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The integration of metal oxides and GaAs semiconductors is quite attractive for its potential
applications, but interfacial diffusion and lattice mismatch usually cause huge challenges
toward achieving high-performance electronic devices. In this article, we reported a thin
layer of epitaxial TiO2 (110) on a GaAs (001) substrate with significant compressive strain,
lattice distortion, and oxygen vacancies, where the oxygen vacancies proved to be the
critical factor to induce the compressive strain and lattice distortion. In this case, the lattice
mismatches between this compressed TiO2 (110) and GaAs (001) surface were calculated
to be as small as 1.3 and 0.24% along the [110] and [001] orientations of TiO2, respectively.
Further, no Ga-oxides or As-oxides were found at the interface, indicating that the TiO2

layer inhibited the diffusion of Ga and As atoms effectively. In summary, TiO2 film can be
grown epitaxially on GaAs (001) substrates with non-negligible compressive strain, lattice
distortion, oxygen vacancies, and a high-quality interface. This study also provides an
approach to integrate different functional oxides on TiO2-buffered GaAs for various GaAs-
based electronic devices with higher reliability and performance.
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INTRODUCTION

Great efforts have been made to integrate epitaxial functional oxides with III-V semiconductor GaAs
because of their widely promising applications (Liu et al., 2003; Ueda et al., 2006; Zheng et al., 2006;
Wei et al., 2011; Köç et al., 2013; Galatage et al., 2014; Mazet et al., 2015; Lee, 2016; Kornblum et al.,
2017; Zhou et al., 2017; Young et al., 2019; Verhulst et al., 2020; Zhou et al., 2020; Dalal et al., 2021).
But there still exists some challenges for fabricating functional-oxide/GaAs heterostructures with
excellent interfacial quality, such as the large lattice mismatch and interdiffusion of As and Ga atoms.
To solve these problems and achieve high-quality interfaces, many studies have attempted to insert a
passivation or buffer layer between the functional oxides and GaAs. For instance, Dalapati et al.
(2013) prepared a TiAlO alloy dielectric with a passivated GaAs surface by using atomic layer
deposition (ALD). Wang et al. (2013) used TaON as an interlayer prior to deposit a high-κ HfTiON
gate dielectric, demonstrating that the TaON passivation layer can suppress the formation of
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interfacial Ga-/As- oxides effectively. Byun et al. (2014) found
that a ZnO passivation layer also reduced the extent of diffusion-
mediated Ga-O bond formation and near-interface as segregation
significantly. In addition, a series of buffer layers have been
researched to achieve epitaxial functional oxides on buffered
GaAs surfaces. Nashimoto et al. (1992) deposited epitaxial
MgO on a GaAs (001) substrate as a buffer layer by pulsed
laser deposition. Murphy et al. (2004) investigated the
ferroelectric properties of epitaxial BaTiO3 (BTO) deposited
on MgO-buffered GaAs, where a large lattice-mismatch
between MgO and GaAs led to a poor crystal quality and
large leakage current density. Meanwhile, Contreras-Guerrero
et al. (2013) investigated the hetero-epitaxy of crystalline
perovskite SrTiO3 (STO) on GaAs (001), which had better
crystal and interface quality than that which had grown on a
MgO buffer layer (Wu et al., 2008; Yang et al., 2013; Meunier
et al., 2016). On this basis, Huang et al. deposited epitaxial ZnO,
Mn-doped BiFeO3, and BaTiO3 on GaAs (001), yielding good
crystal and electrical properties (Huang et al., 2009; Huang et al.,
2010; Gao et al., 2013). Louahadj et al. (2013) deposited
ferroelectric PZT on STO/GaAs templates by laser molecular
beam epitaxy (L-MBE), determining that the STO buffer template
can be used to maximally deposit perovskite ferroelectric oxides
on GaAs substrates. Although the STO buffer layer presents a
relatively smaller lattice mismatch with the GaAs (001) surface,
the interdiffusion between GaAs and STO also leads to the
formation of Ga-O and As-O bonds, restricting the
improvement of electrical properties. Therefore, it still requires
further investigation to develop high-quality epitaxial oxide/
GaAs heterostructures.

