
Band Structure Analysis of SH Wave
Propagating in Nanoscale Layered
Metamaterial Structures
Zhizhong Yan* and Xiaotong Yang

MIIT Key Laboratory of Mathematical Theory and Computation in Information Security, School of Mathematics and Statistics,
Beijing Institute of Technology, Beijing, China

This study is devoted to the analysis of the band structures of the anti-plane transverse
wave (SH wave) in nanoscale layered metamaterial structures. Attention is restricted to
normal incidence of waves. The localization factor is introduced to characterize the band
structures. The general transfer matrix method based on the nonlocal elastic continuum
theory is employed to calculate the localization factor. Based on the analysis of band
structures, the influences of random disorder of the internal characteristic length and the
external thickness of each sub-layer, the aperiodic arrangements, the location of different
material components, the ratio of mass density, the ratio of the transverse wave velocity,
the ratio of the internal characteristic length or the external thickness of each sub-layer on
the band structures, the cut-off frequency, the peak points and the dense band zones are
investigated and discussed in detail, which can provide some new thoughts for the designs
and applications of the nanoscale wave devices.
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1 INTRODUCTION

The metamaterials, phononic crystals (PCs) (Kushwaha et al., 1993), have been studied intensely
over the past 2 decades due to their potential capability of controlling and tuning the propagation of
acoustic/elastic waves. These metamaterials have band gap characteristics, that is, waves in the band
gap frequency range are prohibited from passing through these structures. The unusual effect of PCs
with band gaps has a wide range of potential important applications such as sound detectors,
transducers, filters, waveguides, sensors, etc. Compared with two-dimensional (2D) and three-
dimensional (3D) PCs, one dimensional (1D) layered PCs have simpler structure and can fully show
the characteristics of wave propagation, thus, many experimental and theoretical researches on the
band structures of 1D macroscale layered PCs are witnessed over the past decades (Nougaoui and
Rouhani, 1987; Economou and Sigalas, 1994; Sigalas and Soukoulis, 1995; Luntiaov and Rogerson,
2010; Golub et al., 2012; Yu et al., 2012; Nguyen et al., 2016). The PCs are generally periodic.
However, the random disorder (Chen and Wang, 2007; Yan et al., 2009; Yan et al., 2010) and quasi-
periodic arrangement (Fernández-Alvarez and Velasco, 1998; Zárate et al., 1999; Barco and Ortuno,
2012; Chen et al., 2012; Yan and Zhang, 2012), may exhibit unique characteristics of a mixture of
acoustic/elastic wave propagation and localization, which are of significant interest in both basic and
applied sciences (Anderson, 1958). Although the macroscale quasi-periodic or aperiodic phononic
crystals (APNCs) have been extensively investigated and reported in literature (Fernández-Alvarez
and Velasco, 1998; Zárate et al., 1999; Barco and Ortuno, 2012; Chen et al., 2012; Yan and Zhang,
2012), (Aynaou et al., 2005; King and Cox, 2007; Sesion et al., 2007; Parsons and Andrews, 2009;
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Chen et al., 2010; Gazi and Bernhard, 2014), very little theoretical
study on the band structures of nanoscale APNCs has been
performed.

