

1 + x2
2)≥ 1 and (x2

3 + x2
4)≥ 1. In this case the points

x � x1

y � x2

z � x3

����������
1 − x2

1 − x2
2

x2
3 + x2

4

√
w � x4

����������
1 − x2

1 − x2
2

x2
3 + x2

4

√ (20)

have a uniform distribution on the surface of a 4D hypersphere.
However, this method does not generalize to higher dimensions
like the Fibonacci lattice.

Another method that can be used even in higher dimensions is
the spherical code problem. In this method, the main goal is
distributing N points on the unit sphere Sd−1 in a way that the
minimal distance between any two points is maximized. Any set of
points on the unit sphere is called a spherical code (Nurmela, 1995). In
the literature, different solutions for the problem of maximizing the
mutual distance between any two points have been suggested based on
energy minimization techniques. In the work of Buddenhagen and
Kottwitz (2001) up to 90 points were suggested in three dimensions.
Nurmela (1995) suggested proper spherical codes up that distribute
uniformly on unit spheres up to five-dimensional space. Sloane et al.
(2000) collected the most extensive spherical codes in various
dimensions. The major restriction with spherical codes is their
restriction to specific solutions with fixed coordinates and can only
be calculated for a specific number of points in different dimensions.
Although there are spherical codes that give the coordinates of a
uniform distribution of points on the surface of a 6D unit sphere, the
limitation in the available number of points makes them unsuited to
select points for the training process.

The most promising method which can be used for
distributing points on the d-dimensional surface of the sphere
Sd embedded in d + 1 dimensions is an inverse sampling

technique that can generate samples from any distribution
(Kroese and Rubinstein, 2012). This method can be used for
uniform sampling and relies on repeated random sampling and
statistical analysis to compute the result. Based on this theory, a
random variable that is uniformly distributed in the range (0,1)
can be used to generate a value of a desired random variable with
the given distribution. To sample a function uniformly, the first
step is to find the PDF (probability distribution function) of that
function and then to compute its cumulative probability
distribution function (CDF). As the final step, the inverse
function of the CDF must be calculated. This method can
generate random points on the surface of a unit sphere, but it
can also be implemented in combination with the Fibonacci
lattice concept described before to generate uniform points. In
this case when a random ensemble is generated instead of taking a
random independent point from the hypersphere, Fibonacci-like
points can be selected to have uniform even distribution on the
d-dimensional surface of the sphere Sd .

For introducing this method, a polar coordinate system is
defined by (r, θ1, θ2, . . . , θd), which can be converted to cartesian
coordinates (x1, x2, . . . , xd+1) with the relations

xd+1 � r cos θd

xd � r sin θd cos θd−1

.

.
x1 � r sin θd cos θ1

(21)

For calculating the PDF, we assume that the data drawn from a
particular distribution are independent and identically distributed.
If we consider a vector θ, containing all angles, as the parameter
vector for ρ which is the probability density function, the PDF is
denoted as ρθ (Raychaudhuri, 2008). Since the points are on S

d and
r = 1, the distribution over θ coordinates must introduce a uniform
surface measure which can be written as

ρθ(θ) � ρθd(θd)ρθd−1|θd(θd−1)... ρθ1|θ2 ...θd(θ1) (22)

Considering Eqs 21, 22 and based on the assumption that the
angles are independently distributed, the d-dimensional PDF can
be written as (Raychaudhuri, 2008).

ρθ(θ) � ∏d
α�1

ρα(θα) (23)

Based on the work of Cai et al. (2013), when the variable α is
fixed, the density function or ρα is given by

ρα(θα) �
1��
π

√
Γ(α + 1

2
)

Γ(α
2
) sinα−1(θα)

θα ∈ [0, π]

(24)

Once the distribution is known for each θα the next step is to
calculate their respective CDFs and finally find their inverse functions.

