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The Refill Friction Stir Spot Welding is an innovative spot like solid state process befitting of
overlap joint configurations of similar and dissimilar materials. This process caught the
interest and is rapidly growing in the aerospace sector due to its potential to substitute
traditional mechanical fasteners, surpassing their mechanical performance while
maintaining the so desired lightweight “rationale.” In the current study, process
parameters, namely plunge depth, plunge time and rotational speed, are optimized in
order to obtain the highest Ultimate Lap Shear Force (ULSF) of 2024-T3 Aluminum Alloy
similar joints. The optimization campaign was carried out using a second order multivariate
polynomial regression machine learning (ML) algorithm. The trained ML model was able to
generalize and accurately predict the Ultimate Lap Shear Force on the holdout set, having a
R2 of 88.0%. Moreover, the model suggested an optimum parameter combination
(Rotational Speed = 2,310 rpm, Welding Time = 5.3 s and Plunge Depth = 2.6 mm)
from which the predicted maximum ULSF was computed. Confirmation tests were carried
out to evaluate the agreement between the predicted and the experimental values.
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1 INTRODUCTION

Refill Friction Stir SpotWelding (RFSSW) is a solid-state welding process (Schilling and dos Santos, 2004)
suitable for spot joining of lightweight metallic alloys [e.g., Aluminum (Amancio-Filho et al., 2011a;
Carvalho et al., 2021) andMagnesium alloys (Schilling and dos Santos, 2004; Amancio-Filho et al., 2011a;
Carvalho et al., 2021)] as well as polymer and composite materials (Henrique et al., 2012; Junior et al.,
2014; Gonçalves et al., 2016). Friction Spot Joining (FSpJ) (AmancioFilho and dos Santos, 2013) is a
further development of the RFSSW, which is applied to produce metal-polymer or metal-composite
hybrid joints (Goushegir and Amancio-Filho, 2018). Both processes have been developed in the early
2000s as alternatives for mechanical fastenings, adhesives and traditional fusion welding techniques and
theirmain advantages are: low energy consumption (related with the high efficiency ofmechanical energy
transformation into frictional heat), superior mechanical properties (Manente et al., 2019; André et al.,
2020; Goushegir et al., 2020), good corrosion resistance (André et al., 2019; Bouali et al., 2021)—due to
absence of rivets, screws and keyhole, near-flush finish and hermetic weld/joint sealing, etc.

The key element of these processes is a non-consumable tool with three independent cylindrical and
concentric moving parts comprising of a stationary clamping ring, rotating shoulder and probe. Both
techniques are performed in four different steps as shown in Figure 1 for the RFFSW. Initially, the
clamping ring holds the sheets firmly against a backing plate and constrains the material flow during the
process and, simultaneously, probe and shoulder start to rotate with the same rotational speed and in the
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same direction (Figure 1A). The probe and the shoulder then move
in the opposite direction–i.e., one is plunged into the material while
the other retracts; therefore, creating a cavity where the plasticized
material is accommodated inside the tool. The rotating shoulder
introduces plastic deformation and generates frictional heating
(Figure 1B). After reaching the pre-set plunge depth, both
shoulder and probe can remain rotating in this position for a
specific period or immediately return to their initial position,
forcing the displaced material to completely refill the keyhole
(Figure 1C). Finally, the tool rotation is ceased and the tool is
withdrawn from the joint leaving a flat surface with minimum
material loss (“pull-out”). According to Shen et al. (2015), a
probe-plunge process variant can also be performed, however the
mechanical performance reached by joints produced through the
shoulder-plunge variant are higher due to the larger welded area. The
main difference between the RFSSW and FSpJ techniques lays on the
tool plunging step. While in the RFSSW of metals and polymers, the
shoulder (or probe) will normally reach and stir the bottom welding
part, thereby inducing a better material mix in between the welding
parts, the FSpJ tool plunging takes place only in the upper metallic
part; this will hinder the damaging of the fiber-reinforcement for
composites, or the formation of voids in the metal (Amancio-Filho
et al., 2011b).

