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In this study, a controller based on two compensators is developed to support a two-axis
piezo-scanning mechanism for tracking control. The hysteresis compensator is designed
based on a Prandtl–Ishlinskii hysteresis model in order to reduce the nonlinear hysteresis
effect of a piezoelectric actuator. Furthermore, to compensate for uncertainties due to
parametric variations, hysteresis-compensated error, and un-modeled dynamics, the
uncertainties compensator based on the neural network disturbance observer is
proposed. The developed controller is verified with regard to control performance by
experiment. Those two observers are used to complete hysteresis compensation and
disturbance compensation, which will not reduce the stability and bandwidth of the system
and improve the control accuracy. Experimental results show that the proposed hybrid
controller can overcome the mentioned nonlinearity and uncertainty efficiently and
preserve good positioning accuracy with high-bandwidth varying frequencies (1–150 Hz).
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1 INTRODUCTION

Ultra-precision positioning is quite demanding for many manufacturing processes and inspection
techniques. For example, the ultra-precision machining, micro-nano manufacturing, ultra–large-
scale integrated circuit manufacturing, diamond turning and grinding, and scanning probe
microscopy require high position accuracy (Sang et al., 2007; Faa-Jeng Lin et al., 2009; Cheng
et al., 2015; Zhu and Rui, 2017). Different from the traditional positioning system using ball screw,
the piezoelectric actuator (PA) has been successfully implemented in many ultra-precision
positioning mechanisms due to its advantages of fast response, small size, large output force
range, and ultra-high resolution (Zhu and Rui, 2016).

Unfortunately, since the material of PA is usually ferroelectric, its responses to applied voltage
exhibit hysteresis-characteristic nonlinearity (Gu et al., 2016). The hysteresis nonlinearity can
degrade the overall control system performance and reduce tracking accuracies (Wang et al., 2019).

In order to restrain the hysteresis, the feedforward compensation control based on hysteresis
models is usually used (Yangmin Li and Li, 2013). The main idea is to develop a mathematical model
to represent the hysteresis. Then, the inverse hysteresis model is cascaded with the piezo-drive
mechanism to linearize the response. In this regard, performance of the feedforward control depends
heavily on the exactness of the hysteresis model. Here, the exactness of the model is in the sense that
the latter can describe the system behavior correctly. Many hysteresis models have been proposed in
the literature. These include the Preisach model (Truong and Ahn, 2013; Tang and Li, 2015), the
Prandtl–Ishlinskii (P-I) model (Liu et al., 2013; Yang and Zhu, 2020), the Bouc–Wen model
(Ikhouane et al., 2007; Zhu et al., 2017), Maxwell’s slip model (Quant et al., 2009), the LuGre model
(Bashash and Jalili, 2008), and the polynomial model (Huang and Chiu, 2009). However,
uncertainties due to parametric variations, hysteresis-compensated error, and unmodeled
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dynamics will lead to large control error. Previous studies
generally used the closed-loop error control mode to improve
the control accuracy, which would reduce the system bandwidth
and lead to large high-frequency positioning errors (Mercorelli
and Werner, 2014; Mercorelli and Werner, 2016). In this study, a
hysteresis compensator is designed based on a P-I hysteresis
model and an uncertainties compensator based on a neural
network disturbance observer is adopted to compensate for
those uncertainties.

This article is organized as follows. First, the P-I hysteresis
model is proposed in Section 2. Next, the hybrid control method
is presented in Section 3. Then, in Section 4, the experiments are
carried out to validate the proposed control method. Finally, the
conclusion is made in Section 5.

2 MODELING OF THE TWO-AXIS PIEZO-
SCANNING MECHANISM

2.1 Structure of the Mechanism
Figure 1 shows the piezo-scanning mechanism (P16. XY20, input
voltage range: 0–120V, X and Y axis output displacement range:
±8 μm, no-load resonant frequency: 2000 Hz, produced by the
Harbin Core Tomorrow Co., Ltd., China). In the mechanism, the
load platform is connected to two PAs through flexible hinges.
The identical kinematic chains, flexible hinges, and PAs in two
axes guarantee the uniform dynamic characteristics within the
workspace.

2.2 P-I Hysteresis Model of the Mechanism
A discrete play operator in the P-I model of the X-axis is defined
as follows:

x(kT) � Hr[u, x0](kT)
� max{u(t) − r, min[u(t) + r, x(kT − T)]} (1)
x(0) � max{u(0) − r, min[u(0) + r, x0]} (2)

where r is the input threshold sometimes called the magnitude of
the backlash, T is the sampling period, k indicates the sampled
time instant, u is the input, x represents the mechanism response,
and x0 is the initial state and is usually initialized to 0.

By multiplying some such operators Hr with different
thresholds and weights, the P-I model is obtained as follows:

x(kT) � Γ(u(kT)) � ωT
hHr[u, x0](kT) (3)

where ωT
h � [ωh0/ωhN] representing the weight vector of the

play operators, Hr[u, x0](kT) �
[Hr[u, x00](kT),/, Hr[u, xp0N](kT)]T with the threshold
vector r � [r0/rN]T, where 0 � r0 </< rN.

Similarly, the P-I model of the Y-axis can be obtained.

3 HYBRID CONTROL METHOD

Obviously, due to the existence of the hysteresis, the
relationship between the output displacement and input
voltage of the piezo-scanning mechanism is multi-valued
non-linear. In order to improve the accuracy in the motion
control, it is necessary to compensate for the hysteresis.
Therefore, a feedforward loop is used to compensate and
reduce the hysteretic effect, and a feedback control based on
a neural network disturbance observer is developed to
compensate for the lumped uncertainty due to parametric
variations, hysteresis-compensated error, and unmodeled
dynamics. The block diagram of the hybrid control is
presented in Figure 2.

