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A periodic beam-oscillators coupling system is proposed as a physical model in this paper
for analyzing the dynamic characteristics of periodic support beams and low-frequency
flexural wave vibration of slender stiffened plate structures. The dispersion relation of
flexural wave in the infinite long homogeneous beam coupled with periodic oscillators is
calculated using themethod of reverberation-ray matrix combined with the Bloch theorem.
The accuracy and effectiveness of the method of reverberation-ray matrix in analyzing the
band gaps and vibration characteristics of the homogeneous beam coupled with periodic
oscillators are verified by the numerical results of the finite long homogeneous beam
coupled with periodic oscillators. Both the analytical and numerical results show the
existences of flexural wave band gaps in the homogeneous beam coupled with periodic
oscillators, in which the propagation of the flexural waves is prohibited and flexural wave
vibration is significantly suppressed. Furthermore, the effects of structural and material
parameters on the flexural wave band gaps characteristics are respectively investigated.
The flexural wave band gaps can be adjusted and optimized manually by adjusting
structural and material parameters, which can be applied to vibration and noise control
design of periodic support beams and slender stiffened plate structures.

Keywords: beam coupled with periodic oscillators, periodic beam structure, flexural wave band gap, vibration
attenuation characteristics, the method of reverberation-ray matrix

1 INTRODUCTION

With the development of naval architecture and ocean engineering with high-speed, large-scale and
large-tonnage, vibrations in ship and offshore structures owing to various ocean environmental loads
and excitations of power systems become increasingly serious, can reduce productivity, endanger
safety, affect service life of the structure and even discomfort of crews (Hirdaris et al., 2014; Murawski
and Charchalis, 2014; Kandasamy et al., 2016). Therefore, it is necessary to eliminate or reduce
vibration and noise of ship and offshore structures and develop low-noise structural design
technology.

Many scholars have done a large number of studies to control vibration and noise of ship and
offshore structures (Wang et al., 2013; Lan et al., 2014; Wang et al., 2016; Gripp and Rade, 2018).
From their studies, there are three main methods to control vibration and noise. The first way is to
control the source, design and manufacture power systems with low noise, low vibration or even
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silence; the second is to control the propagation path through
isolation, absorption, and attenuation methods; the third is to
protect the receiver (Wu et al., 2014; Liu et al., 2015; Shi et al.,
2016; Som and Das, 2018). As the development of naval
architecture and ocean engineering with high-speed, large-
scale and large-tonnage, it has become increasingly difficult to
reduce noise from the source. Furthermore, the techniques to
protect the receivers are unreasonable as the receivers are often
moving as well as the rapid developments of the underwater
acoustic detection technologies. Therefore, trying to reduce the
vibration and noise in the propagation path is a more sensible
choice (Ibrahim, 2008; Toky et al., 2020; Yaman et al., 2021). The
mainly ways to control vibration and noise can be divided into
passive control schemes, semi-active control schemes, and active
control schemes (Keir et al., 2005; Ou et al., 2007; Liu et al., 2017;
Enferadi et al., 2019; Han et al., 2019; Li and Yang, 2020).
Although the existing traditional vibration reduction
techniques can control the vibration and noise of ships and
offshore structures to a certain extent, it also has some
limitations, including the equipment mass must be larger and
the narrow frequency band in passive control, the damping
vibration attenuation only have an impact on the medium and
high frequencies, as well as the system complexity and narrow
band characteristics of active control. In addition, it is necessary
to strengthen the research on low frequency vibration and noise
control of ships and offshore structures, as the vibration and noise
in the low frequency range has strong penetration and slow
dissipation during propagation (Waye, 2011; Kim et al., 2019).
Beam is one of the most important basic structures in engineering
and are widely used in civil engineering, aerospace as well as naval
architecture and ocean engineering. And stiffened plates,
especially the bi-directionally orthogonal stiffened plates are
widely used in deck, bottom and side structures of ships and
offshore structures. The stiffened plates can be simplified to a
multi-span beam model with periodic elastic supports and then
into an elastic foundation beam model to study their static and
dynamic characteristics (Chen and Chen, 1991). In addition,
many slender stiffened plate structures in ships and offshore
structures can be simplified into beam models for low frequency
flexural wave vibration analysis. Thus, studying the dynamic
characteristics of beams is of great significance to the dynamic
performance and low noise structural design of ships and marine
structures. Many scholars have done a lot of studies to investigate
the wave band gaps and propagation characteristics in phononic
crystals, acoustic metamaterials and other periodic structures in
recent decades (He et al., 2017; Lee et al., 2018; Nateghi et al.,
2019). Periodic structures have been introduced into the
structural vibration reduction design due to the advantage of
band gap characteristics.

Periodic structures have band gaps properties, which the
propagation of waves in the periodic structures is forbidden in
specific frequency ranges. Due to the various unique physical
properties, periodic structures are widely used in various
engineering practices such as structural strength enhancement,
vibration absorption and vibration control, thus, a large number
of studies have been carried out on the band gaps and wave
propagation and attenuation characteristics of various periodic

structures (Dupont et al., 2019; Muhammad and Lim, 2019; Xu
et al., 2021). The existing periodic structure studies reveal two
kinds of band gap formation theories: local resonance band gap
and Bragg scattering band gap. Mead and his teammembers have
conducted a lot of researches on the wave propagation
characteristics in periodic beams since the 1960s (Mead, 1970;
Mead, 1996). Kushwaha et al. inferred phononic crystals from the
studies of photonic crystals and discovered the band gap
phenomenon of phononic crystals (Kushwaha et al., 1993). Liu
et al. fabricated a local resonant periodic structure by the idea of
localized resonant structures, and the theoretical and
experimental studies have verified there is a low-frequency
local resonance band gap in this type periodic structure which
is much lower than the traditional Bragg gap frequency (Liu et al.,
2000). It provides a theoretical foundation for the application of
low-frequency band gap characteristics of macroscopic periodic
structures.

