AUTHOR=Effertz P. S. , de Carvalho W. S. , Guimarães R. P. M. , Saria G. , Amancio-Filho S. T. TITLE=Optimization of Refill Friction Stir Spot Welded AA2024-T3 Using Machine Learning JOURNAL=Frontiers in Materials VOLUME=9 YEAR=2022 URL=https://www.frontiersin.org/journals/materials/articles/10.3389/fmats.2022.864187 DOI=10.3389/fmats.2022.864187 ISSN=2296-8016 ABSTRACT=
The Refill Friction Stir Spot Welding is an innovative spot like solid state process befitting of overlap joint configurations of similar and dissimilar materials. This process caught the interest and is rapidly growing in the aerospace sector due to its potential to substitute traditional mechanical fasteners, surpassing their mechanical performance while maintaining the so desired lightweight “rationale.” In the current study, process parameters, namely plunge depth, plunge time and rotational speed, are optimized in order to obtain the highest Ultimate Lap Shear Force (ULSF) of 2024-T3 Aluminum Alloy similar joints. The optimization campaign was carried out using a second order multivariate polynomial regression machine learning (ML) algorithm. The trained ML model was able to generalize and accurately predict the Ultimate Lap Shear Force on the holdout set, having a