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Materials genome methods have played an essential role in accelerating the discovery of
high-performance novel materials, and include high-throughput calculation, database
construction, and machine learning. Over the past decades, these approaches have
been increasingly used in lithium battery materials, solar cells, transparent conductors, and
thermoelectrics. Thermoelectrics are functional materials that can directly convert
electricity into heat and vice versa, offering new ideas for conventional power
generation and refrigeration. The application of high-throughput methods can achieve
more efficient screening of new thermoelectric materials and accelerate experimental
development. This review summarizes the recent progress in the application of materials
genome methods for different thermoelectric materials, such as half-Heuslers, diamond-
like structures, oxides, and other materials. Finally, current advances in machine learning
for thermoelectrics are discussed. The progress of the theoretical design of
thermoelectrics has driven the development of high-performance thermoelectrics.

Keywords: materials genome, high-throughput calculations, machine learning, thermoelectrics, first-principles
calculations

INTRODUCTION

With the emergence of the global energy crisis and environmental problems, novel green and
environmentally friendly materials for energy conversion have received much attention.
Thermoelectric (TE) materials are a type of energy conversion material that can directly convert
heat into electricity and vice versa for power generation and refrigeration (Goldsmid, 2010; Rowe,
2018). TE materials are employed in a variety of applications, such as household refrigerators and
space probes. TE materials are even expected to be used in wearable devices (Petsagkourakis et al.,
2018). Bi2Te3 is the only compound currently used commercially as a TE material (Chen et al., 2018;
Mamur et al., 2018). Therefore, methods of improving the TE performance and finding more TE
materials for use in practical applications is a critical challenge.

The performance of TE devices is determined by a dimensionless figure of merit, ZT=(S2σT)/κ,
where S is the Seebeck coefficient, σ is the electrical conductivity, S2σ is referred to as the power factor
(PF), T is the absolute temperature, and κ is the thermal conductivity. Generally, a high PF or a low κ
results in a high ZT value; nevertheless, the interdependency between S and σ creates a challenge in
optimizing TE performance. For example, an increase in S leads to the decrease of σ, and vice versa.
To improve TE performance, many methodologies have been introduced. These include band
degeneracy (Pei et al., 2012; Fu et al., 2015b; Tan et al., 2016;Wang N. et al., 2021), defect engineering
(Liu Y. et al., 2016; Zhu et al., 2016; Zhao et al., 2020; Zheng et al., 2021), and conductive networks in
complex compounds (Yang et al., 2016; Xi et al., 2018). The identification of new, high-
performance TE materials is important; however, the traditional “trial and error” research
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methodology is time-consuming and laborious. The Materials
Genome Initiative (MGI), proposed in 2011, is an effective way
to accelerate the design, development, and application of novel
materials.

The announcement of the MGI played a crucial role in
accelerating the discovery of TE materials, including
computational tools, experimental tools, collaborative
networks, and digital data (Dima et al., 2016). First-principles
calculations based on density functional theory (DFT) (Kohn and
Sham, 1965) are used to predict and optimize the TE performance
of materials. The calculations can analyze the properties of the
electronic structure, density of states, phonons (Togo and
Tanaka, 2015), elasticity, and other parameters (Slack, 1973).