In the past two decades, the elastic wave band gap
characteristics and propagation and attenuation characteristics
of various periodic structures have been investigated. Guo and
Fang (2014) and Li and Guo (2016) analyzed the longitudinal
wave dispersion relations and band gap characteristics in periodic
quaternary rods and rod-type piezoelectric periodic structures,
respectively. The research results promoted the design of rod-type
periodic structures for vibration isolation/control applications.
Richards and Pines (2003) utilized the property of a periodic drive
shaft that generated stop band gap and pass band regions in the
frequency spectra, both the analytical and experimental results
indicated that the proposed periodic drive shaft can effectively
reduce the transmitted vibration generated by gear mesh contact
dynamics. Shen et al. (2012) proposed a periodic shell made of
functionally graded material and then investigated the
mechanism of wave propagation and vibration transmission in
the shell by illustrating the pass/stop band frequency ranges of the
periodic shell. An et al. (2018) numerically studied the band gap
characteristics of radial wave propagating radically from the inner
circle of a two-dimensional cylindrical shell structure with radial
and circumferential periodicities. Results showed that radial wave
has significant attenuation in band gap frequency region. Sharma
and Sun (2016) investigated the low frequency wave propagation
behaviours of sandwich beams containing periodically embedded
internal resonators, and they demonstrated that local resonance
and Bragg band gaps coexist in the proposed periodic sandwich
beams. Liu and Yang (2017) analyzed the characteristics of
acoustic wave transmitting in a metamaterial seawater pipe
which consists of a uniform pipe with air-water chamber
Helmholtz resonators mounted periodically along its axial
direction, the results showed that the proposed metamaterial
seawater pipe could generate a wide band gap in the low-
frequency range and rendering the propagation of the
frequency range acoustic waves in the piping system
dampened spatially. Faiz et al. (2020) theoretically and
experimentally investigated the waveguiding and filtering
properties of a two-dimensional phononic crystal slab. They
verified that the proposed device shows a complete band gap
and the Lamb wave in the phononic crystal slab can be suppressed
significantly. Zhou et al. (2014) studied the flexural wave band
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gap and attenuation characteristics in a periodic stiffened-thin-
plate with the help of center-finite-difference-method. Results
showed that the proposed periodic structure can yield complete
band gaps and the wave propagation is forbidden. Zuo et al.
(2018) investigated the flexural wave propagation and band gaps
of a locally resonant phononic crystal to achieve a wider band gap
and a lower cut-on frequency. This research provided an
approach for the application of locally resonant phononic
crystal in vibration and noise control.

As a preliminary study of periodic structure band gaps
characteristics and low-noise structural design of ship and
offshore structures, a simple physical model is proposed in
this paper for analyzing the dynamic characteristics of periodic
support beams and low-frequency flexural wave vibration of
slender stiffened plate structures in ship and offshore
structures. The proposed physical model is an infinite long
homogeneous beam coupled with periodic oscillators which is
a periodic beam-oscillators coupling system composed of
homogeneous beam and periodic local oscillators. Based on
the Timoshenko beam theory and its wave form solution, the
calculation method for the flexural wave band gaps in the
proposed infinite long homogeneous beam coupled with
periodic oscillators is established by the method of
reverberation-ray matrix combined with Bloch theorem. The
method of reverberation-ray matrix is a semi-analytical
method and the advantages of the present method lie in its
simplicity, clarity, and accuracy (Guo and Fang, 2011). The
rest of this article is organized as follows: First of all, the
calculation formulation for analyzing the flexural wave band
gaps of the homogeneous beam coupled with periodic
oscillators is established by using the method of reverberation-
ray matrix, as detailed in Section 2. The theoretical calculation
results and discussions of the band gap characteristics are given in
Section 3, which the flexural wave band gaps calculation method
is verified by structural flexural wave vibration transmission
characteristics based on finite element method, as shown in
Section 3.2. And then the influences of various structural and
material parameters of the homogeneous beam coupled with
periodic oscillators on the band gap characteristics are
respectively investigated in Section 3.3. Conclusions are given
in Section 4.

2 PHYSICS MODEL AND CALCULATION
METHOD

The proposed simple physical model considered in this paper is
constituted of an infinitely long homogeneous beam coupled with
periodic local oscillators in parallel connection as illustrated in
Figure 1A, which is a periodic beam-oscillators coupling system.
The area surrounded by a red dashed line in Figure 1A is the unit
cell of the proposed infinite long homogeneous beam coupled
with periodic oscillators and the schematic diagram is shown in
Figure 1B, and the periodic beam-oscillators coupling system in a
unit cell is drawn in Figure 1C. By periodically repeating and
combining the unit cell along the length direction, the proposed
infinite long homogeneous beam coupled with periodic
oscillators can be obtained. The structural parameters of the
proposed infinite long homogeneous beam coupled with periodic
oscillators are listed as follows: the spring stiffness ks, the massms

and the damping cs of the periodic oscillators, lattice constant a,
section moment of inertia I, section area A as well as the support
stiffness of the elastic foundation k*, and the material parameters
of the homogeneous beam including Young’s modulus E, mass
density ρ and Poisson’s ratio ]. In advance of investigating the
flexural wave band gaps and vibration attenuation characteristics
in the proposed infinite long homogeneous beam coupled with
periodic oscillators, the governing wave equations should be
introduced. The main equations of the flexural wave band
gaps calculation method for the proposed infinite long
homogeneous beam coupled with periodic oscillators are as
follows.

