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Chromatic aberration is one of the quality defects in the appearance of fair-faced concrete
(FFC). The mainly surface chromatic aberration identification (CAI) method being applied is
manual observation, which is subjective and time-consuming. A multi-scale lightweight
structured data algorithm (MSLSDA) for CAI in FFC is proposed in this manuscript. An
unmanned aerial vehicle (UAV) is used for image acquisition. 2368 FFC sample images are
collected to build the datasets. The FFC chromatic aberration features are identified by
the improved Residual Network Convolutional Neural Network (CNN) framework to
achieve chromatic aberration samples quantitative analysis. The method proposed in
this manuscript can verify the generalization prediction ability of the MSLSDA for
different building samples by generalization prediction set. The results show that
the accuracy in CAI samples and chromatic aberration generalization prediction
samples can achieve 92.1 and 99.6%, respectively. The FFC chromatic aberration
detection platform (FFC-CADP) built by color space conversion, histogram
equalization, image color recognition, image noise reduction and image mask
algorithm is able to calculate boundary features, geometric parameter features
(length and width), chromatic aberration ratio features, total chromatic aberration
ratio and number of chromatic aberration.

Keywords: multi-scale feature fusion, structured data algorithm, fair-faced concrete chromatic aberration,
algorithm hyperparameter optimization, lightweight algorithm

INTRODUCTION

Architects believe that FFC reveals the most essential architectural aesthetics (Coburn et al., 2019).
Compared with ordinary concrete, FFC has been widely used in domestic and international buildings
for its natural surface as a decorative surface, which has a high-quality appearance while satisfying
mechanics and durability. The decorative surface of FFC reduces the increased costs associated with
additional decorative surfaces, so the probability of budget changes during construction is low
(Miranda et al., 2020). FFC has been applied and achieved positive results not only in transportation
centers and commercial buildings such as Chongqing West Station, Raffles Chengdu and Raffles
Chongqing, but also in modern religious buildings (Ribeiro and Xavier, 2019). The chromatic
aberration control on the FFC decorative surface affects the overall effect of the building, so
chromatic aberration is a key point in the control of FFC appearance. At present, the research on the
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appearance quality of FFC is divided into two main directions,
one is to study the factors affecting chromatic aberration and
their improvements, and the other is to study the evaluation
method of the FFC appearance quality.

The appearance quality of FFC is directly influenced by its own
factors such as mix ratio and saturation. Studies have shown that
the increase in cement saturation is beneficial to the appearance
quality of FFC, but the mechanical properties of concrete decrease
(Ajtayne Karolyfi and Papp, 2021). The self-compaction and
appearance quality of FFC can be improved via adjusting the
coarse aggregate gradation, but its application is limited due to
the complex processes and high costs (Wu et al., 2021). The
surface color and brightness of FFC are influenced by the cement
content, water-cement ratio and sand ratio in that order
(Mohammed et al., 2021). In the field of FFC apparent quality
identification, there are more studies on crack identification and
bubble identification. The diagnosis and repair of FFC surfaces
can be performed by collecting images of the original FFC
structure and combining them with machine vision techniques
(Piferi, 2018), but there are still irreparable defects in the concrete
appearance quality, and the diagnosis and repair work will be
resource-intensive. This manuscript designs an experimental data
acquisition method for FFC surface chromatic aberration based
on UAV technology, it can rapidly acquire large area sample
images, reduce the interference factors of image data, and
improve the efficiency and quality of data acquisition. In
addition, this method reduces the risk factor for staff.

The appearance quality of FFC is also indirectly influenced by
factors in the production environment. Studies have shown that
the effects of acid rain, haze, freeze-thaw and carbonation can
cause significant chromatic aberrations in the facade of FFC
buildings (Zhang et al., 2013). The dark chromatic aberration
will destroy the surface appearance of FFC, and the dark
chromatic aberration is more serious in the production
process of outdoor FFC in winter (Chang et al., 2021). The
process of removing the surface coating of FFC and
mismatched release agents can lead to defects in the FFC
appearance quality (Strehlein and Schiessl, 2008; Shyha et al.,
2016). FFC buildings produce new chromatic aberrations in use,
so it is necessary to study the identification and quantification of
FFC chromatic aberration. The existing studies on the FFC
surface CAI are few and cannot effectively quantify the FFC
chromatic aberration.