Since the thermodynamic stability of TiO2 is higher than that
of STO, the TiO2 buffer layer was considered to inhibit the
interfacial diffusion of Ga and As atoms more effectively
(Gougousi and Lacis, 2010; Henegar et al., 2016). Based on
this theory, we have prepared epitaxial BaTiO3 (110) film on
TiO2-buffered GaAs (001) substrates in our previous studies and
studied the epitaixial and electrical qualities (Liu et al., 2017).
Until now, the oxygen vacancy has been widely studied for its
great influence on the physical and chemical properties of oxide
films (Lim and Cheong, 2013; Lim and Cheong, 2014; Quah et al.,
2020). In this study, we investigated the interface quality between
TiO2 and GaAs, including the oxygen vacancies, interfacial
diffusion, lattice mismatch, and their relationships.

EXPERIMENTAL DETAILS

The deposition of TiO2 films was carried out by an L-MBE
system. A KrF (λ = 248 nm) excimer laser was operated with
an energy density of 1.2 J/cm2 at a frequency of 2 Hz. A highly
purified TiO2 target was used, and the distance from target to the
substrate was kept at 60 mm. Before being loaded into the
depositing chamber, the GaAs substrates were ultrasonically
cleaned with acetone, alcohol, buffered hydrofluoric acid (pH
= 4.5), and acetone again successively. Then, the GaAs substrates
were transferred into the depositing chamber and heated to 650°C
for 5 min to remove native oxides. The deposition temperature

was set at 500°C, and the chamber was evacuated to a base
pressure of 1 × 10−5 Pa during the entire deposition. In this
way, TiO2 layers with thicknesses of 2, 10, and 20 nm were
deposited on the GaAs (001) substrates. Finally, the fabricated
sample is annealed in situ in a 0.1-Pa O2 atmosphere for 10 min.
The GaAs wafer was heat-treated at 650°C to decompose and
evaporate the native oxides, achieving a clean GaAs surface
without Ga-O or As-O bonds. Generally, six kinds of samples
were prepared in this study, including as-received GaAs wafer,
heat-treated GaAs wafer, TiO2 (2 nm)/GaAs, and TiO2 (20 nm)/
GaAs before and after annealing.

The growth process of TiO2 was determined by the typical
reflection high energy electron diffraction (RHEED) oscillation
technique. Film structure was determined by X-ray diffraction
(XRD) with Cu Ka radiation (D1 System, Bede). Film
composition was measured by X-ray photoelectron
spectroscopy (XPS, AXIS Ultra DLD, Kratos).

RESULTS AND DISCUSSION

Crystal Structure of TiO2 Film
Figure 1 shows RHEED patterns during the process of growing
TiO2 on the GaAs (001) substrates. Before depositing, the
RHEED patterns of the cleaned GaAs surface exhibited clear
and bright diffraction spots, as shown in Figure 1A, indicating

FIGURE 1 |RHEED patterns of (A) cleanedGaAs surface along the [110]
azimuths; (B) 0.5 nm-TiO2; and (C) 10-nm TiO2 along the [001] azimuths; (D)
10-nm TiO2 along the [110] azimuths; (E) 10-nm TiO2 along the [001] azimuths
after annealing; and (F) 10-nm TiO2 along the [110] azimuths after
annealing.
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that the GaAs substrate had been processed well with an
atomically flat surface. After 100 pulses of TiO2 deposition
(approximately 0.5 nm), the diffraction spots of GaAs nearly
disappeared, as shown in Figure 1B. At this moment, the
layer was too thin to present the diffraction patterns of TiO2.
After depositing 10-nm of TiO2 film, the RHEED pattern along
the TiO2 [001] azimuths presented bright diffraction fringes, as
shown in Figure 1C, indicating that the TiO2 film grew layer by
layer. Figure 1D shows the RHEED pattern of 10-nm TiO2 along
the [110] azimuths after rotating the substrate 90° clockwise.
Then, the sample was rotated clockwise by another 90°,
presenting almost exactly the same diffraction pattern shown
in Figure 1C, indicating that the epitaxial TiO2 (110) was of two-
fold rotational symmetry. This is why two-fold rotational
symmetry BTO (110) film was epitaxially grown on TiO2-
buffered GaAs (001) substrate, as we reported previously (Liu
et al., 2017). After being annealed in a 0.1-Pa O2 atmosphere for
10 min, the diffraction fringes along the [001] azimuths of the 10-
nm TiO2 exhibited bright diffraction spots with a significantly
decreased lateral spacing, as shown in Figure 1E, indicating that
the lattice constant increased and the compressive strain released.
Meanwhile, the diffraction pattern along the [001] azimuths of
TiO2 presented the same lateral spacing after annealing, and the
diffraction fringes changed into diffraction spots, demonstrating
the island-growth mode, as shown in Figure 1F.