In recent years, owing to the wide potential applications in
new thermo-elecrical, acousto-optical, nanoscale electro-
mechanical devices and computer chips (Du et al., 2000; Hu
et al., 2000; Kana et al., 2013), more and more researchers have
conducted extensive research on nanoscale structures. As we all
know, when the structure size is several namometers, the size
effect must be considered. In this case, the constitutive
relationships cannot be described accurately by the
conventional elastic continuum theory (Ramprasad and Shi,
2005; Hepplestone and Srivastava, 2008). Therefore, many
methods have been developed to study the mechanical
behaviors of nanoscale materials and structures (Toupin, 1962;
Mindlin, 1965; Eringen, 1972; Eringen, 1983; Nowinski, 1991;
Gurtin et al., 1998; Aifantis, 1999; Yang et al., 2002; Eringen, 2006;
Huang and Sun, 2007), in which the nonlocal elastic (NLE)
continuum theory proposed by Eringen (Eringen, 1983;
Eringen, 2006) can describe the long-range inter-atomic
interactions and can account for the nanoscale size effect
inside the structures. By utilizing the NLE continuum theory,
Artan et al. (Artan and Altan, 2002) studied the effect of
nonlocality on the dynamic behavior of laminated composites
by means of dispersion of SV waves propagating in the direction
parallel to layering. Heireche et al. (2008) studied the sound wave
propagation in single-walled carbon nanotubes using NLE
continuum theory, and revealed the significance of the small-
scale effect on wave propagation in single-walled carbon
nanotubes. Shaat (2017) presented the paradoxes in the
existing solutions of the nonlocal field equation by introducing
the high-order boundary conditions. Ke et al. (2012) investigated
the nonlinear vibration of the piezoelectric nanobeams based on
the NLE continuum theory and Timoshenko beam theory. And
the influences of the nonlocal parameter, temperature change and
external electric voltage on the size-dependent nonlinear
vibration characteristics of the piezoelectric nanobeams are
conducted. Nowinski (1984) studied the propagation of Love
waves in an isotropic homogeneous elastic medium in the frame
of the NLE continuum theory, and determined the nonlocal
modulus by comparing the dispersion equation of the plane
transverse waves with the corresponding equation given by the
atomic lattice dynamics. Alibeigloo (2011) analyzed the vibration
of a nano-plate based on the NLE continuum theory. In addition,
the nonlocality also plays an important role in electronic and
magnetic materials (Hashemi and Samaei, 2011; Adhikari et al.,
2015; Chen et al., 2017a; Waksmanski and Pan, 2017; El-Nabulsi,
2018a; El-Nabulsi, 2018b). For example, Waksmanski and Pan
(2017) presented an exact closed-form solution for the three-
dimensional free vibrational response of a simply-supported and
multilayered magneto-electro-elastic plate considering the
nonlocal effect. Chen et al. (2017a) derived the analytical
solutions for propagation of time-harmonic waves in three-
dimensional magneto-electro-elastic multilayered plates with
nonlocal effect, and investigated the influences of the nonlocal
parameter on the dispersion curves. It should be noted that by
developing the transfer matrix method based on the NLE

continuum theory (Chen and Wang, 2011; Chen et al., 2013;
Chen et al., 2016; Yan et al., 2018; Chen et al., 2019; Yan et al.,
2020), a series of extensive studies on wave propagation in
nanoscale periodic structures have been carried out. The
results showed that a cut-off frequency was found, beyond
which the waves are prohibited from passing through the
structure. Besides, the dense band zones (DBZs) appeared in
the band structures when the nanoscale size-effect is taken into
account. However, the PCs in the above studies are all perfect
periodic. For nearly periodic nanoscale layered PCs, Chen et al.
(2017b) studied the size effect on the band structures of randomly
disordered, quasi-periodic and defected nanoscale PCs. Therein,
only the disorder of the external thickness of the first sub-layer is
considered for simplicity. Besides, only Fibonacci sequence is
studied. However, the influences of random disorder of the
internal characteristic length and the external thickness of
each sub-layer, the aperiodic arrangements, the location of
different material components, the ratio of the mass density,
the ratio of the transverse wave velocity, the ratio of the internal
characteristic length or the external thickness of each sub-layer on
the band structures, the cut-off frequency, the peak points and the
DBZs have not been investigated, which requires a detailed study
of these problems.

In this paper, we attempt to address these questions and the
band structures of the SH wave in the nanoscale layered
structures are studied in detail. The general transfer matrix
method based on the NLE continuum theory is used to
calculate the localization factor describing the band structures.
A detailed parametric study is conducted to investigate the
influences of random disorder of the internal characteristic
length and the external thickness of each sub-layer, the
aperiodic arrangements, the location of different components,
the ratio of the mass density, the ratio of the transverse wave
velocity, the ratio of the internal characteristic length or the
external thickness of each sub-layer on the band structures, the
cut-off frequency, the peak points and the DBZs.

The paper is structured as follows: Section 2 introduces the
nonlocal elastic continuum theory. And the theoretical models
and the general transfer matrix method are given in Section 3.
Section 4 is devoted to the illustration and discussion of the
results based on the calculations of the localization factor, where
different influence factors are taken into account. Finally, some
conclusions and future perspectives are presented in Section 5.

2 THE NONLOCAL ELASTIC CONTINUUM
THEORY

In nonlocal elastic theory, owing to the long-range interaction
between atoms or molecules in nanoscale materials and
structures, the stresses at a point are related not only to the
strains at the same point, but also to the strains at other points of
the whole body. The nonlocal elastic continuum model proposed
by Eringen (Eringen, 1983; Eringen, 2006) well explains that the
physical phenomenon represented by one point in the continuum
is affected by all other points in the whole domain, and the results
are consistent with the experimental observations of lattice
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atomic dynamics and phonon scattering. For homogeneous,
isotropic and elastic solids, the nonlocal and classical stress
tensor has the following relationship, which includes an
integral involving the whole region, i.e., (Eringen, 1983).