Image processing technique can provide objective results
quickly (Abouhamad et al., 2017; Mohan and Poobal, 2018;
Payab et al., 2019; Chen et al., 2019; Tang et al., 2019). The
identification and quantification of FFC by multi-intelligent body
fuzzy systems (Payab and Khanzadi, 2021), the defects
identification in the FFC appearance quality by laser point
thermography (Scalbi et al., 2019), and the recording of the
cracks beginning and development in combination with
timelines (Prasanna et al., 2016) have been implemented.
Scholars have identified the bubble contours on the FFC
surface by extracting the grayscale values of the concrete
surface images (Liu and Yang, 2017; Yoshitake et al., 2018).
Scholars avoid the influence of subjectivity by predicting
concrete performance through machine learning methods

(Feng et al., 2022). This manuscript builds a FFC chromatic
aberration identificationmodel based on the optimizedMSLSDA,
avoids the problem of subjectivity in image processing
techniques.

At present, the evaluation of the appearance quality of FFC is
mainly through the image processing method (Liu et al., 2019),
and the image data is segmented by selecting the appropriate
threshold value (Yao et al., 2021). Therefore, the image processing
process can only be applied to the current experimental data and
lacks the ability to generalize to similar data (Li et al., 2020).
Unlike cracks and bubbles on the surface of FFC, chromatic
aberrations do not have clear boundaries and a fixed range of
grayscale values, which cannot be quantified directly. This
manuscript implements the FFC chromatic aberration
quantization function through color space conversion,
histogram equalization, image color recognition, image noise
reduction and image mask operation.

A MSLSDA for FFC surface CAI is proposed in this
manuscript. Firstly, the problem of subjectivity in CAI is
solved by learning chromatic aberration features and
classifying chromatic aberration by MSLSDA. Then, the
surface chromatic aberration of FFC is quantitatively
segmented by means of image processing, boundary features,
geometric parameter features (length and width), chromatic
aberration ratio features, total chromatic aberration ratio and
number of chromatic aberration are calculated. Finally, the FFC-
CADP is built to realize the prediction function and quantitative
segmentation function of the FFC chromatic aberration.

CHROMATIC ABERRATION IMAGE
ACQUISITION METHOD FOR FFC BASED
ON UAV
FFC buildings often have a large project volume, making it
difficult for inspectors to take samples and test them.
Therefore, UAV is used for image acquisition in this study
(Siebert and Teizer, 2014), as shown in Figure 1. The China
Overseas HuanYu Art Center and Rail Transit R1 in Jinan are
identified as sample buildings for experimental data through
fieldwork, as shown in Figure 2. The image acquisition device
is DJ Mavic two Pro, and the performance parameters are shown

FIGURE 1 | The experimental data acquisition UAV of FFC surface
chromatic aberration.
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in Table 1. UAV has high vertical hovering accuracy and
horizontal hovering accuracy, L1D-20c Hasselblad camera
lens angle can reach 84°, the nearest focus point 1m, the
lens can achieve autofocus, can meet the observation
requirements of 5 m from the wall. The photo resolution
can reach 5,472*3,684, and the high pixel can meet the
requirements of the experiment on the data amount.
Positive endurance and stable flight speed can ensure the
efficiency of image acquisition.

According to the current Technical Specification for Fair-
faced Concrete Construction JGJ169-2009, the identification
method for the FFC appearance quality shall conform to the
provisions of Table 2 (Kang and Cha, 2018). To ensure the
consistency of the experimental data, the UAV is 5.0 m away
from the target plane, the lens normal direction is always
perpendicular to the target plane, and the shooting
environment is naturally illuminated under normal weather.
The combination of shooting angle and plane to be
photographed include vertical flat surfac, vertical curved
surface, non-vertical flat surfac and non-vertical curved
surface. Currently, this study addresses the chromatic

aberration identification in the FFC vertical flat surfac. The
cases of vertical curved surface, non-vertical flat surfac and
non-vertical curved surface will be considered in further
studies to improve the generalizability of the FFC chromatic
aberration identification method.