Considering the effects of shear deformation and moment of
inertia, the flexural wave vibration governing equations of a
homogeneous Timoshenko beam with elastic foundation
support can be written as (Li et al., 2014):

EI
z2φ

zx2
+ κGA(zw

zx
− φ) − ρI

z2φ

zt2
� 0 (1)

κGA(z2w
zx2

− zφ

zx
) − ρA

z2w

zt2
+ kpw � 0 (2)

where G represents the shear elastic modulus, κ denotes the shear
correction coefficient, w (x, t) and φ(x, t) are the vertical

FIGURE 1 | The physicsmodel: (A) Schematic diagram of infinite long homogeneous beam coupled with periodic oscillators; (B) Schematic diagram of the unit cell;
(C) The beam-oscillators coupling system in a unit cell.
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displacement and rotation angle of the homogeneous beam,
respectively.

By eliminating zφ/zx after substituting Eq. 1 into Eq. 2, the
flexural wave vibration governing equation expressed only by
vertical displacement w (x, t) can be obtained as

z4w

zx4
+ kp

κGA

z2w

zx2
− ( ρ

κG
+ ρ

E
) z4w

zx2zt2
+ (ρA

EI
− ρkp

EκGA
) z2w

zt2

+ ρ2

EκG

z4w

zt4
− kp

EI
w � 0 (3)

The wave form solution for the vertical displacement in the
homogeneous beam can be expressed as w = W0e

i(kx−ωt). Thus,
after omitting the simple harmonic time factor e−iωt, the solution
of Eq. 3 in the frequency domain can be expressed as follows:

w � a1e
ik1x + d1e

−ik1x + a2e
ik2x + d2e

−ik2x (4)

where k1 �
����������������
−α/2 +

���������
(α/2)2 − β

√√
and k2 �

����������������
−α/2 −

���������
(α/2)2 − β

√√
are wavenumbers, and where

α � − kp

κGA
− ω2( ρ

κG
+ ρ

E
) ,

β � −ω2(ρA
EI

− ρkp

EκGA
) + ρ2

EκG
ω4 − kp

EI
(5)

From this, the rotation angle of the homogeneous beam can be
written as

φ � g1a1e
ik1x − g1d1e

−ik1x + g2a2e
ik2x − g2d2e

−ik2x (6)
where gj (j = 1, 2) can be expressed as

gj � ikjκGA

EIk2j + κGA − ρIω2
(7)

According to the relationships between the bending moment
with the vertical displacement, M � EIz2w/zx2, and the shear
force with the vertical displacement and rotation angle in
Timoshenko beam, V � κGA(φ − zw/zx), the expressions of
the bending moment and shear force can be obtained as:

M � −EI(k21a1eik1x + k21d1e
−ik1x + k22a2e

ik2x + k22d2e
−ik2x) (8)

V � κGA[(g1 − ik1)a1eik1x − (g1 − ik1)d1e
−ik1x

+ (g2 − ik2)a2eik2x − (g2 − ik2)d2e
−ik2x] (9)

The Eqs 4, 5 can be rewritten in matrix form as

Wd � AdPh(−x)a + DdPh(x)d (10)
and similarly, the Eqs 7, 8 are rewritten in matrix form as

Wf � AfPh(−x)a + DfPh(x)d (11)
where Wd = {w, φ}T and Wf = {V, M}T are the generalized
displacement vector and the generalized force vector, a and d
respectively stand for the amplitude vectors of arriving wave and
leaving wave, Ad and Dd respectively denote the coefficient
matrixes of the arriving wave and the leaving wave
corresponding to the displacement vector, Af and Df are the

coefficient matrixes of the arriving wave and leaving wave
corresponding to the force vector, and Ph denotes the phase
matrix, which the specific expressions are given as follows:

Wd � {w φ }T Wf � {V M }T (12)
a � { a1 a2 }T d � { d1 d2 }T (13)

Ph(x) � [ e−ik1x 0
0 e−ik2x

] (14)

Ad � [ 1 1
g1 g2

] Dd � [ 1 1
−g1 −g2

] (15)

Af � [ κGA 0
0 −EI][g1 − ik1 g2 − ik2

k21 k22
]

Df � [ κGA 0
0 −EI][ ik1 − g1 ik2 − g2

k21 k22
] (16)

As the beam-oscillators coupling system in a unit cell plotted
in Figure 1C, the relationships of the generalized displacements
continuities and generalized forces equilibriums at the node J of
the beam-oscillators coupling system unit cell are expressed as
follows:

WJI
d � TJ

dW
JK
d (17)

WJI
f � TJ

fW
JK
f + FJ (18)

where TJ
d=diag {-1, 1} and Tf

J=-TJ
d respectively stand for the

transformation matrix of the generalized displacement and
generalized force at node j, and FJ denotes the reaction force
vector of the local oscillator acting on the beam.

As the beam-oscillators coupling system in a unit cell
illustrated in Figure 1C, the coupling vibration equation of the
local oscillator coupled with the beam in parallel connection at
the connection node can be obtained by

ms €ws + ksws + cs _ws � FJ (19)
Therefore, the reaction force vector of the local oscillator

acting on the beam is presented as

FJ � KJWJK
d (20)

where KJ = diag{kw kφ} stand for the dynamic stiffness matrix
of the local oscillator acting on the beam at node J, where the
kw = −msω

2+ks + icsω and kφ = 0 are the translational stiffness
coefficient and rotational stiffness coefficient of the local
oscillator acting on the beam, respectively, ks and ms

respectively represent the spring stiffness and mass of the
local oscillator, ws = wJK = −wJI denotes the vertical
displacement of the local oscillator and the beam at the
node J.