Several publications are available in literature investigating the
RFSSW/FSpJ for similar, dissimilar material combinations of
metals and composites (Amancio-Filho et al., 2011a; Amancio-
Filho et al., 2011b; Rosendo et al., 2011; Shen et al., 2013; Shen et al.,
2014; Suhuddin et al., 2014; Chen et al., 2015; Esteves et al., 2015;
Dong et al., 2016; Shen et al., 2016) Furthermore, considerable
effort has been carried out in assessing the influence of process
parameters on the mechanical and microstructural properties of
the joints using several statistical tools, such as Design of
Experiments (DoE), Survival Analysis, etc. While investigating
the influence of parameters on AA7050-T76 similar RFSSW
joints, Effertz et al. (Effertz et al., 2017) conducted an
optimization study based on Taguchi orthogonal DoE to yield
the parameter combination that maximised Lap Shear Force. They
also concluded that PD was the most significant predictor for LSF.
The same author (Effertz et al., 2016) investigated the fatigue failure
prediction of AA7050-T76 using statistical reliability engineering,
namely Weibull Survival Analysis that provided outstanding Time
to Failure (TTF) predictions.

Despite the thoroughly documented capabilities of the
aforementioned statistical tools, Machine Learning (ML) and

Deep Learning (DL) have been gradually gaining researchers
attention for solid-state joining process optimisation campaigns.
Verma et al. (2018) used three ML algorithms, i.e., Support
Vector Regression (SVR), Gaussian Process Regression (GPR)
and Multi-Linear Regression (MLR), to predict the ultimate
tensile strength of Friction Stir Welded AA6082. The authors
concluded that RBF kernel based GPR regression technique
works well in comparison to SVM and MLR regression
approaches for the studied dataset. In the work of Hartl et al.
(2020) the aim was to use reinforcement learning and Bayesian
optimisation approaches to determine the most appropriate
settings for the welding speed and the rotational speed of the
tool. Although both approaches were able to solve the problem,
Bayesian optimization proved to be more efficient. Regarding
RFSSW, Bock et al. (2021) used different regression analysis
algorithms, such as linear regression, decision trees and
random forests, to assess the influence of rotational speed,
plunge depth and speed on cross tensile strength of AA7075.
The authors used a previously established Box-Behnken DoE as
dataset and concluded that for that specific dataset Decision Tree
Regression (DTR) was the model yielding the best predictive
ability.

The number of publication making use of ML techniques
applied to solid state processes is still limited and requires
extensive research. The present work aims to contribute to the
knowledge gap related to the application of ML algorithms to
optimise RFSSW, as a relevant alternative to the already well
reported DoE. Hence, in this study, RFSSW parameters, namely
Rotational Speed (RS), Welding Time (WT) and Plunge Depth
(PD) were investigated using an already existent dataset from a
previous work (Tier et al., 2009) on AA2024-T3. A second order
MPR algorithm was used to develop a model capable of
predicting the Ultimate Lap Shear Force (ULSF) and obtain an
optimised condition yielding its maximum.

2 MATERIALS AND METHODS

The details of the investigation conducted by Tier et al. (2009) on
2 mm-thick Alclad AA2024-T3 similar overlap joints are briefly
reviewed, as this experimental dataset represents the basis for the
ML-algorithm herein. Additionally, equipment and methods are
underlined as part of the joints produced to validate the model’s
prediction for an optimized parameter combination.

FIGURE 1 | Illustration of RFSSW stages for the shoulder-plunge variant: (A) clamping and tool rotation; (B) shoulder plunge and probe retraction; (C) tool back to
surface level and (D) tool removal (Reprinted with permission from the publisher under a Creative Common license) (Campanelli et al., 2012).

Frontiers in Materials | www.frontiersin.org April 2022 | Volume 9 | Article 8641872

Effertz et al. Optimization of RFSSW AA2024-T3 Using ML

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


2.1 Data Frame
A sensitivity analysis was performed to identify the relationships
between process parameters and ULSF of overlapped joints. No
dwell time was considered, thus both probe and plunge have
been retracted as soon as the required plunge depth has been
achieved.

The experimental data according to Tier et al.(Tier et al., 2009)
is shown in Table 1, from which the column related to Plunge
Rate was disregarded in this work, as it can be obtained by linear
combination of PD and WT (i.e. the quotient between PD and
WT). Statistical description of the data is provided in Table 2.
Since the regression problem is solved using Ordinary Least
Squares (OLS), it is imperative that all factors are linearly
independent to ensure the normal matrix is invertible. The
formulation presented in Section 3 will make this assertion clear.