The original image is taken by UAV at a distance of 5 m from
the FFC vertical flat surfac. Obstructions obscuring light rarely
occurs during the original images acquisition. And we
consciously avoid shooting original images with obstructions
obscuring them. In the process of dataset production, we
carefully screen and remove the sample images with
obstructions obscuring them. However, the phenomenon of
obstructions obscuring light and creating shadow area on the
FFC does exist. The pixel value of the shadow area is affected by
the light intensity and obstruction position, which we will try to
solve in further studies.

In order to test the ability of the MSLSDA to generalize the
FFC chromatic aberration problem, chromatic aberration data
were collected from China Overseas HuanYu Art Center and Rail
Transit R1 during the period of 12:30–14:30 on 22 March 2021,
with 13:10–14:00 as the site transition period. China Overseas

FIGURE 2 | Sample buildings of FFC chromatic aberration experimental data: (A) Rail Transit R1 (sub-sample) (B) China Overseas HuanYu Art Center (main
sample).

TABLE 1 | UAV flight system and image transmission system configuration.

UAV L1D-20c hasselblad camera Vision and image transmission

Technical parameters Technical parameters Technical parameters

Endurance time 34 min Image sensor 1/2-Inch CMOS Precise front
sight range

0.35–22.0 m

Hover time 33 min Lens Viewing angle: 84°Aperture: f/2.8 Precise range for rear view 0.37–23.6 m
Speed 72 km/h Photo size 5,472 × 3,684 Downward-looking sensor Binocular ToF
Wind resistance Level 5 wind Photo format JPEG/DNG (RAW) ToF accurate height measurement 0.1–8 m
Hovering accuracy ±0.1 m Color mode D-Cinelike Obstacle avoidance system APAS 3.0
On-board memory 8 GB File system FAT32 and exFAT Graphical Transfer Solution OcuSync2.0

Digital zoom Support Distance 10 km

TABLE 2 | FFC appearance quality and testing methods (chromatic aberration).

Item Normal FFC Finished FFC Inspection method

Chromatic aberration No significant chromatic aberration The color is basically the same and no significant chromatic aberration 5 m observation from the wall
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HuanYu Art Center is the main sample building, and Rail Transit
R1 is the sub-sample building. According to the sample buildings,
410 original images of the main sample buildings are used for the
training set and validation set, and 102 original images of the sub-
sample buildings are used for the generalized prediction set (Cha
et al., 2017).

FFC IMAGE PRE-PROCESSING

In order to improve the training efficiency of MSLSDA, the
original data is pre-processed in this study. The original image
with a resolution of 5,472 × 3,684 is segmented into 306 sample
images with a resolution of 256 × 256. After excluding the images

FIGURE 3 | FFC chromatic aberration experimental data acquisition, pre-processing and dataset production timeline.

FIGURE 4 | Residual Network CNN framework and structured data propagation process.
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with non-chromatic appearance quality indicators from the
segmented sample images, a total of 2,368 experimental
sample images are obtained, as shown in Figure 3.

Among them, 1894 experimental sample images are selected
from 410 original images of the main sample buildings,
accounting for 80% of the total number of experimental
sample images. The 474 experimental sample images are
selected from the original images of 102 sub-sample buildings,
accounting for 20% of the total number of experimental sample
images. The 474 experimental sample images include 237 sample
images without chromatic aberration and 237 sample images with
chromatic aberration. 80% of the 1894 experimental sample
images are randomly selected as the training set and the
remaining 20% as the validation set. The validation set
consists of 189 sample images without chromatic aberration
and 189 sample images with chromatic aberration. The
training set consists of 758 sample images without chromatic
aberration and 758 sample images with chromatic aberration.

In this manuscript, generalization prediction experiments are
designed to enhance the generalization ability of the MSLSDA for
the FFC surface CAI problem. The optimized and trained
MSLSDA will sequentially predict each experimental sample
image in the generalized prediction set and output the
identification result and probability value prod. The
identification results are compared with the actual results to
quantitatively evaluate the generalization prediction ability of
the MSLSDA. The probability value prod can quantitatively
evaluate the probabilistic reliability of the identification results.

Labeling and path standardization of the experimental
samples are crucial to the process of producing the dataset.
Firstly, input the experimental sample images and save the
structured data into fixed channels and fixed dimensions.
Then, the dataset form is saved as Numpy form and the

dataset is reordered. Finally, the 2,368 experimental sample
images in the dataset are written to the corresponding paths
in the images folder to complete the dataset.