If we consider X as the continuous random variate that we
want to generate, it will follow ρ(θ) as PDF. The CDF for the
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variant F is continuous and increasing in (0,1), which can be seen
from its definition

Yα(θα) � ∫θα

0
ρα(u)du (25)

which satisfies Yα(0) � 0 and Yα(π) � 1.
If Yα is a random number generated from a continuous

uniform distribution between 0 and 1, then X is a random
number from a distribution with a CDF F, and can be defined as

X � F−1(Yα) (26)
where F−1 is the inverse of the CDF (Raychaudhuri, 2008). As the
final step, mapping from Y hypercube to hypersphere should be
done based on the Lambert mapping as discussed before. Now a
random point ensemble on the sphere has been established. To
make it uniform, instead of taking random independent points
from the hypercube of Y’s, we generate points Y(n) as

Yd
n �

n

N + 1

Yα−1
n � {na1}

Yα−2
n � {na2}

.

.

Y1
n � {nad−1}

(27)

where ai can be irrational numbers like the Fibonacci sequence
that satisfies ai

aj
∉ Q ∀i ≠ j. Using the inverse transformmethod in

combination with the Fibonacci lattice concept, in the case of 4-
dimensional space (d � 4) the points are generated as

w � cos θ1

z � sin θ1cosθ2

y � sin θ1 sin θ2 cos θ3

x � sin θ1 sin θ2 sin θ3

(28)

And the angles are given by

F(x) ≡ x − 1
2
sin 2x, θ1n � F−1( nπ

N + 1
)

θ2n � arccos(1 − 2{n �
2

√ })
θ3n � 2π{n �

3
√ }

(29)

This method can be used for recursively creating uniformly
distributed points in 6- or even higher-dimensional spaces. The
points are distributed such that the distance to the nearest
neighbors for each point is maximum. Since the points are
constructed to lie on the surface of a unit sphere, the distance
of each point to the center of the sphere is unity.

Validation of Uniform Distribution of Data
Points
The inverse transform method mentioned in the previous
section has been implemented in a python code that is freely
available within the Python package “pyLabFEA” (Hartmaier
et al., 2022) from a public repository. Using this algorithm,

any desired number of points can be distributed uniformly on
the surface of a d-dimensional sphere. In Figure 2, 400 points
were distributed uniformly on the surface of a unit sphere in
3D space.

To test the uniformity of this data generation method, 400 points
were distributed on the surface of a hypersphere in 6D space. The
average distance from each point to its five nearest neighbors was
calculated. The distribution of these distances can be seen in Figure 3A.
For comparison, 400 points were generated randomly, and the same
average neighboring distancewas calculated and is shown inFigure 3B.
The random points were generated using the random function
available in the NumPy (Harris et al., 2020) package in python.

It is seen that the method laid out here can create any number of
data points that are uniformly distributed on a surface of a
d-dimensional unit sphere in the sense that the mutual distance of
any two points is maximized and the average distances for K nearest
neighbors are at the same range. This method will be used in the
following to create the data points for training an ML yield criterion.

OPTIMAL STRATEGY FOR DATA
GENERATION

In order to find an optimal strategy for selecting a set of training
data points, in the following, various data sets will be created with
uniform and random distributions and for different sub-spaces of
the full stress space. The training results for the different sets are
evaluated concerning different error measures, and thus, a
strategy to find the smallest possible training data set that
provides the desired accuracy of the result is developed.

Since the training data points need to be generated as stress
tensors lying on the yield locus of material, we define a reference

FIGURE 2 | 400 points generated uniformly on the surface of a sphere in
3-dimensional space using the combination of Monte Carlo theory and
Fibonacci spiral principle.
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material with Hill-type anisotropy with the parameters given in
Table 1. Using such a relatively simple material model with a
simple yield criterion defined in Eq. 2, allows us to generate the
training data sets with a minimum effort. This is beneficial for
developing an optimal strategy for generating data sets for
materials with significant plastic anisotropy. Afterward, it is
verified that the training strategy also produces good results
for more severe cases of anisotropy as they can be seen in
CPFEM results or described by Barlat-type yield criteria to
demonstrate the general applicability of the developed method.

The described reference material is used for creating training
data for machine learning algorithms. This is accomplished by
first creating unit stresses according to various schemes. Then
each unit stress is increased proportionally until the yield
function of this stress tensor is zero, i.e., when plastic yielding
starts for this specific load case. The full set of stress tensors at the
onset of plastic yielding represents the yield function in a data-
oriented way and, thus, forms the ground truth for the training of
theML yield function. After this, theML yield function in form of
a Support Vector Classifier (SVC) is trained based on this data set.

