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Virtual materials design requires not only the simulation of a huge number of systems, but
also of systems with ever larger sizes and through increasingly accurate models of the
electronic structure. These can be provided by density functional theory (DFT) using not
only simple local approximations to the unknown exchange and correlation functional, but
also more complex approaches such as hybrid functionals, which include some part of
Hartree–Fock exact exchange. While hybrid functionals allow many properties such as
lattice constants, bond lengths, magnetic moments and band gaps, to be calculated with
improved accuracy, they require the calculation of a nonlocal potential, resulting in high
computational costs, that scale rapidly with the system size. This limits their wide
application. Here, we present a new highly-scalable implementation of the nonlocal
Hartree-Fock-type potential into FLEUR—an all-electron electronic structure code that
implements the full-potential linearized augmented plane-wave (FLAPW) method. This
implementation enables the use of hybrid functionals for systems with several hundred
atoms. By porting this algorithm to GPU accelerators, we can leverage future exascale
supercomputers which we demonstrate by reporting scaling results for up to 64 GPUs and
up to 12,000 CPU cores for a single k-point. As proof of principle, we apply the algorithm to
large and complex iron garnet materials (YIG, GdIG, TmIG) that are used in several
spintronic applications.

Keywords: Density Functional Theory (DFT), Rare-Earth Iron Garnets, High-Performance Computing (HPC), PBE0,
Hybrid Functionals, YIG, GdIG, TmIG

1 INTRODUCTION

Materials science aims to understand and predict material properties ever more accurately, so that
new sophisticated materials can be discovered to drive innovation in domains that rely on them.
While materials science has been around for millennia, it was only at the beginning of the last century
that the arrival of quantummechanics enabled the exact description of the microscopic properties in
materials. However, the cost of calculating the exact solution to the Schrödinger equation grows
exponentially with the size of the system and is therefore limited to very small systems. Density
functional theory (DFT) replaces the 3N-dimensional wave function as the central quantity with the
3-dimensional ground-state density and thereby reduces the exponential computational cost to a
polynomial one.While DFT is in principle exact, a key ingredient, the so-called exchange-correlation
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energy, has no known analytical expression. The approximations
used for this term determine the accuracy with which material
properties can be predicted. While the most commonly used
approximations, the local density approximation (LDA) and the
generalized gradient approximation (GGA), can predict certain
properties with a high precision at a very low computational cost,
they fail to predict some essential electronic properties in
particular of electronically complex materials (Alberi et al., 2018).

DFT is increasingly being used in the context of high-
throughput calculations, where hundreds of thousands of
material candidates are screened using automated workflows
(Yan et al., 2017; Mounet et al., 2018; Rosen et al., 2019).
However, all of these calculations are limited to material
classes and properties for which the underlying exchange-
correlation functionals have a good predictive power. In order
to enhance these calculations with material classes and properties
for which LDA and GGA fail, it is necessary to rely on more
accurate methods producing high-quality results. One class of
accurate methods are the hybrid exchange-correlation
functionals which are particularly suited to predicting
electronic properties such as the band gap, the degree of
charge localization and the polarization in materials with a
stronger electron correlation (Cramer and Truhlar, 2009;
Zhang et al., 2011; Burke, 2012; Becke, 2014; Garza and
Scuseria, 2016).

Hybrid exchange-correlation functionals, such as PBE0
(Perdew et al., 1996) or HSE06 (Krukau et al., 2006)
functionals, mix a portion of an orbital dependent exact
exchange with the electron correlation described by other
approximations, such as LDA or GGA (Becke, 1993). Their
reliance on the orbital dependent exact exchange makes them
computationally considerably more expensive than LDA or GGA.
While an LDA or a GGA calculation grows with the 3rd power of
the number of atoms, a hybrid exchange-correlation functional
calculation typically grows with the 4th power of the number of
atoms. Additionally, the computational cost of a hybrid
calculation grows quadratically with the number of k-points
used to sample the Brillouin zone, whereas for an LDA or a
GGA calculation it only grows linearly. This large computational
cost has prohibited precise predictions for systems with large unit
cells, including a number of interesting material classes such as
garnets (Rodic et al., 1999; Nakamoto et al., 2017) or materials of
interest for solid-state batteries (Yu et al., 2016).

This article focuses on the implementation of hybrid
functionals in the full-potential linearized augmented-plane-
wave (FLAPW) (Wimmer et al., 1981) method as it is
implemented in the open-source code FLEUR (Fleur, 2021).
Unlike approaches employing the pseudopotential
approximation, the FLAPW method treats all electrons
explicitly and does not employ any approximations to
represent the potential or density. It is therefore well suited
for a wide range of systems, including systems containing
heavy atoms that have d- and f-electrons. It is considered to
be one of the most accurate DFT methods and has been used as a
benchmark for other methods and codes (Lejaeghere et al., 2016).
More specifically we focus here on the efficient implementation of
the Hartree-Fock type exact exchange based on the bare Coulomb

kernel as relevant for the PBE0 functional. Functionals based on
the screened Coulomb kernel as HSE06 can be always expressed
in terms of the matrix elements of the bare Coulomb kernel
subtracted by matrix elements of a smooth function (Schlipf et al.,
2011), whose numerical evaluation is not time critical and is not
further discussed here.