MSLSDA HYPERPARAMETER
OPTIMIZATION

Residual Network CNN’s lightweight residual network structure
allows for deeper learning of more features layer by layer, making
the forward and backward propagation process smooth, and it is
more suitable for mobile terminal environments. Therefore, the
Residual Network CNN lightweight structured data algorithm
framework is used to identify the surface chromatic aberration of
FFC. The Residual Network CNN framework accomplishes two
main tasks, including qualitative and confidence evaluation of

FIGURE 5 | Training process of FFC chromatic aberration experimental data in MSLSDA network.

FIGURE 6 | The Val_acc optimization process with fixed Batch Size.
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classification accuracy on structured data. The goal of
structured data qualitative is to classify the color status of
sample images. Confidence is a criterion to judge whether the
classification results satisfy the probability requirement
or not.

Network Framework Construction
FFC-F is the first stage of Residual Network CNN framework, and
its main function is to pre-process the input structured data. Same
as the remaining four stages, FFC-F consists of bottleneck, but the
number of bottleneck units is different. When the input
channel, height and width are 3, 244 and 244, the 64
convolution kernels of FFC-F with 7 × 7 size will
implement the convolution operation in step of/2. Then the
3 × 3 kernel max-pooling layer will also process the data
further in step of/2. The input structured data will
go through convolution layer, batch normalization layer,
ReLU and max-pooling layer to get 64, 56, 56 output
shapes. Where the 64 channel represents the number of
convolutional kernels in the first convolutional layer, and
56 is the quotient of the input value and the corresponding
step size, as in Figure 4.

Bottleneck is divided into Bottleneck-F and Bottleneck-S, the
input channel is equal to output channel in Bottleneck-S, the
input channel is unequal to output channel in Bottleneck-F.
Bottleneck-F has four variable parameters, including the
number of input channels w, the width b, the number of
channels c1 in the left 1 × 1 convolution layer and the step
size s. G(x) convolution layer is able to transform the
dimensional difference between the input and the output.

Compared with Bottleneck-S, there is one more convolution
block in Bottleneck-F, which is set as G(x). The three
convolution blocks in the Bottleneck-S module are F(x),
which contains the corresponding batch normalization layer
and the ReLU. Bottleneck-S contains two variable parameters
w and b, and the output shape data (w, b, b) of Bottleneck-S
module can be obtained by adding F(x) and x, as shown in Eqs.
1, 2.

Bottleneck1: (w, b, b) � [FReLU
BN (x) + G(x)] (1)

Bottleneck2: (w, b, b) � [FReLU
BN (x) + (w, b, b)] (2)

The convolution layer enables the forward propagation process of
input samples and the backward propagation process of
parameter estimation. The forward propagation of the
convolution process starts when the samples xn pass
through the input layer into the first hidden layer. The Li
is the number of convolutional layers, Z(j)

l is the activation
value of the j th neuron in layer l, wji

l is the weight of the i th
neuron in the previous layer connected by the j th neuron in
layer l, b(j)l is the threshold value of the j th neuron in layer l
and E is the loss function in the output layer. The forward
propagation of any layer in a MSLSDA network is shown in
Eqs. 3–5.

y(j)l � ReLU(Z(j)l ) (3)

Z(j)l � ∑
i∈Ll−1

wji
l y

(i)
l−1 + b(j)l (4)

yl � ReLU(wlyl−1 + bl) (5)
After the convolution MSLSDA is constructed, the parameters
can be estimated from back to front by the gradient descent
strategy and the chain derivation rule, as shown in Eq. 6.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

zE

zwji
l

� zE

zy(j)l

zy(j)l

zz(j)l

zz(j)l

zwji
l

� zE

zy(j)l

_ReLU(Z(j)l )y(j)l−1

zE

zbjl
� zE

zy(j)l

zy(j)l

zz(j)l

zz(j)l

zbjl
� zE

zy(j)l

_ReLU(Z(j)l )
(6)

Max-Pooling Layer and Fully Connected
Layer Settings
The max-pooling layer enables the dimensionality reduction of
structured data, greatly reducing the number of parameters while
retaining the main features, as shown in Eq. 7.

TABLE 3 | Batch Size optimization process with different loss function values.