As will be seen later, it is necessary to create unit stresses that
combine load cases in the full 6D stress space and load cases
with purely normal stresses, representing a 3D subspace of the
full stress space. For training sets with only 6D load cases, the
normal stress space is grossly under-represented with yields a
very poor training result. This reflects the fact that the Voigt
representation of the symmetric (3 × 3) stress tensor as vector of
its six independent components does not fully represent the
tensorial properties of the stress as, for example, the existence of
a transformation into a diagonal tensor by a rotation of the
coordinate system. Hence, the combination of 3D and 6D
stresses reflects the tensorial properties of the stress tensor
better. The optimal combination of these load cases will be
investigated in the second step together with the optimization of
the size of the training set.

Uniform Versus Random Training Data Sets
In the first step to develop an optimal training strategy, we
compare the results from training with uniformly and

randomly distributed training points. For training, 400 load
cases have been genertaed, including 350 load cases in full
stress space and 50 load cases in principal space. Since the
success of the training procedure depends critically on the
hyperparameters, the optimal hyperparameters for the SVC
were selected using a grid search algorithm for each data set.

For uniformly distributed load cases, the result of SVC training
with the hyperparameters C � 5 and γ � 2.5 is shown in Figure 4,
where the J2 equivalent stress of the stress tensors at the onset of
plastic yielding is plotted over the polar angle of the stress tensor in
the π-plane, i.e., the space of principal deviatoric stresses, Appendix
A for the definition of these quantities. A good agreement between
trained ML function (black line) and the Hill yield locus (blue line)
can be observed. In this figure, the support vectors identified during
the training procedure are also represented with a color indicating
their location in the elastic or plastic domain of the stress space. It is
seen that all support vectors lie in the vicinity of the yield locus. At
first sight, it appears that many support vectors are misclassified,
i.e., are lying in the wrong domain. However, this is a mere artifact
fromprojecting the 6D stresses onto the π-plane for amaterial with a
significant plastic anisotropy.

For comparison, the training was done with the same number
of load cases, i.e., a total of 400 with 350 in 6D stress space and 50
in normal stress space, that were generated from a random
distribution. The optimal hyperparameters for this case were
identified as C � 12 and γ � 2.5 by a grid search algorithm. The
result of the training is shown in Figure 5, where it can be seen
that the ML yield locus resulting from training data points

FIGURE 3 | Distribution of average distances for five nearest neighboring points of (A) uniform and (B) randomly distributed points on the surface of the unit sphere
in 6D space. The total number of points is 400.

TABLE 1 | Elastic and plastic material parameters define the reference material
with Hill-like anisotropy in plastic flow behavior. For simplicity, ideal plasticity
with no work hardening is considered in this work.

Quantity Symbol Value

Yield strength σy 50 MPa
Young’s modulus E 200 GPa
Poisson’s ratio ] 0.3
Hill parameters H1 , H2 , H3 , H4 , H5 ,H6 1.4, 1, 0.7, 1.3, 0.8, 1
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representing randomly selected load cases does not have a good
agreement with that of the reference material.

To further quantify the results of the training procedure, both
ML yield functions are verified by comparison with the analytical
yield function for random stress tensors in the vicinity of the yield
locus. The confusion matrices in Figures 6, 7 summarize the
classification performance of both yield functions concerning the

same test data in the form of a two-dimensional matrix, indexed
in one dimension by the object’s true class and in the other
dimension by the class assigned by the classifier. In this context,
the four cells of the matrix are designated as true positives (TP),
false positives (FP), true negatives (TN), and false negatives (FN)
(Shultz et al., 2011).

The classification performance can further be quantified in
terms of four classification results, as

Recall � TP/(TP + FN)
Precision � TP/(TP + FP)
Accuracy � (TP + TN)/(TP + FP + FN + TN)
F1 Score � 2 p Precision p Recall/(Precision + Recall)

(30)

The summary of metrics for uniform and randomly distributed
load cases are given in Table 2. It is concluded that uniformly
distributed training data results in a significantly higher quality of
the training of the ML yield function. Hence, in the remainder of
this work, only this method will be further investigated.