Substituting Eqs 9, 10 and 19 into Eqs 16, 17 obtains the
scattering relationship of the beam-oscillators coupling system at
node J as follows:

AJaJ + DJdJ � 0 (21)
where aJ = {(aJI)T (aJK)T}T and dJ = {(dJI)T (dJK)T}T are the
amplitude vectors of the arriving wave and the leaving wave,
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respectively, AJ and DJ respectively stand for the corresponding
coefficient matrixes of aJ and dJ at the node J, respectively, which
are expressed as

AJ � [AJI
d −TJ

dA
JK
d

AJI
f −(TJ

fA
JK
f + KJAJK

d ) ]
DJ � [DJI

d −TJ
dD

JK
d

DJI
f −(TJ

fD
JK
f + KJDJK

d ) ] (22)

According to the Bloch theorem of periodic structure, the
following equations must be satisfied for the generalized
displacement vector and generalized force vector in the unit
cell of the proposed infinite long homogeneous beam coupled
with periodic oscillators, which are listed as follows:

eiqaWIJ
d � TJ

dW
KJ
d (23)

eiqaWIJ
f � TJ

fW
KJ
f (24)

As the same, substituting Eqs 10, 11 into Eqs 22, 23 obtains

ApJapJ + DpJdpJ � 0 (25)
where a*J = {(aIJ)T (aKJ)T}T and d*J = {(dIJ)T (dKJ)T}T are the
amplitude vectors of the arriving wave and the leaving wave,
respectively, A*J and D*J respectively stand for the corresponding
coefficient matrixes of a*J and d*J at the node J, which are
expressed as

ApJ � [ eiqaAIJ
d −TJ

dA
KJ
d

eiqaAIJ
f −TJ

fA
KJ
f

] DpJ � [ eiqaDIJ
d −TJ

dD
KJ
d

eiqaDIJ
f −TJ

fD
KJ
f
] (26)

By combining Eqs 20, 24, the global scattering relationship in
a unit cell of the infinite long homogeneous beam coupled with
periodic oscillators can be obtained as follows:

Aa + Dd � 0 (27)
where a = {(aIJ)T (aJI)T (aJK)T (aKJ)T}T and d = {(dIJ)T (dJI)T (dJK)T

(dKJ)T}T respectively stand for the global amplitude vectors of the
arriving wave and the leaving wave of the proposed unit cell, A
and D respectively denoted the corresponding coefficient
matrixes of a and d at the node J, which the expressions are
expressed as follows:

A �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
eiqaAIJ

d 0 0 −TJ
dA

KJ
d

0 AJI
d −TJ

dA
JK
d 0

0 AJI
f −(TJ

fA
JK
f + KJAJK

d ) 0

eiqaAIJ
f 0 0 −TJ

fA
KJ
f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
D �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
eiqaDIJ

d 0 0 −TJ
dD

KJ
d

0 DJI
d −TJ

dD
JK
d 0

0 DJI
f −(TJ

fD
JK
f + KJDJK

d ) 0

eiqaDIJ
f 0 0 −TJ

fD
KJ
f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(28)

For the flexural wave in any section of the beam, the leaving
wave of the left end is exactly the arriving wave of the right node,
and vice versa. For any section (e.g., section J) of the beam, the
phase relationships can be expressed as follows:

aJK � PJKdKJ (29)

aKJ � PJKdJK (30)
where PJK = −Ph (L

JK) is the phase matrix of the beam section J.
Thus, according to the phase relationships of each section of

the beam, the global phase relationship is obtained as

a � Pdp (31)
where dp = {(dJI)T (dIJ)T (dKJ)T (dJK)T}T is the rearranged global
amplitude vector of the leaving wave in the unit cell of the infinite
long homogeneous beam coupled with periodic oscillators, P =
diag{PIJ PIJ PJK PJK} is the global phase matrix.

Comparing the global leaving wave amplitude vectors dp and
d of the infinite long homogeneous beam coupled with periodic
oscillators unit cell, the two vectors have the same elements with
different arrangement orders. Thus, the relationship between the
amplitude vectors dp and d is obtained as follows:

dp � Ud (32)

U �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 I2 0 0
I2 0 0 0
0 0 0 I2
0 0 I2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (33)

where U is the permutation matrix between dp and d, in which I2
stands for the two-order unit matrix.

After substituting Eqs 30, 31 into Eq. 26, the flexural wave
dispersion relation in the unit cell of the infinite long
homogeneous beam coupled with periodic oscillators can be
yielded as follows:

(APU + D)d � 0 (34)
where R = APU + D denotes the reverberation-ray matrix of the
periodic beam-oscillators coupling system.

In order to obtain the non-zero solution of the global leaving
wave amplitude vector d, namely, the determinant of the
reverberation-ray matrix R must be zero, which is

det(R) � 0 (35)
Thus, the relationship of the flexural wave number q and

frequency f in the unit cell of the proposed infinite long
homogeneous beam coupled with periodic oscillators can be
solved by Eq. 34, which is the flexural wave dispersion
relations and vibration band gaps of the proposed periodic
beam-oscillators coupling system.

3 RESULTS AND DISCUSSIONS

3.1 Bad Gaps Characteristics in
Homogeneous BeamCoupledWith Periodic
Oscillators
This section calculates and analyses the flexural wave band gaps
and vibration attenuation characteristics in the proposed
homogeneous beam coupled with periodic oscillators. In order
to facilitate the band gaps characteristics study and the effects
analysis of the parameters on band gaps characteristics, as a
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calculation example study, the material parameters of the
homogeneous beam are considered as: the Young’s modulus
E = 2.1 × 1011 Pa, mass density ρ = 7850 kg/m3 and Poisson’s
ratio ] = 0.28. And geometrical parameters of the homogeneous
beam and periodic oscillators are presented in Table 1.