First-principles high-throughput (HTP) (Jain et al., 2015)
methods have become a universal tool for the discovery of
novel materials (Jain et al., 2011; Curtarolo et al., 2013;
Calderon et al., 2015; Yan et al., 2015; Chen et al., 2016;
Körbel et al., 2016). The Materials Project (MP,
materialsproject.org) is an open-access database established in
2011. MP uses HTP screening to establish a data-rich ecosystem
for the discovery of solar photovoltaics, piezoelectrics, TEs, and
other materials (Jain et al., 2013). The MP data comprise known
materials from the Inorganic Crystal Structures database (ICSD)
(Belsky et al., 2002) and predicted materials generated by the web-
based collaboration. MP now contains over 140,000 structures of
inorganic compounds (de Jong et al., 2015), including new battery
materials (Kim et al., 2011), piezoelectrics (Armiento et al., 2011),
photovoltaics (Yu and Zunger, 2012), and TE materials (Wang S.
et al., 2011). Automatic-FLOW (AFLOW, aflowlib.org) is a
globally available database (Curtarolo et al., 2012; Calderon
et al., 2015) including 3,500,000 material compounds with
over 705,000,000 calculated properties that can support a post-
processing tool for material analysis. The data in AFLOW were
generated by the DFT software Vienna Ab Initio Simulation
Package (VASP) (Kresse and Furthmuller, 1996; Kresse and
Joubert, 1999) and Quantum Espresso (QE) (Giannozzi et al.,
2017). Novel Materials Discovery (NOMAD, nomad-coe.eu) is a
tool for creating, collecting, and storing computational materials
science data. NOMAD contains over 50,000,000 total energy
calculations (Draxl and Scheffler, 2019). MatCloud (matcloud.
cnic.cn) is a Chinese HTP platform, which is a computational
materials platform where users can perform online job setup, job
submission, andmonitoring via a web browser (Yang et al., 2018).
The Materials Hub with three-dimensional structures (MatHub-
3d, www.mathub3d.net, formerly MIP-3d) is a HTP platform
developed by the MGI of Shanghai University, and focuses on
energy, electronic structures, and electrical transport properties
(Yao et al., 2021).

Based on the material databases, many screening studies have
been performed on functional materials, such as metal-organic
frameworks (Zornoza et al., 2013; Colon and Snurr, 2014),
transparent conducting materials (Hautier et al., 2013; Brunin
et al., 2019), Li-ion battery materials (Wang Y. et al., 2017), and
other materials. The HTP research approach brings material
development into the fourth paradigm. The combination of
“experiment-calculation-data” opens new avenues for the
development of novel high-performance TE materials. In this

review, we highlight the recent application of materials genome
methods to different materials, including half-Heuslers,
diamond-like compounds, and perovskites, and discuss the
recent progress in the application of machine learning (ML)
to TEs.

RECENT PROGRESS IN
THERMOELECTRICS

The evolution of ZT values in different materials from 1954 to
2021 is shown in Figure 1, with two distinct major leaps visible.
The first is the development of the classical semiconductor theory
in the 1960s, which promoted the development of alloy
semiconductor TE materials with a ZT value of approximately
1.0, such as Bi2Te3, PbTe, and SiGe (Goldsmid andDouglas, 1954;
Dismukes et al., 1964). The second leap in development occurred
because of new concepts and technologies, such as phonon glass
electron crystals (PGECs) (Rowe, 2018), nanotechnology
(Shakouri, 2011), and energy band engineering (Capasso,
1987). Some new TE materials with complex structures have
been discovered and their thermal and electric properties are
greatly improved; these materials include skutterudites (Rogl
et al., 2015), diamond-like compounds (Xie et al., 2021), half-
Heuslers (Fu et al., 2015a), Cu2Se (Olvera et al., 2017), SnSe
(Chang et al., 2018), and other materials. HTP calculations and
ML have injected “new blood” into the discovery of high-
performance TE materials in recent years and may lead to a
third leap forward.

Half-Heuslers
Half-Heuslers (HH) have a valence electron count of 8 or 18, and
are generally represented by the formula ABX, where A and B are

FIGURE 1 | The evolution of ZT values in different TEmaterials (Goldsmid
and Douglas, 1954; Dismukes et al., 1964; Ohtaki et al., 1996; Kuznetsov
et al., 2000; Shen et al., 2001; Dyck et al., 2002; Shi et al., 2008; Wang et al.,
2008; Liu et al., 2009a; Liu et al., 2009b; Li et al., 2009; Ohtaki et al.,
2009; Pei et al., 2011; Yang et al., 2011; Saiga et al., 2012; Hu et al., 2014;
Rogl et al., 2015; Fu et al., 2016; Olvera et al., 2017; Zhang et al., 2017;
Beretta et al., 2019; Pang et al., 2019; Cao et al., 2021; Xie et al., 2021;
Xiong et al., 2021; Zhang et al., 2021).
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usually transition metal elements and X is a leading group
element. A typical HH compound is MgAgAs, with a face-
centered cubic (FCC) crystal structure, as shown in Figure 2A
(Larson et al., 1999; Uher et al., 1999; Fang et al., 2018). HH
compounds have high mechanical strength, excellent electrical
properties, and good thermal stability (Everhart and Newkirk,
2019); they are considered to be the most promising high-
temperature TE material candidates studied in recent years
(Fu et al., 2015b).