FIGURE 4 | The plot of trained SVM classification with uniformly
distributed training data in cylindrical coordinates on the π-plane (space of
principal deviatoric stresses). Orange colors represent positive yield function
values, i.e., they indicate plastic yielding. Purple colors represent negative
values of the yield function, where the stress lies in the elastic regime. No color
scheme is given because the absolute value of the ML yield function has no
physical meaning. The blue line indicates the stresses where the yield function is
zero for the reference material with an analytically formulated Hill-like yield
criterion and a black line for the ML yield criterion. The support vectors identified
during the training procedure are represented as open symbols.

FIGURE 5 | The plot of trained SVM classification with randomly selected
training data in cylindrical coordinates on the π-plane (space of principal
deviatoric stresses). The figure annotations are identical to Figure 4.

FIGURE 6 | Confusion matrix for uniformly distributed load cases.

FIGURE 7 | Confusion matrix for randomly distributed load cases.
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Optimal Number and Structure of Load
Cases
After finding the proper strategy for creating unit stresses
uniformly distributed in the stress space, the next step is to
find the optimal size for it. Besides the quality, the quantity of
training data plays a vital role in the performance of any
machine learning model. Small training data sets result in low
training accuracy and lack of precision, and a very big training
size may lead to overfitting and the problem that the model
cannot generalize well to new data. In this context, it is also
important to find the optimal ratio of unit stresses in the full
6D stress space and purely normal stresses in the 3D sub-
space.

In the first step for finding the proper ratio between 6D and
3D load cases, training was done for a fixed number of 300 load
cases and different ratios of 1:2, 1:1, 1.5:1, 2:1, 2.5:1, and 3:2. and
the confusion matrix and the training metrics were compared in
each case. The corresponding plots can be seen in Figure 8.
After training, the precision and mean absolute error were
calculated and compared in different ratios of unit load cases
in full stress space and the extra cases at principal stress space,
the ratio of 2:1 for 6D:3D load cases have highest precision and
the lowest mean absolute error (MAE). Mean Absolute error
measures the average magnitude of error which quantifies the
difference between prediction and the actual observation which
can be defined as:

MAE � 1
n
∑n
i�1

∣∣∣∣yi − xi

∣∣∣∣ (31)

At the next step for finding the optimal training size, the
training was done for different total numbers of uniformly
distributed load cases with a fixed ratio of 2:1 for 6D to 3D
load cases. The comparison is again made based on the precision
calculated from the confusion matrix and the MAE, Figure 9. It is
seen that a number of 300 is the optimal size for the set of training
data with the lowest mean absolute error and a high precision
after training. It can be seen that an increasing number of data
points leads to an increasing MAE, possibly due to overfitting.
Furthermore, the precision does not have a uniform trend with an
increasing number of data points such that we conclude that 300
data points is the optimal value, which still allows an efficient data
generation process.

The resulting ML yield function, trained with the optimized
training set of 300 uniformly distributed load cases, is visualized
in Figure 10. The optimal hyperparameters for the SVC
algorithm have been determined as C � 15 and γ � 3 using
grid search. A comparison to Figure 4, where a total of 400 data
points have been used in the training set, clearly reveals the
importance of the optimization of the ratio between 6D and 3D
stresses in the training data, as the optimized result is more
accurate with 25% less training data.

The quality of theML flow rule training with the optimized data
set is further verified by comparing the results of the ML yield
function to the known reference values for random stresses in the
vicinity of the yield locus. The confusion matrix and the
performance metrics were calculated and shown in Figure 11,
and Table 3. Comparing to Figures 6, 7 and Table 2 again
indicates a better performance after optimization.

APPLICATION OF TRAINED MACHINE
LEARNING YIELD FUNCTIONS IN FINITE
ELEMENT ANALYSIS
Hill-Type Anisotropy
To demonstrate the capabilities and the accuracy of the
trained ML yield function, in the first step a finite element

TABLE 2 | Summary of the metrics for uniform and random load cases indicate the
quality of training.