There have been significant advances in bringing hybrid
functionals to systems with hundreds or even thousands of
atoms in other approaches, such as the projector augmented
wave method (PAW) (Barnes et al., 2017; Carnimeo et al.,
2019), the s-MTACEMETHOD (Mandal et al., 2021), gaussian
basis functions (Guidon et al., 2008) and atomic-orbitals
method (Hakala and Foster, 2013; Lin et al., 2021). Even
some all-electron methods have demonstrated their
capability to calculate large systems with hybrid functionals
(Ihrig et al., 2015; Levchenko et al., 2015). However, hybrid
functionals within FLAPW have been constrained to very
small systems (Betzinger et al., 2010; Schlipf et al., 2011;
Blaha et al., 2020). The work presented here enables
FLEUR’s hybrid functional implementation to run on the
world’s most advanced supercomputers and use their
immense computational power to investigate these large
and interesting systems containing hundreds of atoms.
Building on the pioneering work previously done on hybrid
functionals in the FLAPW basis and in FLEUR specifically
(Betzinger et al., 2010; Schlipf et al., 2011), we analyzed the
performance and bottlenecks of this legacy implementation,
and explored algorithmic improvements needed to calculate
hundreds of atoms with the accuracy that FLAPW and hybrid
functionals offer.

2 METHODS

The FLAPWmethod, implemented by FLEUR, partitions the unit
cell of volume Ω into two kinds of domains. In spherical regions
MTa centered around each atomic nucleus, a muffin-tin orbital
basis (Andersen and Woolley, 1973) is used, relying on the
products of spherical harmonics and radial functions. In
between these spheres, in the so-called interstitial region (IS),
a plane-wave basis is used. The resulting LAPW basis functions
used to represent the wave functions are

φσ
kG r( ) �

1��
Ω

√ exp i k+G( ) · r[ ] if r ∈ IS

∑
lm

αaσlm k,G( )uaσ
l ‖ra‖( )+βaσlm k,G( ) _uaσ

l ‖ra‖( )[ ]Ylm ea( ) if r ∈MTa

⎧⎪⎪⎪⎨⎪⎪⎪⎩ . (1)

Here k and G are the Bloch- and reciprocal lattice vectors,
while σ indicates the spin. αaσlm and βaσlm are coefficients chosen,
such that the wave function is smooth and continuous at the
boundary between the interstitial region and muffin-tin spheres.
u and _u are radial functions, where u is the solution to the radial
Schrödinger equation for the spherically averaged muffin-tin
potential and a fixed energy parameter and _u is its energy
derivative. a indicates the nucleus, l and m are the orbital- and
magnetic quantum numbers of the spherical harmonic Ylm. r
denotes the position, while ra≔r −Ra is the position relative to the
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center of the muffin-tin sphere and ea≔ra/norm ra is the unit
vector in direction of ra.

In order to calculate the Hartree-Fock exact exchange, the
Coulomb integral ∫∫ φp

i (r)φj*(r′)φj(r)φi(r′)
r−r′ , containing four basis

functions needs to be evaluated. It has previously been noted
(Boys and Shavitt, 1959; Shavitt, 1959), that the product of the
basis functions sharing the same argument φp

i (r)φj(r) and
φp
j(r′)φi(r′) can be expressed in a more efficient way, since

the basis function are already designed to be complete and the
set of all products {φp

i (r)φj(r)} makes a linear dependent set. In
the case of the LAPW basis, this observation can be exploited by
employing the so-called mixed-product basis. Themixed-product
basis reduces the basis set for the muffin-tin regions separately
from the interstitial region. In the muffin-tin regions, the overlap
matrix of the products is calculated and diagonalized. The
eigenvectors whose eigenvalues are above a certain threshold ]
then provide a linear-independent representation of the product
space. In the interstitial region products of plane-waves are also
planes-waves, but with a higher cut-off Gmax′ � 2Gmax, where
Gmax is the plane-wave cut-off of the LAPW basis. In practice
reduced values of Gmax′ have proven to provide accurate results.
While this new mixed-product basis is neither continuous nor
smooth, it provides a significant reduction in computational
effort compared to the naive evaluation of the Coulomb
integral. A detailed description of the mixed-product basis can
be found in (Friedrich et al., 2009).