Batch
size

1 8 16 24 32 40 48 56 64

Val_acc (%) 0.511 0.964 0.921 0.849 0.906 0.849 0.676 0.791 0.921
Loss (%) 0.898 0.247 0.304 0.236 0.160 0.258 0.233 0.178 0.225

FIGURE 7 | The loss function optimization process with fixed Batch Size.
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
hout � [hm + 2pad − kernel

s
] + 1

wout � [win + 2pad − kernel
s

] + 1

(7)

Where h is the input height parameter, pad is the edge expansion
parameter and kernel is the length and width parameter of the
convolutional layer filter. The fully connected layer maps the
currently available “distributed features” into the structured data
notation space and performs a linear transformation of the
feature space. After connecting the fully connected layer to the
convolutional layer and the max-pooling layer, it corresponds to
connecting all neurons of the previous layer. The fully connected
layer matches the distinguishing local feature information
processed by the convolutional layer and the max-pooling
layer, and implants it into the softmax layer to finally realize
the MSLSDA training, confidence assignment and loss function
calculation, as in Figure 5.

Hyperparameter Optimization
The system environment configuration for the workstation
includes Python 3.7, Pytorch 1.7.1 and Anaconda3-5.3.1. Write
training code, validation code, prediction code and algorithm

code for MSLSDA via PyCharm. The MSLSDA uses a joint
training strategy with a full training process of 230 epochs,
including 30 epochs to tune the algorithm network head, 30
epochs to optimize the Batch Size hyperparameters, 80 epochs to
optimize the learning rate (LR) hyperparameters, 40 epochs to
optimize the Epoch hyperparameters, 20 epochs to train the test
set, and 30 epochs to train the generalized prediction set and
evaluate the MSLSDA generalization capability.

Hyperparameters including LR, Batch Size, Epoch, number of
hidden layers, number of neurons and ReLU can control and
influence the final parameters w and b. With the structured data
algorithm selected, planning the values of LR, Batch Size, and
Epoch is an effective way to achieve positive results in deep
learning networks.

Batch Size is the total number of structured sample data
contained in a batch. Due to the large amount of data in the
FFC chromatic aberration dataset, the dataset is divided into
multiple batches to pass the algorithm in order. Since the larger
Batch Size value is, the higher GPU performance is required, and
the value is an integer multiple of 8 (Dong et al., 2021). Therefore,
the experiments set the Batch Size values to 1, 8, 16, 24, 32, 40, 48,
56, and 64 based on the actual workstation configuration. To
ensure the reliability of the Batch Size hyperparameter
optimization, the LR uniformly set to 0.001 and Epoch

FIGURE 8 |MSLSDA LR optimization results of FFC chromatic aberration experimental data: (A) Experimental results before optimal LR (B) Experimental results
after optimal LR (C) Experimental results near optimal LR (D) Optimization process of LR versus loss function on logarithmic scale.
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uniformly set to 50. Each Batch Size generates a different number
of weight files during training, and each weight file contains
information on the loss function value, Epoch, and the weight
value. To avoid duplicate recording of the same weight file, the
basis for weight file generation is encoded as an increase in
verification accuracy (Val_acc). The relationship between the
Epoch, Val_acc and Batch Size is depicted in Figure 6. The

results show that only one Val_acc peak for different Batch Size
within a finite epoch. The weight file corresponding to the
Val_acc peak point is the optimal weight file under each Batch
Size. For a more visual representation of the Val_acc sensitivity to
different Batch Size, Table 3 shows the statistical data.

Since the number of Batch Size_1 datasets is equal to
the number of experimental sample images in the training

FIGURE 9 | The indices of optimized MSLSDA model for FFC chromatic aberration experimental data: (A) Experimental results of loss (B) Experimental results of
Val_acc (C) Experimental results of recall (D) Experimental results of F1.

FIGURE 10 | Prediction and quantification results for mild chromatic aberration: (A) Original image (B) Prediction and quantification results.
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set, Val_acc does not converge in the range of 50 epochs,
as in Figure 7. As the predicted probability of the
validation set deviates from the actual labels, the loss
function gradually increases. Therefore, the loss function
value 0.160 corresponding to Batch Size_32 shows a
high match between the predicted probability and the
actual label.