Metrics Uniform Random

Precision 0.9885 0.9578
Accuracy 0.985 0.95
Recall 0.9942 0.9815
F1 Score 0.9913 0.9695

FIGURE 8 | (A) Precision and (B)Mean Absolute error after training with total number of 300 load cases in different ratios of load cases in full stress space and extra
cases in principal space.
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analysis (FEA) of a simple 4-element 2D plane-stress model
under four load cases has been performed: 1) uniaxial stress in
the vertical direction, 2) uniaxial stress in the horizontal
direction, 3) equibiaxial strain, and 3) pure shear strain.
The numerical simulations shown in this work have been
completed with the open-source package pyLabFEA
(Hartmaier et al., 2022). All examples of this work are also
provided as python code and a Juypter notebook in this public
repository. The return mapping algorithm used to calculate
the plastic strain increments based on the ML yield function
and its gradient, defined in Eqs 12, 14, respectively, has been
described in detail in (Suykens and Vandewalle, 1999). In that
work, also the full details of the finite element model to
evaluate the given load cases are provided. To estimate the
accuracy of the ML yield function, its results are compared to

FIGURE 9 | (A) Precision and (B)Mean Absolute error after training with different number of load cases and a fixed ratio of 2:1 for 6D to 3D load cases in full stress
space and extra cases in principal space.

FIGURE 10 | Plot of trained SVM classification with optimized training
size and ratio in cylindrical coordinates on the π-plane (space of principal
deviatoric stresses). The figure annotations are identical to Figure 5.

FIGURE 11 | Confusion matrix for 300 load cases and the ratio of 2:1
between 6D and 3D load cases.

TABLE 3 | Summary of the metrics for 300 with the ratio of 2 between 3D and 6D
load cases.

Metrics Uniform

Precision 0.994
Accuracy 0.995
Recall 1
F1 Score 0.997

TABLE 4 | Yield stress obtained for a Hill-type reference material with analytical
yield function and a material with an ML yield function trained to data from the
reference material under four specified load cases.

Load case Hill
yield

stress (MPa)

ML yield
stress (MPa)

Rel.
difference (%)

Uniaxial stress,
horizontal

48.744 48.795 0.10

Uniaxial stress,
vertical

45.596 45.644 0.11

Equibiaxial strain 54.171 54.233 0.11
Pure shear strain 45.283 45.33 0.10
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the ones obtained from the same model with a Hill-type
reference material with elastic-ideal plastic behavior and an
analytically defined yield function, Eq. 2. The material
parameters for this reference material are given in Table 1.
As described above, the ML yield function has been trained to
a data set of 300 stress tensors lying on the yield locus of this
reference material. The equivalent yield stresses resulting
from the FEA under the four given load cases are
summarized in Table 4, where it is seen that the error of
the ML yield function is only on the order of 0.1%. The
resulting curves for equivalent stress versus equivalent
strain for each material under the different load cases are
plotted in Figure 12, where the elastic-ideal plastic material
behavior of both materials is verified for total equivalent

strains of up to 1%. Note that the equivalent J2 stress is
plotted for both materials because the Hill-type equivalent
stress defined in Eq. 3 depends on material parameters that
are typically unknown when working with data-based yield
functions.

During the plastic deformation of materials with ideal
plasticity, it is expected that the flow stresses remain on the
yield locus, as the material does not support higher equivalent
stresses. In Figure 13, the flow stresses for Hill and ML cases are
plotted in the space of the non-zero principal stresses of the plane
stress model, together with the yield locus in this slice of the stress
space. It is seen that all flow stresses, in fact, remain on the yield
locus. Furthermore, it is seen that under stress-controlled
boundary conditions, i.e., uniaxial stress in the horizontal or
vertical direction, the flow stresses remain constant, whereas,
under strain-controlled boundary conditions, the response stress
of the anisotropic material is subject to changes. A comparison of

FIGURE 12 | Stress-strain curves obtained for elastic-ideal plastic material behavior under the loading conditions specified in the legend. (A) Equivalent J2 stress
vs. equivalent total strain for Hill-type yield function, (B) Equivalent J2 stress vs. equivalent total strain for ML yield function.

FIGURE 13 | The two non-zero principal values of the flow stresses
(colored circles) and yield loci of the trained ML flow rule (red line) and the Hill-
type reference material (black line) are plotted for four different load cases of
the 2D plane stress model. The large colored circles represent the flow
stresses resulting from theML yield function, and the small yellow circles show
flow stresses from the analytical Hill-type yield function.