XRD was employed to further analyze the effect of the O2

annealing process on the crystal properties of the TiO2 film, as
shown in Figure 2A. The as-deposited TiO2 film presented very
weak diffraction peaks of the rutile TiO2 (110) phase, which can
be ascribed to lattice distortion. After annealing in O2, diffraction
peaks of the rutile TiO2 (110) and (220) planes were clearly
observed, indicating the good crystalline quality of rutile TiO2

(110) film due to the release of compressive strain. In order to
explain the in-plane epitaxial relationship between the TiO2 (110)
film and GaAs (001) substrate visually, a detailed lattice-matching
schematic diagram was plotted, as shown in Figure 2B. As it is

known, rutile-phase TiO2 is tetragonal with a = 0.4593 nm and c
= 0.2959 nm, and the lateral spacing of a RHEED pattern is
inversely proportional to the relevant lattice constant. On this
basis, the theoretical lattice constant of standard TiO2 along the
[110] azimuths was calculated as 0.6494 nm, which was used as a
standard to determine the lattice constants of compressed TiO2,
corresponding to a lateral spacing of 181 pixels in Figure 1E. The
lateral spacing in Figures 1C,D was measured as 290 and 391
pixels, so the corresponding lattice constants of compressed TiO2

was estimated as 0.4050 and 0.3005 nm along the [110] and [001]
directions, respectively. In this case, the in-plane epitaxial
relationship of the TiO2/GaAs heterostructure was plotted, as
shown in Figure 2B. Obviously, two compressed TiO2 cells
matched well with 0.75 GaAs cells along the TiO2 [001] and
GaAs [1-10] directions, and the calculated lattice mismatch was
as small as 0.24%. Further, two compressed TiO2 cells matched
with one GaAs cell along the TiO2 [110] and GaAs [110]
directions, with a calculated lattice-mismatch value of 1.30%.
In contrast, the lattice mismatches between standard TiO2 and
the GaAs substrate were calculated to be 1.29 and 18.76% along
the TiO2 [001] and TiO2 [110] directions, respectively. Thus,
these results reveal the epitaxial mechanism of TiO2 (110) on
GaAs (001), in which the TiO2 (110) film deposited on the GaAs
(001) surface with non-negligible lattice distortion and
compressive strain due to their lattice mismatch.

Chemical Composition and Valence
In order to evaluate the chemical composition of TiO2 with
compressive strain, XPS depth profiles of Ti 2p and O 1s were
recorded under a 20-nm thickness of TiO2 via Ar-ion beam
sputtering technology, as shown in Figures 3A,B. XPS spectra
measured at different depths were significantly inconsistent, and
complex low-oxidation states of Ti cations were obtained in depth
profiles at thicknesses of 3–15 nm. These XPS results showed that
the as-deposited, compressed TiO2 films can be easily oxidized to
form a thin and standard TiO2 layer at the surface when exposed

FIGURE 2 | (A) XRD 2θ scans of the TiO2/GaAs heterostructure with and without in-situ annealing in O2; (B) In-plane epitaxial relationship between GaAs (001) and
TiO2 (110) with compressive strain.
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to air. All these XPS spectral were calibrated by C peak at
284.6 eV, and the Ti 2p peaks can be divided for six peaks at
458.3 eV (Ti4+ 2p3), 456.5 eV (Ti3+ 2p3), 454.7 eV (Ti2+ 2p3),
464.1 eV (Ti4+ 2p1), 462.4 eV (Ti3+ 2p1), and 460.5 eV (Ti2+ 2p1).
Similarly, the O 1s peaks can be divided for two peaks at 532.8 eV
(oxygen vacancies) and 531.3 eV (O 1s). In this way, the total area
of Ti 2p or O 1s peaks were calculated by adding the area of all
divided peaks. According to the area ratio of Ti 2p, O 1s peaks and
their sensitivity factors (Gouttebaron et al., 2000; Guillot et al.,
2002), the contents ratios of Ti and O atoms can be calculated as
40,065.57:75,730.88, 51,237.13:96,420.32, 58,893.03:97,903.33,
57,899.32:93,273.84, 59,279.73:95,497.64, and 60,600.82:
97,625.87. On this basis, the contents of Ti ions were
determined as 34.65, 34.73, 37.62, 38.30, 38.31, and 38.31% at
depths of 0, 3, 6, 9, 12, and 15 nm, respectively, as shown in
Figure 3C. These results indicate that the compressed TiO2 film
had a stable chemical composition at depths greater than 9 nm. In
addition, the effect of the in-situ O2 annealing process was also

investigated, as shown in Figures 3D,E. XPS spectra of the As-
deposited. TiO2 exhibited peaks corresponding to the low-
valence-state of Ti ions and oxygen vacancies. Nevertheless,
these XPS peaks disappeared after annealing in the O2

atmosphere for 20 min, indicating that oxygen vacancies can
be repaired well by this O2 annealing process. Taking all the above
crystal and XPS observations together, it can be concluded that
oxygen defects were a key reason for the formation of epitaxial
TiO2 film with compressive strain and lattice distortion.