3.1 Hysteresis Compensator
The inverse P-I hysteresis model of the X-axis can be obtained as
follows (Bashash and Jalili, 2008):

uPIx(x(kT)) � Γ−1(x(kT)) � ω′T
h Hr[x, x′0](kT) (4)

FIGURE 1 | Two-axis piezo-scanning mechanism: (A) photo and (B) Schematic cross-sectional view.
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where

ω′T
h � [ωh0

′ / ωhN
′ ] (5)

ωh0
′ � 1

ωh0
,ωhi

′ � ωhi

(ω1 + ∑i
j�1
ωhj)( ∑i−1

j�1
ωhj)

i � 1, 2,/, N (6)

r′i � ∑i
j�0
ωhj(ri − rj) i � 0, 1, 2,/, N (7)

x0i
′ � ∑i

j�0
ωhjx0i

′ + ∑N
j�i+1

ωhjx0j
′ i � 0, 1, 2,/, N (8)

Similarly, the inverse P-I model of the Y-axis can be
obtained.

From the inverse P-I hysteresis model given by Eqs 4–8, the
feedforward control can be designed. The schematic
representation of the feedforward control is shown in
Figure 2.

3.2 Uncertainties Compensator
The uncertainties compensator control is established relying on
an uncertainties observer in this section. The uncertainties
observer based on the radial basis function neural network
(NN) is developed to observe the uncertainties. The radial
basis function NN observer is presented in Figure 3. The
inputs are ex(t), ey(t), _ex(t), and _ey(t), and the output
observers are the observer uncertainties ûfx and ûfy.

The output of the input layer is as follows:

O(1) � E (9)
where E � [ex, ey, _ex, _ey]T.

The output of the hidden layer can be written as follows:

O(2) � R(E)

� [exp( −
�������E − c1

d1

�������
2),/, exp( −

��������E − cj
dj

��������
2),/, exp( −

�������E − cm
dm

�������
2)]T

(10)
where R(E) � [R1(E),/,Rj(E),/,Rm(E)]T is the Gaussian
basis function; cj � [ cj1 cj2 cj3 cj4 ]T and dj �

FIGURE 2 | Block diagram of the hybrid control.

FIGURE 3 | Structure of the uncertainties observer.
FIGURE 4 | Modeling result of the P-I model.
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[dj1 dj2 dj3 dj4 ]T are the center and width vector of the jth
basis function, respectively.

The output of the compensator can be given by the following:

O(3) � [ûfx, ûfy]T � ûf(E,w, b) � wTR(E) + b (11)

where w �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
w11 w12

w21 w22

..

. ..
.

wm1 wm2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, b � [ b1 b2 ]T.

4 EXPERIMENT AND DISCUSSION

4.1 Hysteresis Modeling Results
First of all, a harmonic applied voltage is employed to motive
the piezo-scanning mechanism. The practical and estimated
responses are illustrated in Figure 4. It can be seen from

Figure 4 that a good consistence between the practical and
estimated result is observed. Good modeling accuracy using
the P-I hysteresis model suggests that the proposed model can
closely represent the practical hysteresis in PA.

4.2 Hysteresis Compensation Results
Then, the control performance of the hysteresis compensator
is verified by experiment. The experimental result is shown in
Figure 5. The blue line in Figure 5A represents the original
hysteresis curve without the compensator. From Figure 5B,
the maximum linearization error is 0.253 μm. The curves
between the displacement and input voltage of the PA
without the compensator present apparent hysteresis. The
relationships between the displacement and applied voltages
of the PA with the compensator based on the P-I model are
almost linear. That is to say, the hysteresis compensator based
on the P-I model has the ability to accurately linearize PA. It
should be pointed out that this error is mainly caused by
uncertainties including parametric variations, hysteresis-
compensated error, and unmodeled dynamics.

4.3 Tracking Control Results
Furthermore, to validate the positioning performance of the
proposed hybrid control method, a harmonic positioning task
is performed. The control result is illustrated in Figure 6, which
indicates the proposed hybrid control method can obtain a high
positioning accuracy and the maximum absolute control error is
0.124 μm.

Finally, a complex tracking task with varying amplitude and
varying frequencies is implemented. The frequency bandwidth of

FIGURE 5 | Hysteresis compensation result of the inverse P-I model: (A)
Output displacement and (B) Hysteresis compensation error.

FIGURE 6 | Tracking control result of the hybrid control method with the
harmonic tracking signal.
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FIGURE 7 | Tracking control result of the hybrid control method with the complex tracking task: (A) Fourier transform of the conmplex tracking task, (B) X-axis, and
(C) Y-axis.
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the task is 1–150 Hz as shown in Figure 7A, and the sampling
frequency of the displacement sensors is 10 kHz. The tracking
control result of the hybrid control method is shown in
Figures 7B,C. It can be observed in Figure 7 that the
proposed controller can also accurately track the complex
trajectory.

These validate the proposed control method.

5 CONCLUSION

In this study, in order to effectively control the two-axis piezo-
scanning mechanism, the hybrid controller is proposed and
presented. The controller is composed of two compensators. The
hysteresis compensator is designed based on the P-I hysteresismodel
in order to reduce the nonlinear hysteresis effect of PA. The
uncertainties compensator based on the neural network
disturbance observer is adopted to compensate for uncertainties
including parametric variations, hysteresis-compensated error, and

unmodeled dynamics. Experimental results show that the proposed
hybrid controller can overcome the mentioned nonlinearity and
uncertainty efficiently and preserve good positioning accuracy.
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