(Figure 2 highlights the correlation between the input and
output parameters. According to the heatmap the value 0.71

suggests a high correlation between WT and PD, whereas the
remainder features and output are weakly correlated.

2.2 Experimental Procedure
2-mm thick AA2024-T3 rolled sheets were applied to produce
similar overlap joints for validation of the ML derived models.
The nominal chemical composition of the alloy is presented in
Table 3. It should be noted that there are marginal differences in
chemical composition between the alloy used in this work and the
one from (Tier et al., 2009). Moreover, non-Alclad AA2024-T3
was used for this investigation. However, quasi-identical
mechanical properties are to be expected according to
(Anderson et al., 2019).

Spot welds were produced with two 100 mm × 25.4 mm plates
and an overlap length of 25.4 mm, as shown in Figure 3. The
welding process was performed using an RPS 100 RFSSW
equipment (Harms-Wende, Germany) with a standard welding

TABLE 1 | Experimental matrix, according to Tier et al. (2009), used for the herein
ML-algorithm.

Cond Factors Response

RS [rpm] PD [mm] WT [s] Av. ULSF [kN]

1 2,900 2.20 2.80 9.94
2 2,400 2.20 2.80 6.44
3 1,900 2.20 2.80 6.50
4 2,900 2.20 3.79 6.95
5 2,400 2.20 3.79 8.69
6 1,900 2.20 3.79 6.67
7 2,900 2.20 4.78 7.60
8 2,400 2.20 4.78 9.50
9 1,900 2.20 4.78 8.05
10 2,900 2.50 3.79 8.21
11 2,400 2.50 3.79 8.83
12 1,900 2.50 3.79 8.97
13 2,900 2.50 4.81 7.45
14 2,400 2.50 4.81 8.35
15 1,900 2.50 4.81 10.68
16 2,900 2.50 5.81 8.78
17 2,400 2.50 5.81 8.50
18 1,900 2.50 5.81 9.59
19 2,900 2.80 4.78 8.61
20 2,400 2.80 4.78 9.14
21 1,900 2.80 4.78 8.52
22 2,900 2.80 5.81 8.86
23 2,400 2.80 5.81 9.80
24 1,900 2.80 5.81 9.12
25 2,900 2.80 6.83 8.80
26 2,400 2.80 6.83 8.36
27 1,900 2.80 6.83 7.71

TABLE 2 | Statistical description of the data.

RS [rpm] PD [mm] WT [s] Av. ULSF [kN]

Count 27 27 27 27
Mean 2,400 2.50 4.80 8.45
SD 416.03 0.25 1.19 1.06
Min 1900 2.20 2.80 6.44
Max 2,900 2.80 6.83 10.68

FIGURE 2 | Heatmap of the data.

TABLE 3 | Nominal chemical composition of AA2024-T3 (wt%).

Elem Cu Mg Mn Fe Zn Si Ti Cr Al

% 4.55 1.49 0.45 0.17 0.16 0.10 0.02 <0.01 Bal

FIGURE 3 |Configuration and dimensions of the joints used for lap shear
test (in mm).
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tool made of H13 tool steel alloy provided by the manufacturer.
The diameters of the clamping ring, shoulder and probe tool
components were 18, 9 and 6 mm, respectively. Lap shear testing
was performed using a Zwick-Roell universal testing machine
equipped with a 100 kN load cell, with constant crosshead speed
of 2 mm/min at room temperature in accordance with DIN ISO
14273 standard.

2.3 Microstructural Characterization
The AA2024-T4 joints were cross-sectioned by a precision saw
and embedded, subsequently being metallographically
prepared by conventional methods. In order to reveal the
microstructure electrochemical etching was employed, by
which the samples were immersed in Barker’s reagent (5 ml
HBF4, 200 ml H2O) and subjected to 25 V during 60 s in a
Struers LectroPol (Struers, Germany). Light optical
microscopy was performed in bright field aiming to reveal
joint features. In addition, by making use of polarized light it
was possible to reveal in detail grain size and orientation in
different zones, contributing to enlighten the effect of the
processing on the material.