Starting from the available experimental data, Yang et al.
(2008) used ab initio calculations and Boltzmann transport
theory under the constant relaxation time approximation to
screen more than 100 HH compounds taken from the ICSD
and studied the electrical transport properties of 36 HH
compounds. The p-type and n-type HH compounds with high
power factors are shown in Figures 2B,C. The recommended
potential HH compounds were Co-, Rh-, and Fe-based HH
compounds for p-type prospective materials, and LaPdBi for
n-type, with some subsequently confirmed experimentally
(Yang et al., 2008). Up to the present day, the experimental
ZT values of HH compounds are 1.0–1.5. For example, for the
p-type NbFeSb-based HH compound, a maximum ZT of 1.1 at
1100 K was reported (Figure 2D), with the TE properties
optimized by a band engineering approach via the tradeoff

between the band effective mass and carrier mobility (Fu
et al., 2015b). Heavy-band p-type FeNbSb with doped Hf
reached a high ZT of 1.5 (Figure 2E) (Fu et al., 2015a). A
p-type TaFeSb-based HH compound demonstrated a record
high ZT of ~1.52 at 973 K, which was identified by screening
the family of V1-VIII-V2 HH compounds (with V1 = V, Nb, or Ta;
VIII = Fe, Ru, or Os; and V2 = As, Sb, or Bi) (Figure 2F) (Zhu
et al., 2019). Guo et al. (2019) screened 95 HH compounds using
HTP and predicted six p-type and four n-type unreported
promising HH compounds, with the finding that the
cooperative effects of high band degeneracy, small deformation
potential, light band, and large phonon velocity led to a big power
factor.

HH compounds have high lattice thermal conductivity;
forming solid solutions can effectively reduce the lattice
thermal conductivity (He et al., 2014; Tavassoli et al., 2017; Yu
et al., 2017; Dylla et al., 2020). As the formation of solid solutions
affects the electronic structure, the electronic structure of HH
compounds needs to be studied. Dylla et al. (2020) constructed an
orbital phase diagram (Figure 3B) according to the atomic orbital
composition of HH valence bands; this technique helps to track
the changes in electronic structure through the solid solutions.
They used HTP calculations andML to compare the valence band
maximum (VBM) of known HH compounds and discover new

FIGURE 2 | (A) Typical crystal structure of HH compounds of the type ABX (Yang et al., 2008); (B,C) Themaximum power factor versus carrier concentration of the
p-type and n-type HH compounds (Yang et al., 2008); (D) The ZT value of p-type FeNb0.8Ti0.2Sb compounds at different temperatures. (Fu et al., 2015b); (E) ZT
comparison for Hf- or Zr-doped FeNbSb and other typical high-temperature TE materials (Fu et al., 2015a); (F) The time-dependent ZT value of TaFeSb-based Ta1-
xTixFeSb (Zhu et al., 2019).
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chemical guidelines for promoting the highly degenerateW-point
to the VBM. The k-point of the VBM is different for different
electronic structures, and the VBM may occur at the Γ-point
(with a band degeneracy Nv of 1), L-point (Nv = 4), or W-point
(Nv = 6), where Nv is the total band degeneracy (Yan et al., 2015).

HTP calculations and ML techniques have been increasingly
used for the development of HH compounds in recent years. The
lattice thermal conductivity of HH compounds (Carrete et al.,
2014) was screened from approximately 79,000 HH entries in the
AFLOWLIB.org database (Curtarolo et al., 2012; Taylor et al.,
2014). All possible compounds in the periodic table of elements,
excluding radioactive elements, were considered for HH
compounds. By enthalpy calculations, second-order force
constant phonon dispersion calculations, and global
thermodynamic stability analysis, 75 stable structures of HH
compounds were obtained. Three computational methods were
proposed to estimate the thermal conductivity of those 75
compounds. Eventually, they concluded that compounds were
most likely to have low thermal conductivity if the average atomic
radius of the atoms in structural positions A and B was large.
Moreover, they proposed that PtLaSb, RhLaTe, and SbNaSr had

low lattice thermal conductivity (less than 5W/m K). After that,
Toher et al. (2014) used the automatic Gibbs library (AGL) to
analyze these 107 HH compounds (Figure 3A), and
demonstrated that the AGL method was much cheaper
computationally compared with the full ab initio approach.