ς(x) � ∫
V

α(∣∣∣∣x′ − x
∣∣∣∣, a)σ(x′)dV(x′) (1)

where ς(x) represents the nonlocal stress tensor at point x, the
kernel function α(|x′ − x|) is the nonlocal modulus, |x’ − x| is the
Euclidean distance, a is the internal characteristic length, σ(x’) is
the classical stress tensor whose components can be defined by

σ ij(x′) � λerr(x′)δij + 2μeij(x′) (2)
with the strain components

eij(x′) � 1
2
(zui(x′)

zx′j
+ zuj(x′)

zx′i
) (3)

where λ and μ are classical Lamé constants, δij is the Kronecker-
delta, ui and uj are the displacement components, respectively.

The kernel function α(|x′ − x|, a) in Eq. 1 which depends on
the internal characteristic length a can be determined by
matching the dispersion curves with those obtained from
atomic lattice dynamics, first principle method and
experiments. Because the structures considered in this paper
are infinite along the y direction, the kernel function along
the y direction is supposed to be a Delta function, and then

α(∣∣∣∣x′ − x
∣∣∣∣) � α(∣∣∣∣x′ − x

∣∣∣∣)δ(∣∣∣∣y′ − y
∣∣∣∣) (4)

where α(|x’ − x|) is the kernel function along the x direction.
Therefore, Eq. 1 can be written as the following component form

ςmn(x) � ∫
s

α(∣∣∣∣x′ − x
∣∣∣∣)σmn(x′)ds(x′)

� ∫+∞
−∞

∫lk
0

α(∣∣∣∣x′ − x
∣∣∣∣)δ(∣∣∣∣y′ − y

∣∣∣∣)σmn(x)′dx d′y
(5)

It is well known that the kernel function α(|x’ − x|, a)
has different forms (Eringen, 1983). Considering the time-
harmonic elastic waves in this paper, it is more suitable to
choose α(|x’ − x|, a) as (Eringen, 2006), i.e., exponential kernel
function

α(∣∣∣∣x’ − x
∣∣∣∣, a) � 1

2a
e−
|x’−x|

a (6)

In Eringen’s NLE theory, the integral form of Eq. 1 can be
approximated in the following differential form (Eringen, 1983):

(1 − a2∇2)ςij � σ ij (7)
where ∇2 � z2

zx2 + z2

zy2 is the Laplace operator. The equations of
wave motion without body forces are expressed as

ςmn,m � ρ€un (8)
with ρ being the mass density. Here, the repeated indices denote
the conventional summation rule. Substituting Eqs 2, 3, and 7

into Eq. 8, the wave motion equation based on the NLE theory
can be written as the following differential ones

(λ + μ)um,nm + μun,mm � (1 − a2∇2)ρ€un (9)

3 THEORETICAL MODEL AND THE
GENERAL TRANSFER MATRIX METHOD

The SH wave propagating normally in the nanoscale periodic
structures are presented in Figure 1A. Figures 1B–D shows
the schematic diagrams of the nanoscale layered PCs arranged
as Thue-Morse sequence, Rudin-Shapiro sequence and
Fibonacci sequence, respectively, and the random disorder,
quasi-periodic and aperiodic structures considered in this
paper can be obtained by the following theoretical model
designs.

3.1 Theoretical Model
3.1.1 Nanoscale Random Disordered Structure
Here, we consider the elastic SH waves propagating in normally
distributed randomly disordered PCs. let D denote the internal
characteristic length τk(k � 1, 2) and the external thickness
lk(k � 1, 2) of the each sub-layer, respectively. For the
normally distributed randomly disordered PC, the
characteristic length D can be written as

D � D0 + δV1














( − 2 ln(S)/S)√

(10)
where D0 is the mean of D (corresponding to the perfect
periodic distribution), and δ is the variance of the internal
characteristic length or the external thickness representing the
disorder degree of this system, δ � 0 corresponds to a
perfect periodic system. V1 � 2t1 − 1, V2 � 2t2 − 1 in which
t1, t2 ∈ [0, 1] are standard uniformly distributed random
variables, S � V2

1 + V2
2.

3.1.2 Nanoscale Quasi-Periodic Structure
Here, we consider the nanoscale quasi-periodic layered structures
arranged in the Fibonacci sequence (Merlin et al., 1985) as shown
in Figure 1D. The Fibonacci sequence can be obtained by
repeating operations of the concurrent substitution rules:
A → AB and B → A (Hu an et al., 1992). The mth generation
of the Fibonacci sequence is denoted as Fm with F0 � B and
F1 � A. Then the Fibonacci sequence can be written as
Fm+1 � FmFm−1, for example, F2 � AB, F3 � ABA, F4 �
ABAAB, F5 � ABAABABA,/ where A and B are sub-layers
made up of different materials.