2.4 Polynomial Regression Formulation
The polynomial regression ML algorithm was implemented using
package Scikit-learn to capture the non-linear dependencies
between different the Multiple Regressor Variables or
parameters. The generic form of the model over features x1,
x2,..., xn can be written as:

yβ(x) � β0 +∑m
i�1
⎛⎝βi ·∏n

j�1
x
ai,j
j
⎞⎠ + εp (1)

where ai,j are feature degrees, ai,j ≥ 0, βi, i � 0, . . . , n, are
constants with which y is parametrized and account for the
linear, quadratic, and interaction effects of the parameters; and εi
represents unobserved random variables (errors) of the p-th
observation.

Equation 1 can be expressed in matrix form in terms of a
design matrix Z, a response vector �y, a parameter vector �β, and a
vector �ε of random errors. The i-th row of Z and �ywill contain the
x and y value for the i-th data sample. Then the model can be
written as a system of linear equations:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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.

εm
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j�1

x
ap,j
j

(2)

which when using pure matrix notation is written as:

�y � Z �β + �ε (3)
The vector of estimated polynomial regression coefficients is

obtained using Ordinary Least Squares (OLS) estimation, thus:

�̂β � (Z⊤Z)−1Z⊤ �y (4)
The matrix Z⊤Z is known as the normal matrix and the matrix

Z⊤ �y is known as the moment matrix of the regressors.
The training data was scaled to ensure all regressors are the

same order of magnitude, contributing equally to the result and
aiding on the interpretability of their influence. Hence,
standardization was performed to ensure standard normally
distributed data N(0, 1), such that:

xp � x − μ

σ
with μ � 1

N
∑n
j�1
xj, σ �

������������
1
N

∑n
j�1
(xj − μ)2√√

(5)

3 RESULTS AND DISCUSSION

This section highlights the equation modelling the predicted
ULSF, as well as a thorough analysis of the statistical
importance of each feature and their interactions. The quality
of the model evaluated by comparing predicted and ground truth
via validation experiments. Finally, the microstructure yielded by
the best condition is analysed.

3.1 Polynomial Regression Model
To train a model that can adequately fit the data, but also
generalizes well for “unseen” observations, a suitable train/test
split must be specified. For this problem, due to the low amount of
data available, a sensitivity analysis was conducted, from which a
train/test split of 85% and 15% was considered, respectively. The
data points for holdout/test set were randomly selected. The
trained model equation for predicting the ULSF is as follows,
expressed with for standardized units:

ŷULSF(xp
RS, x

p
WT, x

p
PD) � 9459.45 − 180.27 · xp

RS + 178.56 · xp
WT

+ 226.08 · xp
PD − 364.46 · xp 2

RS − 56.50

· xp
RS · xp

WT + 64.33 · xp
RS · xp

PD − 380.56

· xp 2
WT + 29.21 · xp

WT · xp
PD − 240.26 · xp 2

PD

(6)
where zRS, zWT and zPD are the standardized feature values for
RS, WT and PD, respectively.

The coefficients of Equation 6 provide valuable interpretative
information on the effect that parameters and their interactions
have on the response, visually represented in Figure 4. Hence, it is
apparent that the quadratic features WT2, RS2 and PD2 influence
prominently the ULSF, i.e. due to the concave-downward nature
of such features, low and high values of WT, RS and PD will affect
more negatively the response. This is coherent with physical
underpinnings of the process, since WT, RS and PD are
intimately related to the amount of heat input given to the
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joint, thence its quality, as reported by Esteves et al. (Esteves et al.,
2015).

Specifically, the short WT does not allow for sufficient heat to
flow from the tooling to the material promoting viscoplastic flow
and dynamic recrystallisation as reported in (Effertz et al., 2017).
On the other hand, long WT is associated to higher temperature
and heat input, promoting grain growth and possible precipitate
segregation, typical phenomena observed for the process (Effertz
et al., 2016). The same reasoning established for short WT applies
to low RS, as not enough shear friction resulting in heat is being
generated between tool and material. Contrastingly, the
detrimental effect for higher values of RS might be explained
by slip between the plunge and material, ensuing insufficient heat
input to the joint. This behaviour has been reported for similar
friction-based welding processes (Amancio-Filho et al., 2011a;
Rosendo et al., 2011; Shen et al., 2014; Shen et al., 2015). Short PD
has a negative display on ULSF, as the plunge is unable to
promote the mechanical mixing of the overlapped sheets;
whereas a long PD translates in the weakening of the lower
part of the weld by the plunge in the second stage of welding (Kluz
et al., 2019).

