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We present a metasurface consisting of W-shaped resonators to realize broadband
reflective linear and circular polarization conversions. We find that the cross
polarization conversion ratio for normal incidence is over 0.95 from 9.2 to 18.7 GHz,
covering 68.1% of the central frequency. We also show that, the conversion performance
is almost insensitive to the angle of incident waves. Furthermore, by simply adjusting the
geometrical parameters of theW-shapedmetasurface, the broadband circular polarization
conversion is also achieved. We emphasize that the bandwidth of axis ratio less than
3.0 dB covers from 10.1 to 17.7 GHz, equivalent to 54.7% relative bandwidth. Due to
these broadband and high-efficiency polarization conversion features, our proposal may
have a wide application prospect.
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INTRODUCTION

Polarization is an important property of electromagnetic (EM) waves. The manipulate of
polarization state of EM waves is critical in practical applications, such as quarter and half-wave
plates, anomalous reflection, holograms, and so on (Yu et al., 2011; Larouche et al., 2012; Yu et al.,
2012; Pfeiffer and Grbic, 2013; Xu et al., 2013; He et al., 2014; Jiang et al., 2014). Conventional
polarization conversion devices can be achieved by using optical gratings and dichroic crystals (Chen
et al., 2003; Masson and Gallot, 2006). However, long propagation distance, huge device size and
limited bandwidth may impede the application and the integration of polarization conversion
devices. Especially, in the microwave band, where the corresponding wavelength is large. Therefore,
in order to effectively control the polarization state, it is necessary to introduce functional EM
materials that can provide abundant means of EM waves regulation and make devices miniaturized.

Metamaterials are artificial subwavelength materials with unique properties not attainable in
nature. In the past decades, metamaterials have been a hotspot research owing to their great power of
tailoring the phase and wavefront of the propagating EM waves. Several exotic physical phenomena
and fascinating functional applications are negative refraction, perfect imaging, EM cloaking, and so
on (Pendry, 2000; Shelby et al., 2001; Smith et al., 2004; Fang et al., 2005; Schurig et al., 2006; Liu et al.,
2007; Shalaev, 2007; Valentine et al., 2008; Ye et al., 2021; Guo et al., 2021). Recently, researchers also
demonstrate that the function of bulky metamaterials can even be realized by their quasi-two-
dimensional version of metasurfaces. Metasurfaces open up a new way for designing thinner, lighter,
and wider polarization converters than that of the conventional technologies. Some high-efficiency
linear to linear and linear to circular polarization converters have been demonstrated in microwave,
terahertz, and optical frequency bands (Zhou et al., 2003; Fedotov et al., 2006; Feng et al., 2013;
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Cheng et al., 2014; Li et al., 2014; Zheng et al., 2014; Shi et al.,
2014; Guo et al., 2015; Li et al., 2015; Yin et al., 2015; Han et al.,
2016; Zhang L. et al., 2016; Zhang Z. et al., 2016; Zhao and Cheng,
2016; Zhao and Cheng, 2017; Zhang et al., 2017; Li et al., 2019; Liu
et al., 2019). But so far, realizing bandwidth expansion, efficiency
improvement, angle insensitivity, and functionality extension
simultaneously within a simple design is still insufficient.

In this paper, a metasurface based on metal-dielectric-metal
configuration is proposed to realize broadband reflective linear
and circular polarization conversions. The top layer is sub-
wavelength W-shaped metallic strips and a continuous metal

film is attached to the bottom of the substrate. In one unit, two
W-shaped strips is placed asymmetric along x-axis and y-axis.
The x polarized incident wave is chosen for analysis and
discussion. The results show that the cross polarization
conversion ratio (PCR) for normal incidence is over 0.95 from
9.2 to 18.7 GHz, covering 68.1% of the central frequency.
Importantly, the conversion performance is almost insensitive
to the angle of incident waves. Further studies indicate that, by
simply adjusting the geometrical parameters of the W-shaped
metasurface, the broadband circular polarization conversion is
also achieved. The results reveal that the axis ratio (AR) is less
than 3.0 dB in the range of 10.1–17.7 GHz, equivalent to 54.7%
relative bandwidth. Owing to these broadband and high-
efficiency features, our proposal may facilitate further
researches on matematerials-enabled polarization manipulation.

Model Design
The proposed reflective metasurface with a unit cell is shown in
Figure 1. A twoW-shaped metallic strips is mounted upon a 2.6-
mm-thickness FR-4 substrate. A copper layer is attached to the
bottom of the substrate, which ensures that most of the incident
waves are reflected. The dielectric constant and loss tangent of the
FR-4 substrate are 4.2 and 0.015, respectively. The twoW-shaped
copper strips is placed symmetrically along u-axis, and the
distance between them is d = 3.6 mm. The linewidth of the

FIGURE 1 | Schematic configuration of the designed reflective
metasurface with a unit cell from (A) front and (B) perspective views.