2.1 Exact Exchange
Using this basis set the nonlocal exact exchange can be
expressed as

Vexact
σ,nn′ k( ) � − ∑Nocc

n″
∑BZ
q

∑
IJ

〈ϕσ
nk|ϕσ

n″k−qMq,I〉CIJ q( )〈Mq,Jϕ
σ
n″k−q|ϕσ

n′k〉,

(2)
where n, n′ and n′′ are band indices of the states ϕσnk , ϕ

σ
n′k and

ϕσn′′k . I and J are indices enumerating the mixed-product basis and
C is the Coulomb matrix expressed in this basis. A detailed
derivation of M and C can be found in (Friedrich et al., 2009).
Note that while the sum n′′ only stretches over occupied states, n
and n′ cover all states. The square Coulomb matrix C with the
dimensions of the size of the mixed-product basis is largely
sparse, which allows for a significant reduction in the
computational effort. The product CIJ(q)〈Mq,Jϕ

σ
n′′k−q|ϕσn′k〉 is

referred to “Sparse matmul” in Figure 1; Figures 3–5. The
projector matrix Pσ,n,k(n′′, q, I) � 〈ϕσnk|ϕσn′′k−qMq,I〉 has the
dimensions of the size of the mixed-product basis and the
number of states. The evaluation of this term is split into two
components, one called “inters. wave-prod” and one called “MT
wave-prod”, referring to the evaluation of this term either within
the interstitial region or the muffin-tins. In order to apply
Vexact

σ,nn′(k) to the Hamiltonian in the LAPW basis it is
transformed from the eigenspace to the LAPW basis by
applying the overlap matrix of the LAPW matrix and the
eigenvector matrix. In Figure 1; Figures 3–5 the full
evaluation of the non-local potential, i.e., the setup of the
Coulomb matrix, the evaluation of Eq. 2 and the

transformation into the LAPW basis together, is denoted as
“non-local pot.”

The numerical evaluation of Eq. 2 represents the majority of
the computational effort in a FLEUR calculation using hybrid
functionals. In particular, the projection of the products of
wave functions given in the LAPW basis set (Eq. 1) onto the
mixed-product basis and the multiplication of these
projections with the Coulomb matrix provide significant
computational challenges. The implementation developed
for this work relies on collecting data processed in the same
way. It allows to exploit data parallelism on multiple levels, be
it the use of a SIMD instruction set or an efficient and balanced
use of multiple threads. Two significant changes have been
made to the basic algorithm introduced in (Betzinger et al.,
2010). First, contrary to the previous implementation, the
projection onto the mixed-product basis in the interstitial
region is now calculated by Fourier transforming the wave-
functions into real-space and multiplying pairs of wave-
functions there, before transforming them back into G-
space. By employing fast Fourier transformations, this
reduces the complexity of this calculation from O(nG2) to
O(nG log(nG)), where nG is the number of LAPW basis
functions. Second, rather than calculating all elements of
Vexact

σ (k) individually as vector-matrix-vector products of
the Coulomb matrix and the mixed-product basis, the new
implementation stacks groups of vectors of the mixed-
product-basis into matrices and then calculates blocks of
Vexact

σ (k) as a single matrix-matrix-matrix product. While
these operations are mathematically identical, this new
block-wise implementation is twice as fast as the element-
wise implementation even on a single CPU core, which is due
to its better utilization of the core’s vector units. Additionally,
the element-wise evaluation of this term experiences almost no
speedup if multiple cores are used, while the speedup of the
modern implementation is shown in Figure 1 in blue.
Calculating the non-local potential on a single NVIDIA
A100 GPU results in a speedup of 4× compared to an AMD
EPYC 7742 CPU for the NaCl system with 64 atoms.

2.2 Shared Memory Parallelization
To enable the utilization of supercomputers with complex memory
hierarchies, we rely on two classes of parallelization. We use shared
memory parallelization to make full use of many-core CPUs or
GPUs. While distributed memory parallelization is employed to
distribute the calculation over hundreds of compute nodes. Shared
memory parallelization is realized by utilizing libraries for standard
math problems such as matrix-multiplications or Fourier
transformations whenever possible. Code parts that do not fall
within the mold of any standard math problem were parallelized
using OpenMP on CPUs and OpenACC on GPUs. In Figure 1 the
strong scaling behavior on a single node is shown. For strong scaling
a fixed-size problem is calculated with an increasing amount of
resources and the resulting speedup is measured. Here, the speedup
is defined as Sn ≔

Tnmin
Tn

, which in the case of ideal scaling behaviour is
Sidealn � n

nmin
, where Tn is the runtime with n cores, nodes or GPUs

and nmin is the minimal value of n that was used in a calculation.
This can be used to define the parallel efficiency as τn ≔ Sn

Sidealn
.