To provide further insight into the effect of TiO2 film on
inhibiting interfacial diffusion, 2-nm-thick TiO2 films were
deposited in high vacuum to fabricate TiO2/GaAs, and the
interfacial quality was determined by XPS. In addition, the
original GaAs surface and the GaAs surface without native
oxides were also employed for comparison. As shown in
Figure 4A, the As-Ga, As-As, and As-O bonds were detected
at 40.8, 41.5, and 44.3 eV, respectively, where the existence of the
As-O bond was ascribed to the native oxides at the surface of

FIGURE 3 | Ex-situ XPS spectra of (A) Ti 2p and (B) O 1s at different depths. (C) Relative concentration of Ti atoms as a function of etching depth. (D) Ex-situ XPS
spectra of Ti 2p with and without in-situ annealing in 0.1-Pa O2. (E) Ex-situ XPS spectra of O 1s with and without in-situ annealing in 0.1-Pa O2.
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GaAs. Meanwhile, Figure 4B shows the ex-situ XPS As 3d
spectrum of the GaAs substrate after heat-treatment at 650°C
in high vacuum. An As-O peak can be barely observed, indicating
that As-oxides were completely removed. Figures 4C,D show As
3d spectra of TiO2(2 nm)/GaAs samples. Similarly, As-O peaks
cannot be detected in these two spectra whether the annealing
process was employed or not, indicating that TiO2 film can
effectively inhibit the diffusion of As atoms and the formation
of As-oxides.

The XPS spectra of Ga 3d for the different samples were
also provided as shown in Figure 5. Figure 5A shows that
obvious Ga-O bonds were detected at the surface of the as-
received GaAs wafer, indicating the presence of Ga2O, GaO,
and Ga2O3. Meanwhile, the intensities of the Ga-O peaks
decreased significantly after heat-treatment, as shown in
Figure 5B, indicating that the native Ga-oxides can be
mostly removed by heat-treatment. Combining the barely
observed Ga-O peaks in Figures 5C,D, it can be inferred that
the Ga-O bonds in Figure 5B were the result of oxidation via
air, prior to carrying out XPS measurements. In addition, the
absence of Ga-O bonds for the as-deposited TiO2 (2 nm)/
GaAs samples demonstrated the effective inhibition of TiO2

toward the diffusion of Ga atoms, which was attributed to the
formation of Ga-Ti bonds. After annealing in an O2

atmosphere, Ga-O peaks appears again, but no Ga-Ti
peaks were observed, showing that the existence of Ga-Ti
bonds may be the critical reason for suppressing the
formation of Ga-oxides. In conclusion, a TiO2 passivation
layer without O2 annealing can suppress the diffusion of Ga
and As atoms and inhibit the formation of As-oxides and Ga-
oxides at the interface of the TiO2/GaAs heterostructure
successfully.

CONCLUSION

In this article, we demonstrated the epitaxial growth mechanism of
TiO2 (110) films on GaAs (001) substrates with large lattice distortion
and compressive strain. The lattice mismatches are calculated to be
only 1.3 and 0.24%, along the TiO2 [110] and [001] orientations,
respectively. Strictly speaking, non-negligible oxygen vacancies are
proven to exist in this compressedTiO2film and the chemical formula
should be determined as Ti0.383O0.617. These oxygen vacancies can be
healed by annealing in O2 atmosphere, which results in the release of
compressive strain. Besides, XPS results show that the formation of
Ga-oxides and As-oxides can be effectively inhibited by suppressing
the interfacial diffusion of Ga and As atoms at the TiO2/GaAs
interface. In summary, the reason for the epitaixal growth of TiO2

on GaAs (001) substrate can be concluded as the combined action of
oxygen vacancies and lattice distortion. These findings provide a new
method for integrating functional oxides on GaAs substrates with
high-performance interfacial quality.
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