According to the flexural wave band gaps calculation method
obtained in the previous section, Figure 2A shows the band gaps
characteristics calculation results of the proposed infinite long
homogeneous beam coupled with periodic oscillators in the
calculation example study, in which the left vertical axis and
the right vertical axis are the frequency and normalized frequency
of the flexural wave. The normalized frequency is defined as
fa0/cT to obtain more general results, in which the cT is the
transversal wave speed in steel which the value is 3140 m/s. It is
clear that in the frequency range of 0–1500 Hz, there are two band
gaps of 0–198.3 Hz and 522.8–592.3 Hz in the proposed periodic
beam-oscillators coupling system, and which the bandwidths are
198.3 Hz and 69.5 Hz, respectively.

3.2 Numerical Calculation Validation Based
on Finite Element Method
To verify the effectiveness of the flexural wave band gaps
characteristics calculation method obtained in this paper and
demonstrate the existences of the flexural wave band gaps and

vibration attenuation characteristics in the proposed periodic
beam-oscillators coupling system, a structural dynamic
characteristic analysis of a finite long homogeneous beam
coupled with periodic oscillators with 12 unit cells based on
finite element method is conducted in this section. The
flexural wave band gaps and vibration attenuation
characteristics of various periodic structures had been analyzed
by the numerical calculation of the finite array periodic
structures, the numerical calculation method is an effective
and efficient calculation method of band gaps and vibration
attenuation characteristics and has been widely used to
demonstrate the effectiveness of the band gaps calculation
methods (Waki et al., 2009; Zhou et al., 2015; Nobrega et al.,
2016; Xiang et al., 2020). As shown in Figure 3A, the finite array
finite element model with 12 unit cells of the proposed periodic
beam-oscillators coupling system is established in Abaqus CAE at
the beginning of the numerical calculation, the finite element
model is constituted of a homogeneous beam with a rectangular
section and coupled with 12 periodic oscillators in parallel
connection, which the separation distance is 1.0 m and each
unit cell contains 400 beam elements, the vibration direction
of the periodic oscillators is vertical direction and the length
direction of the homogeneous beam is along X-axis with 12.0 m
dimensions. The structural and material parameters of the finite
element model are the same with those in the calculation example

TABLE 1 | The parameters of homogeneous beam and periodic oscillators in the calculation example study, in which the subscript 0 is defined to distinguish the calculation
example study and parametric study.

Parameter ks0 (N/m) ms0 (kg) a0 (m) cs (N·s/M) I0 (m4) A0 (m2)

Value 5.0 × 107 8 1.0 0 2.0 × 10−5 3.0 × 10−3

FIGURE 2 | (A) The flexural wave band gaps characteristics of the infinite long homogeneous beam coupled with periodic oscillators. (B) The flexural wave vibration
transmission spectrum of the finite long homogeneous beam coupled with periodic oscillators with 12 unit cells.
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study in the previous section. The left end of the finite element
model is vertically excited by the unit sweep excitation force of
0–1500 Hz with 1 Hz frequency interval during the numerical
calculation, the vertical vibration velocity responses of the nodes
near the excitation point was used to detect the incident vibration
wave signal while those of the nodes near the right end was used
to probe the transmitted vibration wave signal, thus the vertical
vibration velocity responses of the nodes at both ends of the beam
are extracted to detect the vibration transmission spectrum of the
flexural wave in the homogeneous beam coupled with
periodic oscillators. The sketch map of the excitation force
and velocity response are illustrated in Figure 3A. At last, the
flexural wave vibration attenuation characteristics at particular
frequencies are captured and presented in Figures 3B–D. After
the vibration signal processing and spectral analysis, the band
gaps and vibration attenuation characteristics of the flexural wave
in the periodic beam-oscillators coupling system are
represented by the vibration transmission spectrum drawn in
Figure 2B.

Calculation results show the existences of two significant
vibration attenuation bands in the frequency bands from 0 to
209 Hz and from 511 to 594 Hz respectively in light blue regions
as illustrated in Figure 2B, which the bandwidths and locations of
the vibration attenuation bands are well consistent with the
corresponding flexural wave band gaps, thus the calculation

method of flexural wave band gaps characteristics obtained in
this paper is validated. The vertical vibration velocity responses at
the right part of the beam at 150 and 560 Hz in Figures 3B,C
show obvious vibration attenuations, it can be concluded that the
propagation of flexural wave in particular frequencies is
prohibited, which the effectiveness of the numerical
verification method is also further proved. Furthermore,
compared the calculation results in Figures 3B–D, the
significant reduction of structural vibration in Figures 3B,C
indicate that band gaps and vibration attenuations of the
flexural wave can appear in the homogeneous beam coupled
with periodic oscillators. Different from the vibration
attenuations caused by the damping of traditional materials,
the vibration attenuation in band gaps frequency ranges of the
flexural wave in periodic structures have relatively larger
attenuation. The vibration attenuations in band gaps are
caused by Bragg reflection and local resonance, which are
mainly determined by the periodicity of the periodic structures
and the local resonance of the microstructure,
respectively. Whereas, as absorbing and consuming the energy
of structural vibration is the properties of material damping, the
vibration attenuations caused by material damping are appear in
all frequency range while the main effective region is medium/
high frequency with smaller attenuation amplitudes than those
attenuation amplitudes in band gaps frequency ranges.

FIGURE 3 | (A) Finite element model of the finite long homogeneous beam coupled with periodic oscillators with 12 unit cells; (B–D) The flexural wave vibration
attenuation characteristics at particular frequencies.
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3.3 Parametric Study
During the parametric studies, the control variable method is
used to calculate the flexural wave dispersion relations of the
homogeneous beam coupled with periodic oscillators with
different parameters values, and then the effects of the
parameters on the flexural wave band gaps and vibration
attenuation characteristics are studied in this section.