Frontiers in Materials | www.frontiersin.org March 2022 | Volume 9 | Article 8514583

Redies et al. Fast All-Electron Hybrid Functionals

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


While some parts, such as the projection onto the mixed-
product basis in the muffin-tins or the setup of the Coulomb
matrix show excellent scaling, the speedup of the projection on
the mixed-product basis in the interstitial exhibits a plateau
around a speedup of 4 (see orange line). As mentioned
previously, this algorithm relies on fast Fourier
transformations, which have a low algorithmic intensity,
meaning that only few calculations are performed compared to
the number of load and store operations, making the algorithm

more likely to be limited by the memory bandwidth rather than
the available computational power, explaining the plateau in the
speedup seen in Figure 1. Up until 8 cores, the FFT still benefits
from the additional compute resources, beyond that the FFTs are
not limited anymore by the computational power, but rather by
the memory bandwidth, which does not increase with the number
of assigned cores.

2.3 Distributed Memory Parallelization
The parallelism shown so far is limited to a single shared memory
node and thus limited by the number of cores on a given node.
Therefore, in order to scale the computational challenge posed by
the hybrid exchange-correlation functionals to hundreds of
nodes, we implemented three additional levels of distributed
memory parallelism using MPI. The first two levels distribute
the computations for different k- and q-points, while the third
level parallelizes that of different occupied bands n′′. The
distributed memory parallelization scheme is shown in Figure 2.

The parallelization over k- and q-points requires very little
communication and thus is very efficient, while the band-
parallelization requires more communication. However, it
allows us to limit the size of the largest matrix stored on a
single node to nbasis size × ntotal bands, which then has a size on the
order of O(natoms

2). This turns out to be the bottleneck that
determines the largest system we can calculate on a given
computing platform. With 90 GB of memory per node we
were able to calculate systems with up to 200 atoms.

Figure 3 singles out the strong scaling behavior of this 3rd
MPI level for a single k- and q-point. All code parts except for the
setup of the Coulomb matrix show a good scaling behavior with a
parallel efficiency of over 50% on either 64 CPU nodes or 64
GPUs. The scaling behavior of the Coulomb-matrix setup is not
critical, since it does not dominate the run time of the calculation
even on 256 nodes. Additionally, it only scales linearly with the
number of k-points whereas the other parts of the nonlocal
potential scale quadratically with the number of k-points. To

FIGURE 1 | Strong scaling behavior with OpenMP on a single AMD EPYC 7742 64 core processor. The overall FLEUR iteration is shown with brown pentagons,
while the calculation of the nonlocal potential is shown in red triangles. The four remaining lines show the major parts of the nonlocal potential. The red triangles indicating
the nonlocal potential largely coincide with the brown pentagons indicating the full runtime, making it difficult to see them. The parallel efficiency of slightly above 100% in
the routine for the setup mixed-product basis for 4 and 8 nodes is explained by cache effects. Depending on the number of cores used the stride of the parallelized
loops executed on each core is changed, which can reduce the number of cache misses if this stride coincides with certain array dimensions.

FIGURE 2 | The distributed-memory parallelization of Eq. 2 is divided
into three levels. For each k-point the exact exchange is calculated as an
independent problem. At a k-point ki, the exact exchange is calculated as a
sum over all q-points associated with ki, building the kq-pairs. These first
two levels require very little communication, i.e., copying the final results to
their destination for the k-points and a reduction within the sub-communicator
of each k-point for the q-point sum. The third level of distributed-memory
parallelization calculates groups of occupied bands n′′ in parallel. Here, a lot of
inter-dependencies create a much larger communication demand compared
to the first two levels. In a typical calculation of the non-local potential the
workload is not uniformly distributed: Some k-points have more q-points than
others and some kq-pairs might have more associated bands than others.
The algorithm attempts to compensate this by assigning more nodes to
heavier calculations.
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investigate the performance of our algorithm with multiple k-
points we show the strong scaling behavior for a NaCl supercell
with 64 atoms, 10 k-points and 205 kq-pairs in Figure 4. Here
the scaling behavior of the Coulomb-matrix setup is the
weakest once again, but it only accounts for less than 10%,
even with 410 nodes. All other code parts show nearly perfect
scaling. This is due to the fact that each kq-pair represents a

largely independent problem that only requires little
communication and the 3rd MPI level is only used with 205
and 410 nodes, since the parallelization over the 205 kq-pairs is
preferred. SuperMUC-NG has two CPUs per node and
therefore we assigned two MPI ranks to each node,
resulting in a better performance compared to a one rank-
per-node setup.

FIGURE 3 | Scaling behavior of systems with a single k-point on two types of architectures. Panels (A) and (B) show scaling of a 99-atom FeO supercell with a
vacancy defect on the CPU-based SuperMUC-NG supercomputer, while (C) and (D) show the scaling behavior of a 120-atom GaAs supercell with an Al defect on
JURECA’s GPU partition. Panels (A) and (C) show the speedup, while (B) and (D) show the corresponding parallel efficiency.