3.1.3 Nanoscale Aperiodic Structures
Being a bridge of linking periodic models with quasi-periodic
systems in a geometrical structure, Thue-Morse system (Bovier
and Ghez, 1995) and Rudin-Shapiro systems illustrated in
Figures 1B,C are thought to be more random than the quasi-
periodic Fibonacci lattices.

The Thue-Morse sequence is based on the two letter
alphabet (A, B), and can be generated by the inflation rules,
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as follows: A → AB, B → BA. The lower-order Thue-Morse
lattices are the
strings T0 � A, T1 � AB, T2 � ABBA, T3 � ABBABAAB, etc.

The Rudin-Shapiro sequence is an infinite sequence and can
be generated by a four state automaton as follows: AA → AAAB,
AB → AABA, BA → BBAB, BB → BBBA, respectively. It
should be noticed that for the two aperiodic systems
mentioned above, the letters A and B denote two different
material sub-layers.

3.2 General Transfer Matrix Method
In this section, we start from the periodic system, i.e., the
normal propagation of the time-harmonic SH elastic waves in
a nanoscale periodic multilayered phononic crystal is
considered. This structure depicted in Figure 1A is
composed of materials A and B layers, with the thicknesses
l1 and l2, respectively, and l � l1 + l2 is the thickness of one
unit-cell. The local coordinates of the monolayers are also
given in the figure. We assume that the layered composite
consists of N unit-cells. Each unit-cell includes, unless
otherwise stated, two sub-layers which are denoted by the
subscript k � 1, 2. For this problem, the displacement
components in the x- and y-directions, i.e., ux and uy are
zero, and the only non-zero displacement uk is along the
z-direction, which is perpendicular to the xy-plane. Then
Eq. 9 can be simplified into the following form for the kth
sub-layer

μk
z2uk

zx2
k

� ρω2(a2 z2
zx2

k

− 1)uk (k � 1, 2) (11)

By introducing the dimensionless local coordinate ζk � xk/l,
0≤ ζk ≤�lk � lk/l, Eq. 11 can be rewritten into the following
dimensionless form

z2uk

zζ2k
+ ϖ2

k

1 − ϖ2
kτ

2
k

uk � 0 (12)

where ϖk � ωl/ck is the non-dimensional frequency with ck �





μk/ρk

√
being the velocity of the transverse elastic wave, and τk �

ak/l is the ratio of the internal characteristic length and the
external thickness of the unit-cell.

Then, the general harmonic solution for the kth sub-layer can
be obtained, which has the following form:

uk(ζk) � (Uke
iqkζk + Vke

−iqkζk)e−iωt (13)
where qk �














ϖ2
k/(1 − τ2kϖ2

k)
√

, Uk and Vk are the unknown
coefficients to be determined. According to Eqs 13, 5, the
nonlocal stresses can be obtained as

ςk(ζk) � ∫
�lk

0

μk
2τk

e−
∣∣∣∣ζk−ζ ′k∣∣∣∣/τkzuk

zζ ’k
dζ ′k

� iqkμk
2

⎛⎝eiqkζk − e−ζk/τk

1 + iqkτk
− eiqk

�lk e(ζk−�lk)/τk − eiqkζk

1 − iqkτk
⎞⎠Uk

−iqkμk
2

⎛⎝e−iqkζk − e−ζk/τk

1 − iqkτk
− e−iqk�lk e(ζk−�lk)/τk − e−iqkζk

1 + iqkτk
⎞⎠Vk

(14)
Then, the state vector W � {�u, �ς}T with the bar denoting the

dimensionless parameters is chosen in order to obtain the transfer

FIGURE 1 | The schematic of the SH wave propagating normally in the nanoscale periodic layered structure (A), the layered PCs arranged as Thue-Morse
sequence (B), Rudin-Shapiro sequence (C) and Fibonacci sequence (D).
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matrix of the unit-cell. Based on the continuity conditions on the
left (subscript L) and right (subscript R) sides of the interface of
two adjacent sub-layers in the βth unit cell, the state vectors can
be defined as

W(β)
kL � {�uk, �ςk}Tζk�0 � TkL{Uk, Vk}T

W(β)
kR � {�uk, �ςk}Tζk��lk � TkR{Uk, Vk}T

(15)

where the matrices TkL and TkR can be obtained from Eqs 13, 5,
whose elements are given by