The LR affects the convergence speed of structured data
algorithms to regional minima. A suitable LR enables the
algorithm to descend in the largest gradient direction with
suitable step, and the LR value can be effectively optimized by
the descending gradient of the loss function. In this manuscript,
the LR range from 10−6.0 to 10−1.0, and the LR values are set
sequentially in step of 10−0.2 (Mayr et al., 2018). The Batch Size

FIGURE 11 | Prediction results of different FFC chromatic aberration defects categories: (A) Light color without chromatic aberration output (B) Dark color without
chromatic aberration output (C) Light color incomplete chromatic aberration output (D) Dark color incomplete chromatic aberration output (E) Light color complete
chromatic aberration output (F) Dark color complete chromatic aberration output.
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follows the optimal solution of the previous experiment three2
and the Epoch is set to 100, because the optimization of the LR
needs to be performed when the loss function converges. Figure 8
shows the convergence of the loss function for all LR values. The
loss function curves with LR values in the range of 10−3.2 to 10−1.0

are initially agitated due to excessive LR values. When the LR
takes the value of 10−3.6, the loss function decreases significantly
faster than the other curves in the early stage, and it cannot be
converged in the later stage due to the large LR. Although the loss
functions with LR taking values of 10−3.4 and 10−3.8 converge in
the later stages, there are clearly multiple oscillation points in the
earlier stages. The loss function converges to larger values for LR
ranging from 10−4.2 to 10−6.0, because of the small LR. The loss
function with LR taking the value of 10−4.0 shows a uniform
sliding decline. It means that the learning performance is better in
less time.

Figure 8 plots the optimization process of LR versus loss
function on logarithmic scale, and it shows the effect of LR on loss
function convergence speed. The LR takes values from 10−6.0 to
10−1.0 asymptotically, and the loss function value stops decreasing
and slowly increases at 10−4.0. With a fixed Epoch of 100, a small
LR can slow down the training process by a factor proportional to
the amount of LR reduction. This typical relationship between the
training loss and the LR is expressed as an increasing trend of the
loss function value when the LR is greater than the optimal value,
and a decreasing trend vice versa. Therefore, the optimal LR in
this study takes the value of 10−4.0.

The epoch indicates all batches of single training process in
forward and backward propagation. In each epoch, all samples of
the training set participating in training process. After each
epoch, all the sample data need to be shuffled to the next
epoch. In the Residual Network CNN framework, several
epochs are performed to update the weight parameters of the
structured data algorithm using a limited number of data and
gradient descent. In order to find suitable epoch for the FFC
chromatic aberration dataset, the epoch is set to 2000, the LR and
Batch Size follow 10−4.0 and 32 from the previous experiment.
The results of the loss, Val_acc, recall and F1 parameters are
shown in Figure 9.

A key metric for deep learning is to compare the gap between
the learning results and the actual sample labels. During the
whole training process, the loss function value starts to converge
around 100 epochs, and reaches the minimum value of 0.061 for
the first time in the whole learning process at the 755th epoch,
and the Val_acc has converged to 0.921 at this time. Recall is the
ratio of correctly identified number as chromatic samples in the
validation set to all chromatic samples number in the validation
set. As the epoch increases, recall finally converges to 0.990, which
indicates that the MSLSDA has positive identification
performance on the validation set. The equilibrium mean F1
integrates the calculation results of precision and recall, and the
F1 value finally converges to 0.990 in the experiment, which
indicates that this MSLSDA has positive accuracy in FFC
surface CAI.

The traditional method of FFC surface CAI is observed by
human eyes, which is subjective. Therefore, it is not easy to judge
the chromatic aberration in Figure 10A by the human eyes. The
coordinate axes of the sample images are in px. Compared with
the traditional method, the FFC surface CAI method in this study
can objectively identification chromatic aberration that are not
easily judged by the human eyes, as shown in Figure 10B.

FFC CHROMATIC ABERRATION
GENERALIZATION ANALYSIS

In order to test the generalization ability of the MSLSDA for FFC
surface CAI, 474 sample images of sub-sample buildings are
performed full-sample identification. The output sample images
include light color without chromatic aberration (LW) output,
dark color without chromatic aberration (DW) output, light color
complete chromatic aberration (LCC) output, light color
incomplete chromatic aberration (LIC) output, dark color
complete chromatic aberration (DCC) output and dark color
incomplete chromatic aberration (DIC) output, as shown in
Figure 11. The first index is the result of CAI, abnomal
indicates chromatic aberration in sample image and nomal
indicates uniform color of the sample image. The second

FIGURE 12 | Generalization prediction prod statistics results of FFC chromatic aberration experimental data: (A) No chromatic aberration prod (B) Chromatic
aberration prod.
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index indicates the probability value prod of the target dimension,
which illustrates the confidence of the CAI results.