FIGURE 2 | Simulated results of the reflective metasurface. (A) co-polarization reflection|Rxx|
2, cross-polarization reflection |Ryx|

2 and absorption A. (B) Reflection
phase. (C) PCR. (D) The conversion performance with respect to the incident angle.
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copper strips are w = 0.5 mm. The lengths of the copper strips are
a1 = a2 = a3 = a4 = 1.9 mm. The periods in both x and y directions
are p = 9 mm. The combination of two W-shaped metallic strips
can excite multiple resonances, which are essential to broadband
property and high efficiency. The structure is asymmetric
along x-axis and y-axis, and hence we choose the x polarized
incident wave for analysis and discussion. By controlling the
amplitude and phase of the two orthogonal components of the
reflected wave, the broadband polarization manipulation can be
realized. We take the CST Microwave Studio for all numerical
simulations.

RESULTS AND DISCUSSION

Firstly, the simulated reflectivity, reflection phase and PCR of
the reflective W-shaped metasurface are provided in Figure 2.
Figure 2A shows the reflectivity when the x-polarized EM wave
is incident along the negative direction of the z-axis. The results
depict that |Ryx|

2 is greater than 0.8 but |Rxx|
2 is less than 0.1

over a broadband frequency range from 9.2 to 18.7 GHz. Here,
Rxx = |Exr/Exi| is defined as the reflectance of x to x polarization
conversion, whereas Ryx = |Eyr/Exi| is the reflectance of x to y
polarization conversion. Thus, the Rxx is called as co-
polarization reflectance and the Ryx is termed as cross-
polarization reflectance. In the above formulas, E represents
the electric field, while subscripts i and r are for the incidence
and reflection of EM waves, respectively. Moreover, the
absorptivity (A) is less than 0.1 over this frequency range, as
the red doted line shown in Figure 2A. Hence, the x-polarized
incident EM wave converts to nearly pure y-polarized one.
Figure 2B shows the reflection phase of Rxx and Ryx. Both of
them are frequency dependent and the phase difference is equal
to about 900 over the above large frequency range, which satisfy
the condition of circular polarized wave. However, the
reflectivity |Rxx|

2 is much smaller than |Ryx|
2, the polarization

state of the reflected wave is indeed completely linearly
polarized. Furthermore, the PCR is also calculated and
presented in Figure 2C. Here, PCR is defined as
R2
yx/(R2

yx + R2
xx). At three resonant frequencies 10.0, 13.8 and

17.4 GHz, the PCR is up to 100%. From 9.2 to 18.7 GHz, the
PCR is always higher than that of 0.95, confirming that a high-
efficiency broadband cross-polarization conversion is
successfully achieved. For comparison, the PCR of a sample
with only oneW-shaped metallic strip within a unit is also given
as blue dashed line in Figure 2C. Obviously, the two W-shaped
model provides more power in extending the bandwidth of
polarization conversion ratio. Furthermore, the conversion
performance for different angles of incident EM waves are
illustrated in Figure 2D. It can be seen that, the increase in
incident angles has not led to a considerable decrease of
bandwidth and a drastic reduction of conversion efficiency.
Such insensitivity to the incident angle is highly desired in
practical applications but difficult to achieve in reality.

To dig deeper into the physical mechanism of broadband
cross-polarization transformation, the reflection phases of the
proposed metasurface for u and v polarized incident EM waves
are investigated and given in Figure 3. It is apparent that the

FIGURE 3 | The reflection phase for u and v polarized incident
EM waves.

FIGURE 4 | The simulated magnetic field distributions under
x-polarization at frequencies of (A) 10.0 GHz, (B) 13.8 GHz, (C) 17.4 GHz.
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reflection phase difference between u and v polarized incident
waves is equal to approximately 1800 over a wide frequency range
from 8.7 to 18.1 GHz. That is to say, when x or y polarized EM
waves are normal incident, the amplitudes of the reflected
orthogonal (u and v) components are the same but the phase
difference equals 1800. Hence, the rotation angle of the reflected
linear polarized wave is 900 to the incident linear polarized
wave, and the incident EM wave rotates to its cross-polarized
one over this frequency band. Besides, we have noticed that the
phase differences of the reflected waves are ± 900 at 8.4 and
19.4 GHz, respectively. It means that the metasurface can
convert the linear polarized incident EM wave to a circular
polarized reflected wave at this two frequencies. However, the
narrow-band conversion is quite limited in practical
application. Thus, broadband circular polarizer based on the
presented structure is also expected.