Overall, the HTP method has yielded some success in both
electrical and thermal transport performance, and a set of
guidelines has been established for the screening and
optimization of HH compounds. Starting from the
experimental data, in combination with first-principles
calculations and ML, HH compounds have achieved ZT values
of 1.0–1.5.

Diamond-like Compounds
Diamond-like compounds are derived from tetrahedrally bonded
diamonds. The anions in these compounds occupy an FCC
sublattice, and the cations occupy the tetrahedral center. The
cations and anions in the unit cell follow the simple valence-octet
rule (Xi et al., 2018). Diamond-like compounds can be divided
into two types according to the ratio of the number of anions and
cations in the compound: a cation/anion ratio of <1 is referred to
as a defect diamond-like compound (e.g., In2Te3, CdIn2Se4), and
a cation/anion ratio = 1 is referred to as a normal diamond-like
compound (e.g., ZnS, CuInTe2) (Li et al., 2020). Owing to the
flexibility of the cation sublattice, the diamond-like compounds
have many possible compositions, including unitary, binary,
ternary, and quaternary components or even higher.
Diamond-like compounds play an essential role in the field of
photovoltaics and infrared detectors. In 2009, the discovery of
quaternary Cu2MSnQ4 (M = Zn, Cd; Q = S, Se) as promising TE
materials attracted intensive study; the ZT reached 0.65 at 700 K
(Liu et al., 2009a). Ternary CuGaTe2 is a high-efficiency TE
material with a high ZT of 1.4 at 950 K (Plirdpring et al., 2012),
and the ZT value of CuInTe2 reached 1.18 at 850 K, and displayed
good electrical properties and low thermal conductivity (Liu et al.,
2012). The advantages of environmentally friendly constituent
elements, relatively large Seebeck coefficient, and low thermal
conductivity mean that the diamond-like structures are
promising TE materials.

In an initial attempt at HTP, Zhang et al. (2014) used a series
of ternary diamond-like compounds (Figure 4A) and proposed a
pseudocubic approach to search for and design high-performance
non-cubic TE materials. Zhang et al. tuned crystal structures to
design pseudocubic or cubic-like structure blocks in non-cubic
materials, to lead directly to cubic-like degenerate band-edge
electronic states (Figure 4B) (Zhang et al., 2014). The diamond-
like structure might show increased randomness of the locally
irregular tetrahedra through a rationally designed mixing strategy
while maintaining the cubic-like degenerate electronic states at
the band edge. The ZT had peak values when the crystal field
splitting energy, ΔCF, was close to zero (Figure 4C). The
distortion parameter η (η = c/2a) was also proposed as a
means to evaluate and quantify the TE performance. When η
was close to 1, ΔCF was close to 0 (Figure 4D). The unity-η rule
provided a systematic strategy for guiding the evaluation and
optimization of TE diamond-like structures. The parameter η
could be easily obtained from lattice parameters a and c; based on

FIGURE 3 | (A) Thermal conductivities of HH compounds using AGL at
300 K compared with machine learning algorithm predictions (Toher et al.,
2014); (B) The orbital phase diagram of HH compounds (Dylla et al., 2020).
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this theory, Liu R. et al. (2016) synthesized a series of Cu1-x-
δAgxInTe2 structures, obtaining a high ZT of 1.24 from the
Cu0.75Ag0.2InTe2 structure (Figure 4E).