3.3.1 Effect of Spring Stiffness on the Band Gaps
Characteristics
In order to study the effects of periodic oscillators spring
stiffness ks on the band gaps characteristics of the flexural
wave, the ratio of ksdim = ks/ks0 is defined as dimensionless
spring stiffness to realize the dimensionless parameters study,
where ks0 = 5.0 × 107 N/m is the spring stiffness in the
calculation example study. During the calculation, the ksdim
gradually increases from 10−4 to 104 while the material
parameters and geometrical parameters of the periodic
beam-oscillators coupling system keep constant. The effects
of periodic oscillators spring stiffness ks on the
flexural wave band gaps with different ksdim are illustrated
in Figure 4.

It can be observed from Figure 4 that the spring stiffness ks has
significant influences on the band gaps characteristics of the
flexural wave. Which the band gaps increase to a high-
frequency region in a multistep manner when the
dimensionless spring stiffness ksdim increases. For the first
band gap of the flexural wave in the periodic beam-oscillators
coupling system, when the ksdim increases in the range from 10−4

to 105, the lower limit frequency remains constant at 0 Hz, while
the upper limit frequency accelerated increases to about 592 Hz
when the ksdim = 15, and then keeps constant with the ksdim in the
range from 15 to 105. As the lower limit frequency maintains
invariable at 0 Hz, the bandwidth of the first band gap accelerated
increases to about 592 Hz and then keeps constant at about
592 Hz when the ksdim in the range from 15 to 105. This

change phenomenon is because the formation mechanism of
the first band gap, which is determined by the local resonance of
the periodic oscillators, therefore the increase of ksdim causes the
eigenfrequency of the periodic oscillators to increase and
resulting in the band gap shifts to a high-frequency region,
and there is a critical frequency value f = 590 Hz which is
caused by the coupling effects of the periodic oscillators and
the homogeneous beam.

The second band gap increase to a high-frequency region in a
multistep manner with the dimensionless spring stiffness ksdim
increases from 10−4 to 105. At the beginning, the lower limit
frequency keeps at about 460 Hz unchanged when the ksdim in the
range of 10−4~10−1 and gradually increases to 519 Hz when the
ksdim is 3, and then keeps constant when the ksdim in the range of
3–11, subsequently, the lower limit frequency gradually increases
to about 1040 Hz when the ksdim is 103 and keeps invariant at last
when the ksdim is in the range from 103 to 105. The upper limit
frequency gradually increases to 1894 Hz from 591 Hz when the
ksdim is in the range of 2~102, while keeps constant at 591 Hz and
about 1894 Hz when the ksdim are 10−4~2 and 102~105,
respectively. Therefore, the bandwidth of the second band gap
maintains invariable at 134 Hz at the beginning, and after that
decreases to the minimum value at 42 Hz when the ksdim = 3,
subsequently, the bandwidth gradually increases to 916 Hz when
the ksdim is 100 and then keeps constant at about 850 Hz when the
ksdim in the range of 500~105. This phenomenon can be explained
that the second band gap is determined by the coupling effects
between the Bragg scattering of periodic oscillators and the
propagation of the flexural wave in homogeneous beam. The
reaction forces of the periodic oscillators acting on the
homogeneous beam increases when the spring stiffness ks
increases, resulting in the increase of the bending stiffness of
the homogeneous beam, which leads to an increase in the
eigenfrequency of the proposed homogeneous beam coupled
with periodic oscillators.

FIGURE 4 | The flexural wave band gaps characteristics with different
dimensionless spring stiffness ksdim parameters.

FIGURE 5 | The flexural wave band gaps characteristics with different
dimensionless mass msdim parameters.
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3.3.2 Effect of Periodic Oscillators Mass on the Band
Gaps Characteristics
The effects of the periodic oscillators massms on the flexural wave
band gaps characteristics in the proposed periodic beam-
oscillators coupling system are obtained in Figure 5, in which
the dimensionless mass msdim = ms/ms0 is the ratio of the mass of
the periodic oscillators to the one ms0 defined in the calculation
example study and takes the value from 0.1 to 3.0.

It can be seen that, the two band gaps of the flexural wave in
the proposed homogeneous beam coupled with periodic
oscillators move to the low frequency region in different forms
when the dimensionless massmsdim increases from 0.1 to 3.0. For
the first flexural wave band gap, as the lower limit frequency keeps
constant at 0 Hz, and the upper limit frequency gradually
decreases from 224 to 162 Hz when the dimensionless mass
msdim in the range of 0.1–3.0, thus, the bandwidth also
gradually decreases from 224 to 162 Hz. This change
phenomenon is because the formation mechanism of the first
band gap, which is determined by the local resonance of the
periodic oscillators, therefore the increase of msdim causes the
eigenfrequencies of the periodic oscillators to decrease and
resulting in the band gap moves to a low-frequency region.

For the second flexural wave band gap, the lower limit
frequency keeps constant at 590 and 398 Hz when the
dimensionless mass msdim increase from 0.1 to 0.4 and 2.8 to
3.0, respectively, while gradually decreases when the msdim

increases from 0.4 to 2.8. The upper limit frequency gradually
decreases from 652 to 592 Hz when the msdim increases from 0.1
to 0.8 and then remains unchanged at last. Therefore, the
bandwidth of the second flexural wave band gap decreases to
the minimum value of 16.9 Hz when the msdim = 0.4, and then
slowly increases to about 193 Hz when the msdim = 2.8 and no
longer changes at last. This phenomenon can be explained that
the second band gap is determined by the coupling effects
between the Bragg scattering of periodic oscillators and the

propagation of the flexural wave in homogeneous beam. The
reaction forces of the periodic oscillators acting on the
homogeneous beam decreases when the mass ms increases,
resulting in the decrease of the bending stiffness of the
homogeneous beam, which leads to an reduce in the
eigenfrequency of the proposed homogeneous beam coupled
with periodic oscillators, and there also has a critical frequency
value f = 590 Hz.