The generalized prediction set contains four defect categories
of light FFC, dark FFC, complete chromatic aberration and
incomplete chromatic aberration. And it contains four
comprehensive defect categories of LCC sample images, DCC
sample images, LIC sample images and DIC sample images, but

the MSLSDA is still able to accomplish the CAI task. The two
indexes show positive performance of FFC surface CAI. To
represent the results of the generalization prediction
experiments, the confidence data for the chromatic aberration
and without chromatic aberration samples are labeled in
Figure 12. It can be seen that the confidence range of the
generalized prediction samples with chromatic aberration is

FIGURE 13 |Quantification process of FFC chromatic aberration experimental data: (A) Input (B)Color space recognition (C)Median filter noise reduction (D)Data
open operation (E) Data closure operation (F) Quantitative segmentation.
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almost between 0.88 and 1.00, and the confidence range of the
generalized prediction samples without chromatic aberration
is almost between 0.86 and 1.00. The accuracy of the chromatic
aberration generalization prediction reaches 99.6%, which
reflects the positive generalization prediction ability of the
MSLSDA.

QUANTIFICATION OF CHROMATIC
ABERRATION IN FFC

Through color space conversion, histogram equalization,
image color recognition, image noise reduction and image
mask operation, the multi-scale feature fusion of structured
data is realized. The boundary features, geometric parameter
features (length and width) and chromatic aberration ratio
features of structured data are identified, as shown in
Figure 13.

In order to perform histogram equalization of color sample
images, the RGB color space of the structured data (shown in
Figure 13A) is converted into an HSV color space that enables

efficient image processing. Then the Void InRange function is
used to identification whether each pixel point of src image is
between lowerb value and upperb value. The pixel points between
lowerb value and upperb value are set to 255, and the rest of the
pixel points are set to 0. The pixel values are finally saved in the
dst image, which gives a binary image corresponding to the target
color, as shown in Figure 13B.

To remove the pretzel noise points in the binary image, a
median filter method is used, as shown in Figure 13C. To remove
the scattered distribution of noisy pixel points from the binary
image, an open operation of erosion followed by expansion is
used, as shown in Figure 13D. In order to reduce the
independence of chromatic aberration areas and enhance the
connectivity of individual chromatic aberration blocks, a closed
operation of expansion followed by erosion is used, as shown in
Figure 13E. In order to extract structural features of chromatic
aberration in sample images, similarity variables are used to
detect structural features similar to image masks, as shown in
Figure 13F.

As can be seen in Figure 14, the sample image can be
calculated by the masking algorithm and output the chromatic

FIGURE 14 | Identification and quantification of FFC chromatic aberration experimental data: (A) Input (B) Experimental results of projection (C) Experimental
results of quantitative segmentation.
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aberration mask index. The dimensional pixel values of the
FFC chromatic aberration are more informative than the
millimeter values during the inspection. Therefore, the
mask algorithm trained in this manuscript directly outputs
the pixel values of the chromatic aberration size. The index

contains the chromatic aberration block number, chromatic
aberration ratio features and geometric parameter features
(length and width), these three parts listed in order from left
to right. The chromatic aberration block number is based on
chromatic aberration ratio features, and each chromatic
aberration block is coded in order from the largest to the
smallest, which is helpful for the inspector to quickly
determine the largest chromatic aberration block. The
chromatic aberration ratio features represent the proportion
of a single chromatic aberration to the sample image, and
further the total chromatic aberration ratio of the whole
sample image can be obtained, which provides an accurate
quantitative evaluation basis for inspectors. The geometric
parameter features (length and width) are also expressed as
pixel values in parentheses at the end of the index, the
chromatic aberration block length pixel value on the right
and the width pixel value on the left, which provides the
inspector with information on the degree of chromatic
aberration coverage.