In TE materials, it is difficult to calculate the carrier relaxation
time, and the accurate calculation of electron–phonon coupling is
time-consuming, which is not suitable for HTP calculation
(Noffsinger et al., 2010; Chen et al., 2012; Liu et al., 2017).
Deformation potential method (Bardeen and Shockley, 1950) are
usually used in HTP calculations. However, their accuracy has
always been questioned. In 2018, Xi et al. (2018) screened
chalcogenides with a diamond-like structure, space group 225,
from the MatHub-3d database (Yao et al., 2021) through HTP
calculations (Figure 5A). This work reported a new strategy for
computing the electronic relaxation time τ, which was efficient
enough for HTP calculation and more accurate than the more
advanced electron–phonon coupling method. One type of novel
compound with a defect-chalcopyrite structure, such as CdIn2Te4
and ZnIn2Te4, has been proposed a potentially good TE material,
and Cd2Cu3In3Te8 has been experimentally synthesized and proved
to have a high ZT, of above 1 (Figure 5B). Following the work of (Xi
et al., 2018), Li et al. (2019) used the HTP method to screen the TE
performance of ABX2 compounds with diamond-like structures
(Figure 5C). ZnSnSb2, AgInS2, AgGaSe2, AgInSe2, and LiInTe2
were predicted to have high ZT values for both n-type and
p-type. The aforementioned work achieves the full flow from
material design of HTP screening to experimental validation,
which is of great significance for the prediction of the novel
high-performance TE materials.

Oxides
Since the discovery of p-type NaCo2O4 with high TE performance
(Terasaki et al., 1997), many oxides, such as the binary oxide ZnO
(Ong et al., 2011) and the perovskite-type oxides SrTiO3 (Muller
et al., 2004), CaMnO3 (Wang et al., 2009), and LaCoO3 (Vulchev
et al., 2012), have been investigated as TE materials. The high-
temperature stability, environmentally friendly properties, and
low cost make them suitable for various applications, such TE,
photoelectric, catalysis, photocatalytic (Sawada and Nakajima,
2018; Nkwachukwu and Arotiba, 2021), and dielectric materials.
Unlike the favored materials in the field of TE, such as SnSe
(Wang et al., 2015; Zhao et al., 2016), PbTe (Pei et al., 2011; Xiao
and Zhao, 2018), and Cu2Se (Nunna et al., 2017; Olvera et al.,
2017), the ZT values of oxides were not very high (Wang H. C.
et al., 2011; Wang J. et al., 2017).

With the help of the materials genome, Chen et al. (2016)
analyzed the TE properties of over 48,000 compounds from the
MP. The dataset in this work was primarily composed of oxygen-
containing compounds, and the majority of the compounds
performed better as n-type (Figure 6A). The ZT of p-type
oxides reached 1; the ZT of n-type oxides was only
approximately 0.3. There has been renewed interest in
developing new n-type oxide TEs. Chen et al. also compared
the power factors of oxides, tellurides, selenides, and sulfides
(Figure 6B), which were estimated using a constant relaxation
time approximation. The red lines represent the median
computed power factor for different anions; the oxides
exhibited the lowest power factors. Additionally, the higher

FIGURE 4 | (A) The ZT values of the ternary diamond-like structure compounds (Zhang et al., 2014); (B) The pseudocubic structure in tetragonal chalcopyrite
compounds (Zhang et al., 2014); (C) The relationship between crystal field splitting energy ΔCF and ZT (Zhang et al., 2014); (D) The relationship between crystal field
splitting energy ΔCF and distortion parameter η (Zhang et al., 2014); (E) The ZT value of Cu1-x-δAgxInTe2, which consolidated by SPS (Spark Plasma Sintering) and HP
(Hot Pressing) (Liu R. et al., 2016).
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FIGURE 5 | (A) The workflow of screening ABX compounds (Xi et al., 2018); (B) The ZT value of Cd2Cu3In3Te8 at different high temperatures (Xi et al., 2018); (C)
The crystal structure of ABX2 compounds with diamond-like structures (Li et al., 2019); (D) The workflow for ABX2 screening, COHP is the Crystal Orbital Hamilton
Population (Li et al., 2019).