FIGURE 14 | A plane strain model with three sections: (i) linear elastic
(yellow), (ii) elastic, ideal-plastic reference material with analytic Hill-type yield
function (purple), and (iii) elastic, ideal-plastic material with ML yield function
(green). The elements forming a regular mesh are indicated as well as the
imposed displacements at the boundary.
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this evolution of the flow stress tensor under strain-controlled
deformation for the analytical Hill-type yield function and the
ML yield function exhibits that both solutions are in very good
agreement, demonstrating the accuracy and numerical stability of
the ML flow rule even under finite plastic strains.

In a second step, the ML yield function is tested under a more
complex state of deformation. This is accomplished by
performing the FEA of a plane-strain model under uniaxial
strain with laterally free boundaries. The three sections of the
model are given by a square-shaped elastic inclusion in the
middle of a matrix that is vertically split up into the reference
material and the ML material, Figure 14. As the ML material is
trained to have identical material properties as the reference
material, the matrix is expected to show a mirror-symmetric state
of deformation. The linear-elastic inclusion is rather compliant,
with Young’s modulus of Einc � 1 GPa and a Poisson ratio of
υinc � 0.27. The boundary conditions at the top surface are such
that a total strain of 0.2% in the vertical direction is applied at the
end of the load step.

Figure 14A shows the resulting equivalent stress for each finite
element. It is apparent that qualitatively a symmetrical stress state
in the different materials is reached. However, quantitatively, the
equivalent stresses differ because in the region with the Hill-type
material (left-hand-side), the equivalent stress as defined in Eq. 3 is
plotted, whereas in the region with the ML material (right-hand-
side) the J2 equivalent stress is plotted, which can also be calculated
from Eq. 3 when the Hill parameters are set
H1 � H2 � . . . � H6 � 1. Note that for a data-based
constitutive model, properties like the Hill parameters are
typically not known and also not necessary for the training

process. Hence, it is best to use a material independent
definition for the equivalent stress, as the J2 equivalent stress. In
Figure 15B, the equivalent plastic strains are plotted,
demonstrating a completely symmetric deformation between
both regions, as expected for materials with identical plastic
properties. Thus, this example verifies that the ML yield
function can, in fact, be trained to possess the same plastic
properties as the Hill-type reference material and produce the
same plastic strain increments even in complex loading situations.

Barlat-Type Anisotropy
After verifying the accuracy and robustness of the ML yield
function for cases of Hill-type plastic anisotropy, it is tested
here under a more demanding kind of anisotropic behavior, given
by a material with a Barlat-type yield function (Yld 2004-18p)
(Barlat et al., 2005). The material parameters given in Table 5
have been chosen to mimic a polycrystal with a strong Goss
texture, which represents a rather severe case of anisotropic
yielding behavior.

Following the workflow developed above, in the first step, a set
of 300 stress tensors on the yield locus of the Barlat-type reference
model is generated. These training stresses are again produced by
generating 200 unit stresses as load cases that are uniformly
distributed in the 6D stress space and 100 load cases uniformly
distributed in the 3D sub-space of normal stresses. Then, these
unit stresses are increased proportionally until the zero of the
Barlat yield function Yld 2004-18p (Barlat et al., 2005) is reached.
The python code for this example is also provided in the
pyLabFEA package (Hartmaier et al., 2022). With this training
data set, representing the yield locus of the Barlat-type reference

FIGURE 15 | Resulting equivalent stress (A) and equivalent plastic strain (B) within the three sections of the model given in Figure 14.

TABLE 5 | Material parameters for the Barlat-type reference material, mimicking the plastic anisotropy of a Goss-textured polycrystal.

Quantity Symbol Value

Yield strength σy 46.76 MPa
Young’s modulus E 151.22 GPa
Poisson’s ratio ] 0.3
Barlat parameters B1 , B2 , . . . ,B6 0.818, −0.364, 0.312, 0.843, −0.018, 0.832

B7 , B8 , . . . ,B12 0.360, 0.081, 1.293, 1.096, 0.909, 0.277
B13 , B14 , . . . ,B18 1.090, 1.183, −0.019, 0.905, 1.883, 0.013
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material, the ML yield function is trained with the same
hyperparameters as given above, i.e., C � 15 and γ � 2.5. The
training result is shown in Figure 16 by projecting yield stresses
and support vectors to the π-plane, i.e., the plane of principal
deviatoric stresses, Appendix A for a definition of the plotted
quantities. It is seen that even though the Barlat-type yield
function is much more irregular than the Hill-type yield
function, the trained ML yield function provides a very
accurate representation of its yield locus.