FIGURE 4 | Strong scaling behavior of multiple k-points for a 64 atom NaCl supercell with a potassium (K) defect. The system has 10 k-points and 205 kq-pairs.
The super-scalar behavior is caused by the fact, that the 205 kq-pairs are not evenly distributed on 10 nodes (20 MPI). Some nodes are assigned more kq-pairs and
therefore need longer while the others sit idle. This effect disappears for 205 or 410 nodes, which allow for a perfectly even and thereforemore efficient distribution. For 41
nodes, the speedup and parallel efficiency of the Coulomb-matrix setup drop drastically. This is due to the fact, that the Coulomb-matrix setup does not have a q-
dependence, while the number of nodes is chosen to be optimal for the evaluation of Eq. 2. For 10 nodes (20 MPI), all k-points can be calculated in parallel on 2
processes each, while for 41 nodes (82 MPI), it is only possible to calculate 2 k-points in parallel, so that each is distributed over 41 processes, leading to an inefficient
parallelization. In practical calculations this is mitigated by including more nodes (e.g., 45), so that both k- and kq-parallelization are efficient. However, even with 41
nodes, the Coulomb-matrix setup only accounts for 6% of the total runtime.
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2.4 Weak Scaling
While the meaning of strong scaling is very intuitive, it does not
necessarily reflect real life applications. Being able to calculate a
system with twenty atoms in a minute or less may not advance
science significantly. Certainly, science is advanced by being able to
calculate increasingly bigger, more inhomogeneous and more
complex systems in a reasonable time frame. Weak scaling deals
with the latter. As discussed in the introduction, the computational
demand of a hybrid functional calculation scales with

O natom
4( ). (3)

For simplicity and to focus on the ultimately limiting
parallelization level, we use a single kq-pair and neglect the
very efficient parallelization over different k- and q-vectors. In
Figure 5 a gallium arsenide (GaAs) setup was scaled into
supercells with a single nitrogen defect. Then, they were
calculated with the parallelization chosen such that

nnodes � natoms

min natoms( )( )4

, (4)

where min(natoms) is the number of atoms in the smallest
supercell.

With ideal weak scaling behavior the runtime should be
constant regardless of the size of the unit cell, since the
computational cost in Eq. 3 is canceled out by the additional
compute resources chosen in Eq. 4. Figure 5 shows that the
hybrid functionals in FLEUR can be applied efficiently to a wide
variety of system sizes. The time needed for the calculation of the
nonlocal potential of the largest GaAs supercell is 9% larger
compared to that of the smallest supercell and the full iteration

runtime is 30% larger. The runtime does not monotonously
increase as one would expect for the weak scaling of a simple
algorithm performing a single task. In FLEUR, the situation is
more complex, some parts of the code scale withO(natom3), while
others scale with O(natom4): While the setup of the mixed-
product basis in the muffin-tin spheres grows with O(natom3),
its counterpart in the interstitial region grows with
O(natom3log(natom)). In the Coulomb-matrix setup, some parts
such as the MT-MT interaction grow with O(natom2), while e.g.,
Γ-point correction for in the interstitial grows withO(natom4). For
larger systems terms with a bigger scaling-exponent will be
dominant, but in small systems the parts with the smaller
scaling-exponents dominate the runtime. In these cases the
choice of Eq. 4 is not suitable, because the compute resources
are increased faster than the computational complexity grows,
leading to the initial dip in the overall runtime in Figure 5.

3 APPLICATION TO RARE-EARTH IRON
GARNETS

Yttrium iron garnet (Y3Fe5O12 or short YIG) is a complex
ferrimagnetic insulator with a number of remarkable
properties and applications, in the fields of magnonics (Serga
et al., 2010), ultra-low temperature physics (Demokritov et al.,
2006) and quantum computing (Tabuchi et al., 2015). This
success has sparked interest in a related class of materials, the
so-called rare-earth-iron garnets (RIGs), where the yttrium atom
in the YIG structure is replaced with an element of the lanthanide
series. Here applications range from materials with giant
magnetostriction (Sayetat, 1986) to spin Seebeck insulators
(Uchida et al., 2010). Despite great interest in these materials
there is only a limited number of theoretical studies of their
electronic structure. This is most likely due to the large unit cells
with 160 atoms in the conventional and 80 atoms in the primitive
unit cell.

The typical unit cell of a garnet is shown in Figure 6. The iron
atoms in this structure have two types of environments. They are
either in the centre of an octahedron or a tetrahedron spanned by
neighbouring oxygen atoms. These different iron environments
have a strong effect on the electronic structure, which is discussed
in detail later in this paper. YIG and most RIGs are ferrimagnets,
such that the magnetic moments of the 8 octahedral iron atoms
point in the opposite direction with respect to the 12 tetrahedral
iron atoms, which, for the RIGs discussed here, are aligned in
parallel with the rare-earth elements. Only a very minor magnetic
moment is induced in the yttrium and oxygen atoms.