3.3.3 Effect of Lattice Constant on the Band Gaps
Characteristics
Figure 6 demonstrates the effects of the lattice constant a on the
flexural wave band gaps characteristics in the infinite long
homogeneous beam coupled with periodic oscillators, in which
the dimensionless lattice constant adim = a/a0 is the ratio of the
lattice constant of the periodic beam-oscillators coupling system
to the one a0 defined in the calculation example study and takes
the value from 0.1 to 3.0.

It can be found from Figure 6 that the increase of the
dimensionless lattice constant adim moves both the two band
gaps of the flexural wave to the low-frequency region by different
ways. For the first band gap of the flexural wave in the proposed
periodic beam-oscillators coupling system, as the lower limit
frequency keeps constant at 0 Hz, the upper limit frequency or
the bandwidth reduces from 350 to 73 Hz when the adim decreases
from 0.1 to 3.0. For the second band gap of the flexural wave, both
the lower limit frequency and upper limit frequency rapidly
decrease when the adim in the range of 0.1–1.25, and then
gradually decreases when the adim in the range of 1.25–3.0, the
bandwidth decreases in the beginning and then gets the local
minimum value of 6.5 Hz when the adim = 1.25, and then
increases to about 80 Hz at last. This phenomenon can be
explained that the second band gap is determined by the
coupling effects between the Bragg scattering of periodic
oscillators and the propagation of the flexural wave in
homogeneous beam, since the wavelength corresponding to

FIGURE 6 | The flexural wave band gaps characteristics with different
dimensionless lattice constant adim parameters.

FIGURE 7 | The flexural wave band gaps characteristics with different
dimensionless periodic oscillators damping ratio csdim parameters.
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the intermediate frequency of the band gap of the flexural wave in
the periodic structure is about twice the lattice constant according
to the Bragg scattering theory, the increase of adim causes the band
gap of the flexural wave to move to a low-frequency region.

3.3.4 Effect of Periodic Oscillators Damping on the
Band Gaps Characteristics
Figure 7 shows the effects of periodic oscillators damping cs on
the band gaps characteristics of the flexural wave, in which the
dimensionless periodic oscillators damping ratio csdim = cs/csc is
the ratios of the periodic oscillators damping of the periodic
beam-oscillators coupling system to the critical damping csc
which is defined as csc � 2

����
ksms

√ � 40000N · s/m and takes the
value from 0 to 0.2.

It can be observed from Figure 7 that, the increase of the
dimensionless periodic oscillators damping ratio csdim has little
effect on the second band gap of the flexural wave, whereas the
upper limit frequency (the bandwidth) of the first band gap of the
flexural wave slowly decreases from 199 to 185Hz when the
dimensionless periodic oscillators damping ratio csdim in the
range of 0–0.168, after that it has a big jump growth to
259 Hz when the csdim = 0.17 and then increases to 262 Hz at
last. The increase of the csdim causes the upper limit frequency of
the first band gap to decrease in the beginning is because the
formation mechanism of the first band gap, which the increase of
csdim causes the translational stiffness coefficient of the periodic
oscillators acting on the beam to decrease. While the jump growth
when the csdim in the in the range of 0.17–0.20 is because the larger
periodic oscillators damping absorbs and consumes the energy of
the flexural wave in specific frequency range.

3.3.5 Effect of Section Moment of Inertia on the Band
Gaps Characteristics
The effects of the section moment of inertia I on the flexural wave
band gaps characteristics in the proposed periodic beam-
oscillators coupling system are illustrated in Figure 8 in which

the dimensionless section moment of inertia Idim = I/I0 is the ratio
of the section moment of inertia of the homogeneous beam to the
one I0 defined in the calculation example study and takes the
value from 0.01 to 5.0.

It can be found from Figure 8 that the lower limit frequency
and upper limit frequency of the first flexural wave band gap
almost keep constant, while the second flexural wave band gap
has a significant increase and moves up to the high-frequency
region. The lower limit frequency or the bandwidth of the first
flexural wave band gap rapidly increases from 66 to 198 Hz
when the Idim increases from 0.01 to 0.4 and then keeps
invariant. The lower limit frequency and upper limit
frequency of the second flexural wave band gap significantly
increase from 128 to 819 Hz and 240–1003 Hz when the Idim in
the range 0.01–5.0, respectively, which the bandwidth of the
second band gap gradually decreases to the minimum value of
9.3 Hz when the Idim = 0.4 and then gradually increases to
about 184 Hz. This change phenomenon is because the
formation mechanism of the first band gap, which is
determined by the local resonance of the periodic
oscillators, while the second band gap is determined by the
coupling effects between the Bragg scattering of periodic
oscillators and the propagation of the flexural wave in
homogeneous beam. The increase of the Idim causes bending
stiffness of the homogeneous beam to enhance and leads to an
increase in the eigenfrequency of the homogeneous beam while
can not change the eigenfrequency of the periodic oscillators.

3.3.6 Effect of Section Area on the Band Gaps
Characteristics
Figure 9 demonstrates the effects of the section area A on the
band gaps characteristics of the flexural wave in the homogeneous
beam of the periodic beam-oscillators coupling system, in which
the dimensionless section area Adim = A/A0 is the ratio of the
section area of the homogeneous beam to the one A0 defined in
the calculation example study and takes the value from 0.01 to 5.0.

FIGURE 8 | The flexural wave band gaps characteristics with different
dimensionless section moment of inertia Idim parameters.