FIGURE 6 | (A) Flow diagram representation of the dataset of over 48,000 compounds (Chen et al., 2016); (B) The power factors of oxides, tellurides, selenides,
and sulfides (Chen et al., 2016); (C) The workflow for screening new high-temperature oxides TEs (Peng et al., 2021); (D) The ZT values of MgTa2O6 at different
temperatures with the carrier concentration (Peng et al., 2021).
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band gaps of the oxides complicated doping. Combining high
thermal conductivity with excellent TE performance is
challenging for oxides (Chen et al., 2016). Additionally,
Garrity (2016) employed HTP first-principles calculations to
identify promising n-type transition metal oxides, nitrides, and
sulfides from ICSD. At 700 K, the Seebeck coefficient and
electronic conductivity of 551 oxides, 53 nitrides, and 25
sulfides were estimated using a constant relaxation time
approximation. They discovered that a combination of
symmetry-enforced degeneracies, low dimensionality, or
accidental degeneracies could result in high power factors for
these compounds.

The poor TE performance of oxides has become the principal
stumbling block to their widespread use. However, recent
discoveries in the field have produced oxide TE materials.
Peng et al. (2021) employed the ALKEMIE (Wang G. et al.,
2021) platform HTP calculation (see Figure 6C) to screen new
high-temperature TE oxides. They discovered a new novel oxide
(Mg, Ca) Ta2O6 with promising TE properties. CaTa2O6

exhibited a band structure similar to SrTiO3, and MgTa2O6

had a higher Seebeck coefficient than SrTiO3 or CaTa2O6. The
maximum ZT of MgTa2O6 was greater than 1 at 1000 K
(Figure 6D), which was higher than SrTiO3. These
compounds were promising TE candidates for high-
temperature function. Although the current HT method
prediction of oxide performance is less than desirable, the
accuracy of the method prediction, which is still under
investigation, has potential for improvement.

Machine Learning
MLusually obtains factors associated with the target properties by
evaluating previous experiments or calculated data; these factors
are often called features, fingerprints, or descriptors, and can
usually be represented by physical models (Zunger, 2018;
Recatala-Gomez et al., 2020). ML can be classified into
supervised learning and unsupervised learning. Supervised
learning learns a model that maps an input (labeled data) to
an output based on an existing dataset. The main types of
supervised include regression and classification. Unsupervised
learning finds previously unknown patterns of given inputs, and

FIGURE 7 | (A) The workflow of active learning loop; (B) The screened pnictides and chalcogenides with high PFs (Sheng et al., 2020).
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no labels are given to the learning algorithm, leaving it on its own
to find a model in its input (Wang et al., 2019). Material databases
are usually much smaller and sometimes more diverse than in
other fields, such as image processing and industrial
manufacturing (de Jong et al., 2016; Zhang and Ling, 2018).
Therefore, small databases may affect the prediction accuracy
more than expected. Active learning can be used to process small
databases. Iterative supervised learning is referred to as an active
learning model based on Bayesian optimization. Bayesian
optimization is shown to significantly reduce the
computational cost of discovering the optimal structure
compared to finding an optimal structure by building a
regression model (supervised learning) to predict the material
properties (Bassman et al., 2018).

In recent years, ML methods, known for their data analysis
capabilities, have been successfully applied in TE materials
research. Iwasaki et al. (2019) applied an interpretable ML for
spin-driven TE materials with anomalous Nernst effects, and
discovered a novel spin-driven TE material with large
thermopower. Oliynyk et al. (2016) used a random forest
algorithm (Tin Kam, 1998) to predict Heusler compounds vs.
non-Heusler compounds. To support research, ML algorithmic
software to determine the best descriptors has also been

proposed. The proposed software includes OMP (orthogonal
matching pursuit) (Tropp and Gilbert, 2007) and commercial
software EUREQA (Schmidt and Lipson, 2009), LASSO (least
absolute shrinkage and selection operator) (Tibshirani, 1996;
Ghiringhelli et al., 2015; Ghiringhelli et al., 2017), and SISSO
(Sure Independence Screening and Sparsifying Operator)
(Ouyang et al., 2018).