The quality of the ML yield function training is further
quantified by comparing the signs of the values of the
analytical yield function and the ML yield function for 200
random stress tensors in the vicinity of the yield locus. The
corresponding confusion matrix is plotted in Figure 17, and the
summary of the metrics indicating the high quality of the training
result is summarized in Table 6. This analysis confirms that the
ML yield function describes the Baralat-type reference material
with very high accuracy.

With this trained ML yield function, the same FEA cases as
above have been performed to demonstrate the stability of theML
yield function even for a more severe plastic anisotropy. After
training, the stress-strain curves are plotted as J2 equivalent stress
vs. equivalent total strain in four load Figure 18A cases as shown
in Figure 18A. Also, the flow stresses resulting from FEA are
plotted in Figure 18B, and they all lie on the ML yield locus as
expected for ideal plasticity. Furthermore, it is seen again that for
the strain-controlled boundary conditions, the stress tensors
change during the plastic deformation. This behavior has
already been observed for the Hill-type plastic anisotropy, but
it is even more pronounced in this case. Note that for the case of
equibiaxial strain, the stresses evolve into a “corner” of the yield
locus, which causes a significant increase in the equivalent stress
that is also seen in the corresponding stress strain curve for this
load case.

Furthermore, in Figure 18, the equivalent stress Figure 18C
and the equivalent plastic strain Figure 18D for a model with a
square-shaped elastic inclusion and an elastic-ideal plastic matrix
represented by the ML yield function are illustrated to
demonstrate the numerical stability of the ML flow rule even
in cases of heterogeneous deformation patterns.

CONCLUSION

In this work, an optimized procedure to generate a data-based
description of the yield function of an arbitrary material has been
developed. Conventionally, the yield function is based on the
concept of the equivalent stress and indicates whether the
material response to an applied stress tensor results in linear
elastic material response, indicated by a negative value of the yield
function, or rather in plastic yielding of the material when the
yield function is zero or positive. Mathematically, the zeros of the
yield function constitute a hypersurface in stress space, the so-
called yield locus, that separates elastic and plastic domains. Since
the stress space is 6-dimensional and spanned by the six
independent normal and shear components of the stress
tensor, it is essential to find an optimal way for sampling this
hypersurface with as few as possible data points. Each data point
represents a stress tensor at which the material starts to yield
plastically, and generating such data requires either numerically

TABLE 6 | Summary of the metrics for 300 with a ratio of 2 between 3D and 6D
load cases for Trained ML yield function.

Metrics Uniform

Precision 0.9939
Accuracy 0.995
Recall 1
F1 Score 0.9969

FIGURE 16 | Plot of trained ML yield function (black line), the analytic
Barlat yield function (blue line) and the support vectors (circles) in cylindrical
coordinates on the π-plane. The same color scheme as in Figure 5 has been
applied.

FIGURE 17 | Confusion matrix comparing the trained ML yield function
and the reference Barlat-type yield function for 200 random stress tensors in
the vicinity of the yield locus.
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expensive approaches such as crystal plasticity finite element
methods or laborious mechanical testing under multi-axial
loading conditions or a combination of both.

In a first step, a numerical method has been introduced that
allows a uniform sampling of the yield locus in a six-dimensional
stress space. Themain idea behind thismethod is to proportionally
increase uniformly distributed unit stresses until the criterion for
plastic yielding is reached for each loading direction. Finding a
uniform distribution of arbitrarily many points on the surface of a
unit sphere in more than three dimensions is, however, a highly
non-trivial task. The solution suggested in this work combines
ideas of Monte Carlo sampling and choosing regularly distributed
sampling points in higher-dimensional spaces based on the
Fibonacci sequence. To sample a higher dimensional unit
sphere uniformly, the probability distribution function of its
surface needs to be defined in Cartesian coordinates, and then
the cumulative distribution function and its inverse need to be
computed. Based on this inverse function, a mapping algorithm is
defined by which random numbers from the unit interval can be
distributed uniformly on the hypersphere. If Fibonacci-like points
are mapped accordingly, instead of random numbers, it can be

shown that the mutual distance between any two sampling points
on the surface of the hypersphere is rather constant and
maximized compared to randomly distributed points. It is
demonstrated in this work that such a uniform distribution of
stress tensors in the 6-dimensional stress space is superior to
purely random sampling.