Although on a lower level, the linear features also have a
significant contribution to the response, with PD and WT
signifying an improvement, and RS a deterioration to ULSF.
The first-order interactions had the lowest influence on the ULSF.

The performance of the model on the test set has proven to be
very satisfactory, with the highest error being 7.9%, as
summarized in Table 4. In addition, the statistical score was
computed in terms coefficient of determination R2 and 0.88 was
obtained for the test set, which states that the models can
adequately generalize and predict the ULSF for new
observations. The errors are associated to the cumulative
contribution of the following reasons: the apparatus and
material chemical composition differ from (Tier et al., 2009);
and the stiffness of the model itself.

3.2 Prediction for the Optimum Parameters
Having established a working MPR model, the parameter
combination that yields the maximum ULSF can be computed.
Figure 5 shows the Response Surface Method (RSM) plots
relating the process parameters along with the response.

Colour coded projection lines and contour plots were included
to better visualise the response evolution. The transition from
dark blue to dark orange corresponds to the increase of a specific
quantity from low to high, respectively. Observing the plots, the
point for which the response �y is maximum is the point at which
the partial derivatives, zŷ/zxp

RS, zŷ/zx
p
WT and zŷ/zxp

PD must be
equal to zero, thus:

zŷ

zxp
i

� �b + 2B �xp � 0 (7)

where from Equation 6, �b and B can be expressed as:

�b � ⎛⎜⎝−180.27
178.56
226.08

⎞⎟⎠ ∧ B � ⎡⎢⎢⎢⎢⎢⎣−364.46 −56.50 64.33
−380.56 29.21

sym. −240.26
⎤⎥⎥⎥⎥⎥⎦
(8)

From Equation 7 the standardised stationary vector �xp
s is

computed as:

�xp
s � −1

2
B−1 �b � ⎡⎢⎢⎢⎢⎢⎣−0.210.30

0.45

⎤⎥⎥⎥⎥⎥⎦������������������������������������������������������������→g−1( �xps ) �xs � ⎡⎢⎢⎢⎢⎢⎣ 23105.27
2.58

⎤⎥⎥⎥⎥⎥⎦ (9)

where g−1( �xp
s ) denotes the transformation from standardised to

“actual” RS, WT and PD values. Hence, the predicted optimized
(maximum) point corresponds to 2,310 rpm, 5.3 s and 2.6 mm of
RS, WT and PD, respectively.

3.3 Model Validation
The generalisation performance of a learning method relates to
its prediction capability on independent test data. Assessment
of this performance guides the choice of learning method or
model and gives a measure of the quality of the ultimately
chosen model (Hastie et al., 2001). To that end, confirmation
experiements on the suggested optimum parameters were
carried out.

It should be noted that the predicted ULSF is surpassed by
conditions 1, 15, 18 and 23 from Table 1. The reason for this
slight discrepancy is, as previously mentioned, related to the
model suffering from a certain degree of bias on the training
set, i.e. the second order MPR behaves in a “stiff”manner when
fitting to the training set. Thus the model oversimplified
specially towards the higher values of response. On the
other hand, despite the lower R2 performance of the model
on the holdout set, very good agreement was obtained between
predicted and actual ULSF for the optimum condition, with a

FIGURE 4 | MPR coefficients as feature importance scores.

TABLE 4 | Actual vs. Predicted ULSF on the test set.

Response (ULSF) Err. (%)

Actual [kN] Predicted [kN]

9.12 9.25 1.4
8.80 8.49 3.5
6.95 7.50 7.9
8.97 8.64 3.7

R2
test � 0.88.
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lowest and highest error of 3.7% and 9.0%, respectively.
The results are shown in Table 5. The discrepancies in
chemical composition, material properties of AA2024-T3
and testing conditions (i.e., RFSSW aparatus,
tensile testing machine) did not seem to affect greatly the
results.