FIGURE 9 | The flexural wave band gaps characteristics with different
dimensionless section area Adim parameters.
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The Figure 9 shows that the lower limit frequency (the
bandwidth) of the first band gap of the flexural wave shift to a
low-frequency region, whereas the lower limit frequency and the
upper limit frequency of the second band gap of the flexural wave
increase first and then move to a low-frequency region. To be
specific, the lower limit frequency or the bandwidth of the first
band gap decreases from 392 to about 100 Hz when the Adim

decreases from 0.01 to 5.0. The lower limit frequency of the
second band gap gradually increases from 426 Hz to the
maximum value of 600.8 Hz when the Adim increases from
0.01 to 0.3, and then gradually decreases to 288 Hz at last, as
the same, the upper limit frequency rapidly increases from 575 Hz
to the maximum value of 1280.3 Hz when theAdim increases from
0.01 to 0.05 and then gradually decreases to 305 Hz in the end.
Therefore, the bandwidth of the second flexural wave band gap
increases to the maximum value of 778.3 Hz, and then rapidly
decreases to about 12 Hz at last. This change phenomenon is
because the formation mechanism of the first band gap, which is
determined by the local resonance of the periodic oscillators,
while the second band gap is determined by the coupling effects
between the Bragg scattering of periodic oscillators and the
propagation of the flexural wave in homogeneous beam. The
increase of the Adim causes both the mass of the periodic

oscillators and the bending stiffness of the homogeneous beam
to reduce, which leads to the decrease in the eigenfrequencies of
the periodic oscillators and the homogeneous beam, respectively.

3.3.7 Effect of Material Parameters on the Band Gaps
Characteristics
To investigate the effect of material parameters of the
homogeneous beam on the band gaps characteristics of the
flexural wave in the periodic beam-oscillators coupling system,
change the material of the homogeneous beam as steel, copper as
well as aluminum, which the material parameters of the
homogeneous beam are shown in Table 2, and the other
geometrical parameters are the same as those defined in the
calculation example study and listed in Table 1. Figure 10
respectively obtained the effects of different material
parameters on the band gaps characteristics of the flexural
wave, in which the normalized frequency fa0/cT is the ratio
of the fa0 to the transversal wave speed in steel, copper or
aluminum, and the values are 3140, 2260, and 3080 m/s,
respectively.

It can be observed from Figure 10 that, when the normalized
frequency fa0/cT in the range of 0–0.75, there are three flexural
wave band gaps in the infinite long homogeneous beam coupled

TABLE 2 | The material parameters of the homogeneous beam.

Steel Copper Aluminum

Young’s modulus E (Pa) 2.1 × 1011 1.1 × 1011 7.0 × 1010

Mass density ρ (kg·m−3) 7850 8900 2600
Poisson’s ratio ] 0.28 0.34 0.33

Other geometrical parameters were listed in Table 1.

FIGURE 10 | The flexural wave band gaps characteristics with different homogeneous beam material properties.
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with periodic oscillators when the material of the homogeneous
beam is steel or aluminum, while it only has two flexural wave
band gaps when the homogeneous beam material is copper. The
lower limit frequencies or the bandwidths are similar when the
material is copper and aluminum, which are higher than that
when the material is steel. The locations and bandwidths of the
second flexural wave band gap are similar when the material is
steel and aluminum, which the normalized band gaps are
0.166–0.189 and 0.153–0.192, respectively. The third flexural
wave band gap locations of the steel and aluminum are almost
similar to those of the second band gap when the material is
copper, which the normalized lower limit frequencies are 0.493,
0.474, 0.428 and the normalized upper limit frequencies are 0.603,
0.565, 0.612 respectively when the material is steel, copper and
aluminum.

4 CONCLUSION

In this paper, we propose a periodic beam-oscillators coupling
system as the simple physical model for analyzing the dynamic
characteristics of periodic support beams and low-frequency
flexural wave vibration of slender stiffened plate structures in
ship and offshore structures, the calculation method for the
flexural wave band gaps in the proposed infinite long
homogeneous beam coupled with periodic oscillators is
established by the method of reverberation-ray matrix
combined with Bloch theorem. The effectiveness of the
flexural wave band gaps theoretical calculation method has
been verified by the numerical results expressed by the flexural
wave vibration transmission spectrum. Parametric studies show
that the flexural wave band gaps can be adjusted and optimized
manually by adjusting structural and material parameters. The
studies are of great guiding significance for the vibration and
noise control design of periodic support beams and slender
stiffened plate structures, such as the 1D periodic structures in
high-speed railway, building foundations, bridge structures, ships
and offshore structures, and the 2D periodic stiffened plates in
bridge structures, ships and offshore structures. The main
conclusions are as follows:

1) The formation mechanism of the first band gap, which is
determined by the local resonance of the periodic oscillators,
while the second band gap is determined by the coupling
effects between the Bragg scattering of periodic oscillators and
the propagation of the flexural wave in homogeneous beam.
As the lower limit frequency of the first flexural wave band gap
keeps constant at 0 Hz, it is conducive to the application of the

flexural wave band gap characteristics to the low-frequency
vibration and noise control of the periodic structure.

2) As can be seen from the studies of the effects of spring stiffness
and mass of the periodic oscillators on the flexural wave band
gap characteristics, there is a critical frequency value f =
590 Hz, the lower limit frequency and upper limit
frequency of the second band gap remains constant at
about 590 Hz when the ksdim in the range of 10−4~2 and
3–11, respectively. Similar to this, the initial frequency and the
terminal frequency of the second band gap keep constant at
about 590 Hz when the msdim in the range of 0.1–0.4 and
0.8–3.0, respectively. This phenomenon can be explained that
the second band gap is determined by the coupling effects
between the Bragg scattering of periodic oscillators and the
propagation of the flexural wave in homogeneous beam.

3) The effects of periodic oscillators damping on the first flexural
wave band gap is due to the increase of csdim causes the
translational stiffness coefficient of the periodic oscillators
acting on the beam to decrease.

4) With the dimensionless section moment of inertia Idim
increase, the frequencies of the second band gap have
significant gradually increase while those of the first band
gap almost keep constant. It is conducive to artificially
modulating and optimizing the second band gap
characteristic by tuning the section moment of inertia I.
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