Sheng et al. (2020) employed active learning to predict the
p-type power factors of diamond-like materials based on the
original 158 entries cited previous work (Xi et al., 2018; Li et al.,
2019). Then they created a search space of diamond-like materials
with 482 entries by exhausting all possible combinations of the
cations and anions mentioned above, as shown in Figure 7A. 324
uncalculated materials were used to build a model by ML
algorithms. According to the model, two Sigle-model strategies
(Top and Random) and one several-model strategy (Query by
Committee, including Support Vector Regression (Smola and
Schölkopf, 2004), Gradient Boosting Regression (Friedman,
2001), Random Forest Regression (Breiman, 2001), Adaptive
Boosting Regression (Freund and Schapire, 1997), and Kernel
Ridge Regression (Robert, 2014) ML model) strategies were
carried out, as shown in Figure 7A. Top strategy selected the
15 candidates with the highest predicted PFs. Random strategy

FIGURE 8 | (A)Workflow of the supervised strategy; (B)Workflow of the unsupervised image segmentation strategy based on backscattered electron images of
the nine-segment Cu-Sn-S bulk sample (Sheng et al., 2021).
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just recommended 15 candidates at random. Query by Committee
strategy selected 15 candidates with large ambiguity, then measured
the ambiguity by the variance of the 5ML models. The
recommended 15 candidates in each strategy were verified by
HTP autoflow based on TransOpt. The unsatisfactory
extrapolation should be added to the DFT database, the
convergence conditions are Pearson R is > 0.9 or the number of
iterations reaches the set maximum 10. Finally, they found that
Query by Committee has the highest extrapolation accuracy; Binary
pnictides, vacancy, and small atom-containing chalcogenides were
predicted to have large PFs, as shown in Figure 7B. The active
learning architecture updates the ML model through external
verification, and uses as few verification samples as possible to
improve the extrapolation ability of the ML model to the greatest
extent. The application of active learning architecture is not only
limited to TE materials, but also can be used in other functional
materials, which is of great significance to accelerate the discovery of
high-performance materials.

The above description is based on the nature of the materials,
which can be defined as digital data. However, ML image
segmentation is more difficult than digital data. In the field of
medical images, ML image segmentation has proven to be
effective (Dolezal et al., 2021), but it has not been studied in
the TE field. Interestingly, Sheng et al. (2021) first applied an
active learning loop with a fully connected neural network aimed
at fast and automated image segmentation. The researchers took
promising ternary TE materials, using Cu-Sn-S as an example,
and combined the HTP synthesis, HTP characterization, and
HTP analysis, and post-processed 99 backscattered electron
images of these compounds. Two ML image segmentation
strategies were proposed. One strategy was to quickly and
efficiently post-process the batch of Bayesian images based on
supervised learning (Figure 8A), as active learning greatly
reduced the workload of manual annotation, and Cu7Sn3S10
was identified to have good TE potential. The other strategy
was unsupervised learning (Figure 8B), by which the unreported
compound Cu1.6S was found to be a promising TE material.

CONCLUSION AND OUTLOOK

In this review, we have provided an overview of the current
material genome approaches applied to TE materials. We have
also summarized recent research into material genome
approaches when applied to Half-Heuslers, diamond-like

compounds, and oxides. Since the release of the Materials
Genome Projects, emerging materials, such as Half-Heuslers
and diamond-like compounds, have been extensively studied,
with ZT values of 1.0–1.5 obtained. With the integration of ML
and HTP calculations, the poor oxide TE materials also achieved
high TE performance. Currently, the majority of electrical
transport methods are based on the constant relaxation time
approximation, and advancements in calculation methods could
increase the reliability of the results. Active learning, which can be
utilized for digital data and image segmentation, has had some
successful cases in predicting TE material properties and
discovering novel materials as the research develops.

With the growth of computer processing power, the speed of
HTP calculation to obtain data on material properties has been
accelerated, and the systematization, intelligence, and
standardization of material databases have been comprehensively
promoted. Data is the core resource for the development of materials
science, and the combination between machine learning and
databases has greatly improved the efficiency of screening new
high-performance materials by discovering the relationship
between the properties and performance of various materials.
With the development of data sharing, it greatly reduces the
repetitive resource investment and research and development.
With the continuous breakthrough of technical means, the
Material Genome Project is about to usher in the third
breakthrough development, which is of great importance in the
discovery of new materials. These material genome methods will be
further improved in the future, with further achievements,
discoveries, and optimization of functional materials expected.
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