3.1 Electronic Structure
In order to understand how the choice of the exchange-
correlation functional affects the electronic structure of YIG
we calculated the density-of-states (DOS) with PBE and with
PBE0. All calculations shown in the paper were performed on a
2 × 2 × 2 k-point grid. We confirmed that the DOS is converged
with this grid by comparing the PBE results to results on a denser k-
point grid. We use a smearing of σ = 0.136 eV for all DOS
calculations shown. The muffin-tin radii of Y, Gd, Tm, Fe and O

FIGURE 5 | Weak scaling behavior of FLEUR’s hybrid functional
calculations for a GaAs system which is scaled into a supercell with one
Arsenic atom being substituted with Nitrogen. The y-axis shows the runtime
for different code parts, while the bottom x-axis shows the number of
nodes used. The top x-axis shows the number of atoms in that particular
system.
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are chosen to be rY/Gd/Tm = 2.8 a0, rFe = 2.14 a0 and rO = 1.21 a0. The
structural information, e.g. the unit cell and the atomic positions
used in this chapter are based on the experimental ones, exhibiting a
Ia3d-structure (Y3Fe5O12 crystal structure, 2012; Gd3FeO12
crystal structure, 2012; Tm3Fe5O12 crystal structure, 2012).

As expected, with a value of 0.44 eV, PBE massively
underestimates the experimental band gap of 2.8 eV (Larsen
and Metselaar, 1975), while PBE0 predicts an improved band
gap of 1.83 eV. However, the experimental value relies on optical
measurements, which are not sensitive to all transitions,
potentially missing certain states and thus overestimating the
real band gap.

In Figure 7A) the DOS of YIG is calculated using PBE as an
exchange-correlation functional. In this figure, the
antiferrimagnetic alignment of the iron atoms is visible: the
occupied states associated with the tetrahedral iron atoms are
mainly in the spin-up channel and the unoccupied ones are in the
spin-down channel, while for the octahedral iron atoms the
situation is reversed: below the Fermi level the octahedral iron
states are mostly in the spin-down channel and above it in the
spin-up one. Most states associated with the oxygen atoms are
occupied, while the yttrium states are largely unoccupied. Below
the Fermi level, the DOS in the interstitial region closely follows
the oxygen DOS. Additionally, the DOS associated with both iron
types also coincide with the oxygen and interstitial DOS. This
indicates that the 2p-states of the oxygen and the 3d-states of iron
hybridize for both iron environments. This analysis is supported
by the number of valence electrons found in the different muffin-
tin spheres, which are 6.5 and 6.2 electrons for iron atoms in the
tetrahedral and octhedral environments, respectively, 1.1 valence
electrons in the sphere of yttrium, and an average of 3.7 valence
electrons in the spheres of oxygen. The large number of 164.1
electrons in the interstitial region additionally indicates a high
degree of de-localization of these states. For the unoccupied

octahedral iron states in contrast, we can see a clear signature
of simple crystal field splitting of localized d-states: the three t2g-
states shift down and the two eg-states shift up leading to two
distinct peaks with the lower one containing three and the higher
one containing two states. Similarly, for the unoccupied
tetrahedral Fe d-levels the e-states are shifted down, while the
t2-states are shifted up. This separation however, is not so clear as
the shifts are smaller, the peaks still overlap and another splitting
due to next-nearest neighbors can be seen.

In Figure 7B) we show the DOS calculated using the hybrid
exchange-correlation functional PBE0. The results are qualitatively
different from the PBE results with the most significant change seen
in the different behavior of the two types of Fe in the PBE results:
While the occupied tetrahedral iron 3d-states still hybridize with the
2p-states of the surrounding oxygen atoms, most of the octahedral
iron 3d-states are now strongly localized and form a double peak in
the DOS at around −6.5 eV.

Such a localization effect of the d-states can also be reproduced
in a PBE+U treatment (Chen et al., 2021). However, in these
simulations the d-states of both Fe types show the same behavior.
The different tendency to localize can also be seen in these
simulation by the different values of U used for the different
atoms to achieve the localization. Hence, the result strongly
suggests that the local Coulomb interaction exhibits different
strength in the two environments of Fe. This effect can be caused
by the different initial localization of the d-states as well as by
different interactions and screening effects of the surrounding.
Such a difference can also be seen in the unoccupied spectrum
which is again dominated by a crystal field splitting of the d-
states. However, in the octahedral environment this effect is again
much clearer while the tetrahedral d-states form a broad band
with several peaks also indicating next-nearest neighbor effects.

Finally, we would like to point out that the octahedral Fe d-
states show a rather complex sub-structure with a large peak at

FIGURE 6 | Unit cell of a garnet. Oxygen atoms are shown in red, while iron atoms are shown inside the grey polyhedra. The rare-earth or yttrium atoms are shown
inside the golden dodecahedra. While the yttrium or rare-earth atoms are all symmetry equivalent the iron is present in two different environments. Structure from
(Y3Fe5O12 crystal structure, 2012) and plotted with (Momma and Izumi, 2011).
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− 7 eV and a minor peak at − 8 eV. This is not a crystal field
splitting but rather shows that different states with a different
degree of localization are formed. While the lower peak is
clearly separated from the O p-states, some remaining
hybridization can be identified for the larger peak.