3.4 Microstructural Analysis
The microstructure of the optimum condition (Trial I) is
depicted in Figure 6 in bright field (a) and in polarized
light (b, c, d, e, and f). It is clearly visible in Figure 5A the
distinct zones resulting from the friction-based process: heat
affected zone (HAZ), thermomechanical affected zone
(TMAZ), and the stir zone (SZ); BM is the unaffected base
material. For a deeper analysis, Figure 6B reveals how the
grains are oriented and distributed in and nearby the
processing zone. Figure 6C reveals details of the HAZ.
Since this zone does not suffer plastic deformation but
thermal cycling during the joining process, the grains are
elongated on the rolling direction whit sizes
corresponding to the BM. Differently from the
aforementioned, TMAZ grains (Figure 6D) are moderately
deformed/heated, being characterized by a deformed
microstructure; these grains follow the direction of the
retracting plunge, bending upwards. In reason of
insufficient deformation/heat regime, these grains do not

recrystallize. The SZ presents a different feature in
reason of the high values of deformation/heat achieved
during the joining, and therefore a fully recrystallized
microstructure with fine equiaxial grains (typically found in
RFSSW of aluminium alloys is noticeable (Reimann et al.,
2017).

Overall, the microstructure behavior is the expected one
from friction-based processes, and a defect-free RFSSW joint is
visible since neither pores and cracks nor grooves or
cavities are identified and all produced and tested spot
welds. It leads to conclude that the optimized parameters
employed in this investigation act to perform a joint in an
expected range of reliability, leading to a predictable
microstructural and mechanical behavior expected for
defect-free RFSS-welds.

FIGURE 5 | Response surface plots on the influence of (A) WT—PD, (B) RS—PD, and (C) RS—WT on the ULSF.

TABLE 5 | Validation experiments for predicted maximum response.

Parameters Trial Response (ULSF)

RS [rpm] WT [s] PD [mm] Exp. [kN] Pred. [kN]a Err.(%)

2,310 5.3 2.6 I 9.14 9.55 4.5
II 8.76 9.0
III 9.21 3.7

aBased on Eq. 6 from polynomial regression.
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4 CONCLUSION

The process parameters of Refill Friction Stir Spot Welding,
i.e. Rotational Speed (RS), Welding Time (WT) and Plunge
Depth (PD), were studied and optimized using a Machine
Learning (ML) algorithm, namely Multivariate Polynomial
Regression (MPR), from which the following conclusions can
be drawn:

• Statistical metric coefficient of determination R2 was used to
assess theMPRmodel ability to fit adequately to the training
set and generalise the (Ultimate Lap Shear Force) ULSF for
unseen data on the test set. As a result, an R2 0.88 was
obtained for the test set.

• The model exhibited significant dependence on the
quadratic features of the studied parameters, whereby
WT2 and RS2 have a detrimental effect over the ULSF.
Thus, this negative clout follows a down-concave parabolic
behaviour from which low and high values of WT and RS
lead to worse outcomes.

• An optimum parameter combination was obtained within
the investigated parameter window (RS = 2,310 rpm, WT =
5.3 s and PD = 2.6 mm). Despite the satisfactory match
between experimental and predicted results, the predicted
optimum point did not correspond to the maximum
obtainable ULSF. The disparity is related to
oversimplification of certain training points by the
model, as well as the slight difference in chemical
composition between Alclad AA2024-T3 used in and
AA2024-T3 used in this work.

• The microstructure exhibited clearly the distinct zones
found in stir based-processes besides a defect-free joint.
It highlights the reliability of the parameters employed for
this investigation.

Although very promising results were obtained from the MPR
model, no solid conclusions can be inferred on the adequacy of
the model beyond the parameter window investigated. Moreover,
as a future contribution, other ML algorithms, such as Gaussian
Process Regression, Decision Tree Regression or Support Vector
Regression should be considered and compared to the present
solution.
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FIGURE 6 | Light optical microscopy image of the Trial I joint in (A) bright field, (B) polarized light after the electrolytic etching, (C) heat affected zone, (D)
thermomechanical affected zone, and (E) stir zone. The last three are indicated in (B). SZ stands for stir zone, TMAZ thermomechanical affected zone, HAZ heat affected
zone and BM base material. The white dashed line delimits the processing zone.
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