As follows, the magnetic field distributions in the reflective
metasurface under x-polarization at three resonant frequencies of
10.0, 13.8 and 17.4 GHz are also calculated and given in Figure 4.
For the resonant frequency of 10.0 GHz case in Figure 4A, it is
evident that the direction of the induced magnetic field is lower-
right. That means the x component of magnetic field Hx is
induced. The induced magnetic field Hx can generate an
electric field perpendicular to the incident electric field, which
leads to a x-to-y polarization conversion. For the two other
resonant frequencies of 13.8 and 17.4 GHz case in Figures
4B,C, the similar physical mechanism takes place in the
W-shaped resonators. The induced magnetic field Hx plays a
vital role in the cross-polarization conversion.

Furthermore, we demonstrate that the broadband circular
polarizer can even be realized by simply optimizing the

geometrical parameters of the above presented metasurface.
Here, we choose a1 = 2.0 mm, a2 = 2.5 mm, a3 = 2.6 mm, and
a4 = 2 mm. The periods in both x and y directions are changed to
10 mm. The dielectric constant and thickness of FR-4 substrate
are set to 2.65 and 3.7 mm, respectively. The distance between the
twoW-shaped metallic strips along u-axis is fixed as 3.6 mm. The
width of the copper strips are maintained as 0.5 mm. Under such
conditions, the reflectivity and reflection phase of the metasurface
are simulated and presented in Figure 5. For x-polarized incident
wave propagating along the negative direction of z-axis, the
reflectivity of co-polarized and cross-polarized reflected waves

FIGURE 5 | Simulated (A) reflectivity, (B) reflection phase, (C) ellipticity, and (D) AR under x-polarized incident EM waves.

FIGURE 6 | The polarization ellipses of the broadband circular polarizer
at five characteristic frequencies. (A) 10.1 GHz. (B) 11.6 GHz. (C) 14.3 GHz.
(D) 16.3 GHz. (E) 17.73 GHz.
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are almost the same in the range of 10.1–17.7 GHz, as shown in
Figure 5A. Figure 5B describes the reflection phase of Rxx and
Ryx, it is clear that the phase difference is equal to 900 over the
above frequency range. In addition, the ellipticity and AR are also
calculated and depicted in the Figure 5C and Figure 5D,
respectively. Here, ellipticity is defined as χ �
0.5 arcsin(2R sin(Δφ)

1+R2 ) and | 1
tan χ| is adopted as AR, where R � |Ryx |

|Rxx |
and Δφ � arg(Ryx) − arg(Rxx). The results reveal that the AR is
less than 3.0 dB in the range of 10.1–17.7 GHz, equivalent to
54.7% relative bandwidth. This indicate that the reflected
wave is a typical circular polarized wave within the above
frequency range. To illustrate the conversion performance,
the AR for different angles of incident EM waves are also
calculated and given in Figure 5D. It is clearly that, the AR
gradually increased from zero but is always smaller than
3.0 dB as the incident angles varied from 00 to 300. Such
tolerance can help make a difference to the practical
application.

In the following, the polarization ellipses at five
characteristic frequencies of the broadband circular
polarizer are calculated and plotted in Figure 6. The
polarization azimuth angle is calculated as
ψ � 0.5 arctan(2R cos(Δφ)

1−R2 ). The purpose here is to illustrate
the polarization state of reflected wave. For the lower
band-edge frequency 10.1 GHz, the ellipticity is 26.40, AR
is 3.0 dB, and polarization azimuth angle is 1.30. The
determined reflected wave is right-handed elliptical
polarized wave and the major axis of ellipse is close to
x-axis. For the other two working frequencies 14.3 and
16.3 GHz, polarization azimuth angle are 49.30 and 53.50,
the determined reflected wave are also the right-handed
circular polarized waves. For the upper band-edge
frequency 17.7 GHz, the ellipticity is 26.60, AR is 3.0 dB,
and polarization azimuth angle is 87.30. The determined
reflected wave is right-handed elliptical polarized wave and
now the major axis of ellipse turns to y-axis. Note here that
the polarization state of the reflected circular polarized wave
depends on the incident wave. If a y-polarized EM wave
incident, the polarization state of reflected wave will shift
to a left-handed circular polarized wave. From this point of
view, the W-shaped metasurface provides a flexible platform
for polarization manipulation.

CONCLUSION

In conclusion, we have numerically demonstrated the broadband
reflective linear and circular polarization conversions in a simple
W-shapedmetasurface. For cross polarization conversion, the PCR
for normal incidence is over 0.95 from 9.2 to 18.7 GHz, covering
68.1% of the central frequency. The conversion performance is
almost insensitive to the angle of incident waves. The magnetic
field distributions of working frequencies confirm that the induced
magnetic field paralleled to incident electric field is crucial to a
cross polarization conversion. For circular polarization conversion,
the AR is less than 3.0 dB in the range of 10.1–17.7 GHz, equivalent
to 54.7% relative bandwidth. The polarization ellipses of band-edge
and operating frequencies show the changing process of
polarization state. The above broadband and high-efficiency
characteristics of our design will be conducive to the
development of metamaterials-enabled communication devices.
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