Further investigations of the consequences of these differences
between the Fe atoms is beyond the scope of this paper, but we
expect this electronic structure to have some influence, e.g. on
magnetic interactions and the transition temperature.

3.2 Magnetic Moment
In the introduction we discussed that some key applications of
YIG are related to its magnetic properties. Therefore, we want to
investigate the precision of our predictions for magnetic
properties with different exchange-correlation functionals. In
Table 1 we compare the magnetic moments predicted for the
different iron atom types. We use the magnetic moment inside
the muffin-tin sphere to assign the moment to a specific atom.
Therefore, the magnetic moment depends on the choice of the
radius of the muffin-tin sphere and, strictly speaking, is not
uniquely defined. The magnetization calculated for the oxygen
and yttrium atoms is negligible regardless of the computational
method used. The total magnetic moment per unit formula was
5 μB for every functional. This agreement is expected, since YIG is
a magnetic insulator, which constrains the total magnetization
per unit cell to integer values.

While PBE predicts the magnetic moments of the two iron
types within only ±0.5 μB of the experimental value for the R3
crystal structure, the predictions by PBE0 are even closer to the

experimental those results. This again can be understood by the
observed tendency to localize the Fe d-states and compares very
well to magnetic moments predicted by Barker et al. (Barker et al.,
2020) obtained using QSGW, another highly precise electronic
structure method. The slight difference in the magnetic moments
between the QSGW and PBE0 approach we account to the
different choice of the muffin-tin radii and the different degree
of localization of the Fe d-states. Interestingly, in the comparison
of PBE0 to QSGW in the case of this octahedral iron, the magnetic
moment for this octahedral Fe agrees better with the experimental
results in the R3 crystal structure than the QSGW value,
supporting our findings of a slightly stronger localized d-wave
function in the case of the PBE0 functional. We note that all
theoretical results were calculated for the cubic Ia3d crystal
structure and the magnetic moments of Fe in the tetrahedral
environment agree quite well with each other but also with the
experimental values of Fe in the trigonal R3 structure. On the
other hand, the experimental Fe moment in the Ia3d symmetry is
completely off. It shows a moment of 5.37 μB. This value seems
unrealistic since it is higher than that of a free Fe3+ ion (~ 5 μB),
while the presence of hybridization with oxygen is expected to
lower the moment further. We conclude that further
experimental efforts are needed to analyze the structure-
magnetism relationship of YIG.

3.3 Rare-earth-iron Garnets
As two representatives of the rare-earth-iron garnet group, we
chose to examine Gd3Fe5O12 (GdIG) and Tm3Fe5O12 (TmIG)
more closely. We selected these materials, because a lot of
interesting experimental (Fechine et al., 2008; Phan et al., 2009;
Lassri et al., 2011; Lee et al., 2020; Vilela et al., 2020; Vu et al., 2020)
and even some theoretical work using the FLAPWmethod (Lassri
et al., 2011) has been published for these materials.

In Figure 8 we present the density of states for GdIG and TmIG
calculated with the PBE0 exchange-correlation functional. Reaching
numerical self-consistency for TmIG was challenging with PBE,
which is the starting point for any PBE0 calculation. We achieved
self-consistency by using a few hundred straight mixing iterations
with a low mixing parameter, followed by a set of Anderson mixing
iterations until convergence was reached.With a converged PBE as a

FIGURE 7 | DOS of YIG calculated with PBE in (A) and with PBE0 in (B) on a 2 × 2 × 2 k-grid. In both calculations we use a Kmax � 4.5a0−1. The mixed-product
basis for the calculation in (B) uses a eigenvalue threshold of ] = 10−4 and an lMPB = 16 cutoff for the spherical harmonics.

TABLE 1 | The magnetic moments within the different muffin-tins of both Fe types
in units of μB.

Fe tetra. [μB] Fe octa. [μB]

PBE 3.52 −3.64
PBE0 3.83 −4.01
PBE + U Nakamoto et al. (2017) 4.10 −4.20
QSGW Barker et al. (2020) 3.93 −4.17
exp. R3 Rodic et al. (1999) 3.95 −4.01
exp. Ia3d Rodic et al. (1999) 5.37 −4.11
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starting density the convergence of PBE0 is straight forward. This
difficult convergence is caused by the metallic behavior of TmIG
with PBE as a functional. After the non-local potential is included, a
gap opens up and all later density convergence cycles do not exhibit
this problematic metallic behavior. GdIG converged without
problems both for PBE and PBE0.

For GdIG the band gap was calculated to be 1.7 eV with PBE0.
Literature values obtained using PBE + U suggest a gap of 1.6 eV
(Nakamoto et al., 2017). For TmIG we also predict a band gap of
1.7 eV using PBE0. To our knowledge, this is the first prediction
for the band gap of TmIG. We are not aware of any experimental
results regarding the band gap in either system.