As shown in Figure 15, all chromatic aberration blocks in the
figure are identified and quantified. It can be seen that the
Residual Network CNN framework and the chromatic
aberration mask algorithm have positive identification and
quantization performance not only for LCC sample images
(shown in Figure 15A), but also for LIC sample images
(shown in Figure 15B), DCC sample images (shown in
Figure 15C) and DIC sample images (shown in Figure 15 (d)).

In order to illustrate the results of FFC identification and
quantification in different states, The information of
identification and quantification for different classes of
experimental sample images in Figure 15 is listed in Table 4.

The FFC-CADP (shown in Figure 16) implements an
automated procedure for identification and quantification of
chromatic blocks on the surface image of FFC. The hardware
environment for developing platform includes Core I7 8750h,
6 GB of gtx1060 and 16 GB of RAM. The operating system
used to develop platform is Windows 10 × 64. The
environment used to develop platform is Anaconda3 and
Pycharm. To improve the applicability of platform, it is
coded to apply to Windows 10 × 64 and ubuntu 18.04 × 64
operating system. The supporting environment for platform
operation includs Pytorch 1.7.1, Opencv4, Numpy and
Matplotlib. This study builds platform through Python 3.7
programming language.

Click the input button to switch the interface to the
images folder path, and select the sample images to be
identified and quantified to complete the input operation.
The sample image after input is displayed in the first output
box in the first line for comparison with the quantized output
results. Click the projections button, the CAI result and prod
will be output below the input sample image. Click the
quantitative segmentation button to get color space
recognition output, active noise reduction output,
corrosion-expansion output, data closure operations output
and quantitative segmentation output in sequence. The
quantitative segmentation output contains the boundary
features, geometric parameter features (length and width),

FIGURE 15 |Quantification results of different FFC chromatic aberration
defect categories: (A) Light color incomplete chromatic aberration input and
output (B) Dark color incomplete chromatic aberration input and output (C)
Light color complete chromatic aberration input and output (D) Dark
color complete chromatic aberration input and output.
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chromatic aberration ratio features, total chromatic aberration
ratio and number of chromatic aberration.

CONCLUSION

According to the actual working environment of FFC inspectors
and combined with the demand of FFC surface CAI, the
experimental data acquisition method of FFC surface

chromatic aberration based on UAV technology is designed.
Compared with traditional data acquisition methods, this
method can quickly collect sample images in a large area, and
reduce the interference factors in image data. Besides it can
reduce the risk factor of staff, improve the efficiency and
quality of data acquisition.

Based on the optimized MSLSDA, a FFC chromatic aberration
identification model is built. The model can complete the
quantization of FFC chromatic aberration quickly and

TABLE 4 | FFC chromatic aberration data of different defect categories.

Chromatic aberration
sample

Number Area (%) Width Length Total chromatic
aberration

Total chromatic
aberration ratio

(%)

LIC NO.1 33.07 256 192 4 34.75
NO.2 0.6 14 54
NO.3 0.59 21 29
NO.4 0.49 18 27

LCC NO.1 18.91 132 132 4 21.44
NO.2 1.46 32 30
NO.3 0.92 21 59
NO.4 0.15 11 14

DIC NO.1 34.5 256 108 1 34.5

DCC NO.1 16.39 179 125 8 35.08
NO.2 11.27 87 223
NO.3 6.19 81 104
NO.4 0.49 27 13
NO.5 0.31 12 23
NO.6 0.21 12 16
NO.7 0.12 11 13
NO.8 0.10 4 22

FIGURE 16 | FFC chromatic aberration detection platform.
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accurately, and the quantization accuracy of the target
reaches 92.1%.

The FFC-CADP is built to visualize the operation of
identification and quantization on the FFC surface sample
images. The calculations of the platform include image category
return value, prod, boundary features, geometric parameter features
(length and width), chromatic aberration ratio features, total
chromatic aberration ratio and number of chromatic aberration.

Aiming at the problems of low efficiency and strong
subjectivity in the quality inspection of FFC surface CAI, a
method based on MSLSDA for FFC surface CAI is proposed.
The method achieves the FFC chromatic aberration prediction
function by FFC chromatic aberration identification model. The
FFC chromatic aberration quantization function achieves by
color space conversion, histogram equalization, image color
recognition, image noise reduction and image mask operation.

This project will further investigate the performance and
generalization prediction ability of different weight structured data
algorithms for the FFC chromatic aberration dataset, and obtain the
FFC surface CAI models suitable for different application scenarios.
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