In the next step, this data-oriented description of the yield
locus is used as the basis for training of a support vector classifier
(SVC) that takes an arbitrary stress tensor as input and predicts
whether the material response to this stress is elastic or plastic. In
earlier work (Hartmaier, 2020), it has been shown for purely
normal stresses how plasticity in the framework of finite element
analysis (FEA) can be described based on such trained SVC. Here,
this formulation is generalized to the full 6-dimensional stress
space, and it is demonstrated that SVC can be trained to predict
the behavior of classical yield functions, like Hill or Barlat-type
yield functions, with very high accuracy, even for a very
significant plastic anisotropy.

As for any machine learning (ML) algorithm, providing
high-quality training data is of great importance, as training
with smaller sets of proper data will result in a better training

FIGURE 18 | (A) Equivalent J2 stress vs. equivalent total strain curves obtained for elastic-ideal plastic material behavior under the loading conditions specified in
the legend for the rained ML yield function; (B) yield loci of ML and Barlat-type materials and the flow stresses obtained from the load cases in (A) plotted as principal
stresses; (C) equivalent J2 stress; and (D) equivalent plastic strain resulting from the 2D plane strain model with a square-shaped elastic inclusion in the center.
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success than larger sets of poor data. After finding a suitable way
to distribute training data uniformly in stress space, it was found
that an appropriate ratio of normal stresses and stresses in the
full 6-dimensional stress space is necessary because otherwise,
the normal stresses are under-represented. It is demonstrated
that a ratio of 1:2 for normal stresses and full stresses represents
the tensorial properties of the yield stress in the best way. It is
also concluded that 300 data points in the form of stress tensors
on the yield locus are sufficient to train the ML yield function
with high accuracy, even in cases of severe plastic anisotropy.
The thus-trained ML yield functions have been shown to
produce accurate and stable numerical solutions in FEA.

To further expand the applicability of ML yield functions in
FEA, microstructural parameters like crystallographic texture or
grain size and morphology can be included in the input data for
the training of the ML yield function, besides the purely
mechanical data used in this work. Furthermore, it is crucial
to develop a proper data-oriented formulation of work hardening
and history-dependent material behavior in the next step.
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APPENDIX A

Since in most metals hydrostatic stress components do not play a
significant role in plastic deformation, it is useful to analyze their
flow stresses in the deviatoric stress space. To accomplish this,
oftentimes a transform to principal stresses is applied. All
deviatoric principal stresses lie on a plane in the stress space,
the so-called π-plane. In this work, we use a cylindrical coordinate
system to plot stresses in this plane, where the equivalent stress
σeq is plotted along the y-axis and the polar angle θ is plotted
along the x-axis. This projection is best introduced via defining a
complex-valued stress deviator based on the vector of deviatoric
principal stresses σ′ � (σ1 − p, σ2 − p, σ3 − p), where σ1, σ2, σ3
are the principal stresses and p is the hydrostatic stress.
Furthermore, it is necessary to specify two arbitrary

orthogonal directions in the π-plane, for which in this work a �
(2,−1,−1)/ �

6
√

and b � (0, 1, −1)/ �
2

√
are chosen. Note that these

unit vectors span the plane normal to the hydrostatic axis
c � (1, 1, 1)/ �

3
√

. Following the method developed in previous
work (Hartmaier, 2020), the complex-valued deviatoric stress is
defined as

σ ′c � σ · a + iσ · b � ���
2/3

√ · σeq · eiθ (32)
In this definition, i is the imaginary unit and the polar angle θ can
be evaluated by

θ � −i ln σ · a + iσ · b���
2/3

√
σeq

(33)

This mapping of the stress is used in Figures 4, 5, 10, 16.
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