The electronic structure of these two systems has a few striking
similarities with that of YIG. The 3d-states of both types of iron
atoms hybridize with the oxygen 2p-states in PBE, while with
PBE0 the octahedral iron states show localization and a strong
shift to lower energies. This again highlights the difference of the
tetrahedral and octahedral oxygen environment of the iron atoms
causing different effective interactions at these atoms and casting
doubt on simple PBE+U predictions for these garnet systems. For
the unoccupied octahedral iron states we can see the typical
signature of crystal field splitting and in the tetrahedral case this
signature is weaker. The additional 4f-states of the rare-earth
elements in the spin-up channel are strongly localized in PBE. In
PBE0 they show a slightly larger bandwidth, indicating increased
hybridization with the oxygen 2p-states which could be
understood due to the decrease of hybridization of these states
with the octahedral Fe d-states. As expected, Gd has no occupied

4f-states in the spin-down channel, while the 4f-states of Tm are
partially occupied, causing a metallic behavior in PBE. In PBE0
the increased interaction provided by the exchange term opens a
gap in the Tm 4f-band.

In Table 2 the magnetic moments of all atom types are given.
For GdIG we predict a total magnetization per formula unit of
16.0 μB and for TmIG we predict 1.75 μB for PBE as well as PBE0.
Notice, that the formula unit contains 20 atoms, while the
primitive unit cell contains 80. This means, while the magnetic
moment per formula unit is not integer, it is integer per unit cell.

The predicted total magnetic moments are in exact agreement
with experimental results for GdIG (Geller et al., 1965), while they
are in good agreement with the experimental value of 1.2 μB for the
TmIG. This experimental value would correspond to a total
magnetic moment of 4.8 μB for the primitive unit cell. PBE + U
shows a tendency to predict larger magnetic moments for almost all
atoms: 4.2 μB for the octahedral iron, − 4.1 μB for the tetrahedral
iron, 7.0 μB for Gd and 1.9 μB for Tm (Nakamoto et al., 2017).

4 CONCLUSION

In this article we presented a highly scalable implementation of
hybrid exchange-correlation functionals in the LAPW basis. In
this work we focused on the scalable implementation of the
Hartree-Fock exact exchange, which corresponds to the
implementation of the PBE0 functional, but screened functionals
likeHSE06 are related by an additional fast computation of a smooth

FIGURE 8 | The density-of-states is calculated for GdIG in (A) and for TmIG in (B) using PBE0 on a 2 × 2 × 2 k-point grid. Both calculations were performed with a
Kmax � 4.5a0−1 and the mixed-product basis was setup using ] = 10−4 and lMPB = 16. Both band gaps are 1.7 eV and marked in red. The Gd states are fully occupied for the
majority spin-channel and fully unoccupied for theminority spin-channel. The Tm spin-up channel is also fully occupiedwhile theminority spin channel is only partially occupied.

TABLE 2 | Predicted magnetic moments of GdIG and TmIG for each atom type, given in units of [μB].

Fe tetra [μB] Fe octa [μB] Gd/Tm [μB] O [μB]

Gd3Fe5O12 PBE −3.54 3.69 6.88 −0.06
PBE0 −3.85 4.04 6.94 −0.06
PBE + U (Nakamoto et al., 2017) −4.1 4.2 7.0 −

Tm3Fe5O12 PBE −3.298 3.59 1.61 −0.04
PBE0 −3.82 4.01 1.93 −0.05
PBE + U (Nakamoto et al., 2017) −4.1 4.2 1.9 −
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function. The combination of shared and distributed memory
parallelization allows to calculate a broad range of systems with
high efficiency. Combining all three MPI levels gives us an outlook
on the scaling potential of this algorithm. If we were for example to
calculate the GaAs system with 120 atoms and we would use 8 k-
points we would get 125 kq-pairs. Figure 3 shows that for this
system a single kq-pair has a good parallel performance even if
distributed over more than 32 GPUs. Therefore, it is reasonable to
assume that the calculation of the nonlocal potential for a system
with 8 k-points would still have good scaling with
32 GPUs

kq−pair × 125GPUs � 4000 GPUs, which is ~ 250 more than
the 44 PetaFLOP JUWELS Booster Module has to offer. This not
only allows the code to run on the supercomputers currently
available, it also gives us confidence that our code can make
good practical use of future exascale machines. Here, making
good practical use of a supercomputer does not necessarily mean
sending jobs which queue for weeks-on-end and then scale to every
single core which the machine has to offer, but rather that we can
efficiently use significant portions of the machine to investigate
interesting and meaningful systems.

Using the new implementation of the hybrid functional code,
we performed simulations of the electronic structure of iron based
garnet materials. The significant improvement in the obtained
band gap as well as the changes in the electronic structures
discussed in detail demonstrate the significance and power of
this treatment for these technological relevant material class. Our
results suggests an experimental reevaluation of the structure-
magnetism relation of the yttrium iron garnet (YIG), Y3Fe5O12.
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