TkL(1, 1) � TkL(1, 2) � 1, TkL(2, 1) � −iμkqk
1 − e−iqklk e

−lk/τk
2(1 + iqkτk) ,

TkL(2, 2) � iμkqk
1 − eiqklk e

−lk/τk
2(1 − iqkτk) TkR(1, 1) � e−iqklk , TkR(1, 2)

� eiqklk , TkR(2, 1) � −iμkqk
e−iqklk − e

−lk/τk
2(1 − iqkτk) , TkR(2, 2)

� iμkqk
eiqklk − e

−lk/τk
2(1 + iqkτk)

(16)
Obviously, the two state vectors in Eq. 15 have the following

relation by eliminating the common vector, i.e.,

W(β)
kR � TkRT

−1
kLW

(β)
kL ≜ TkW

(β)
kL (k � 1, 2) (17)

where Tk � TkRT−1
kL is the transfer matrix of the kth sub-layer.

The displacements and nonlocal stresses are continuous at the
interface of two adjacent sub-layers in the same unit-cell and
between the βth and the (β − 1)th unit-cells, that is,

W(β−1)
2R � W(β)

1L , W(β)
1R � W(β)

2L (18)
From Eqs 17, 18, the following relation can be obtained

W(β)
2R � T2W

(β)
2L � T2W

(β)
1R � T2T1W

(β)
1L

� T2T1W
(β−1)
2R ≜ TβW

(β−1)
2R (19)

which shows the relationship between the state vectors of the βth
and the (β − 1)th unit-cells, where Tβ � T2T1 � T2RT−1

2LT1RT−1
1L is

the transfer matrix between the two consecutive unit-cells, i.e., the
transfer matrix of the βth unit-cell. For perfect periodic two-
component PCs, Tβ � T2T1 for all β � 1, 2, 3,/,N are the same
and denoted as T. It should be noticed that the above derivation is
applicable for not only the ordered periodic PNCs but also the
disordered, quasi-periodic and aperiodic ones. However the
transfer matrices of the “unit-cells” of the disordered, quasi-
periodic and APNCs are different from those of the perfect
periodic ones. For quasi-periodic or aperiodic structures, Tβ �
T2T1 are not all the same and the Bloch theory is not applicable,
for example, Using the above method, for the aperiodic structure
composed of N unit-cells, the total transfer matrix can be
obtained, that is,

Ttotal � TNRT
−1
NLT(N−1)RT−1

(N−1)LT(N−2)R/T−1
3LT2RT

−1
2LT1RT

−1
1L (20)

The detailed mathematical derivation is not given here for the
sake of brevity. Interested readers may refer to many publications
for more details.

In this paper, we use the well-defined localization factor to
characterize the band structures and localization phenomenon of
1D nanoscale layered PCs. The localization factor is defined as the
minimum positive Lyapunov exponent which describes the
average exponential rate of growth or attenuation of the wave
amplitude (Gastanier and Pierre, 1997). And it can be calculated
by using the Wolf’s method (Wolf et al., 1985) once the transfer
matrix is obtained. If the dimension of the transfer matrices is
2ƛ × 2ƛ, then the smallest positive Lyapunov exponent ℓƛ is the
localization factor. The expression for the localization factor ℓƛ of
the system with N unit-cells is given as follows:

ℓƛ � lim
N→∞

1
N
∑N
β�1

ln
������Ŵ(β)

2R,ƛ

������ (21)

where the vector in Eq. 21 is given by

Ŵ(β)
2R,ƛ � W(β)

2R,ƛ − (W(β)
2R,ƛ, v

(β)
ƛ−1 )v(β)ƛ−1 −/ − (W(β)

2R,ƛ, v
(β)
1 )v(β)1

(22)
in which v(β)ƛ � Ŵ

(β)
2R,ƛ

‖Ŵ(β)
2R,ƛ‖

are orthogonal unit vectors, (·, ·) denotes
the dot-product, ‖ · ‖ is the vector norm, and N represents the
number of the unit-cells. The ƛth orthogonal unit state vector
Ŵ

(β)
2R,ƛ is obtained through the iteration using the Gram–Schmidt

orthonormalization procedures (Kissel, 1991). If the localization
factor is equal to zero, the corresponding frequency intervals are
known as pass-bands. Otherwise if the localization factor is
positive, the frequency intervals are known as stop-bands or
band-gaps. In this paper, only the normal incidence of SH wave is
considered, thus, the dimension of the transfer matrix is 2 × 2 and
ℓ1 is the localization factor, which is denoted as ℓ in the following
analysis.

4 NUMERICAL RESULTS AND
DISCUSSIONS

In this section, the band structures and localization properties of
the anti-plane elastic waves propagating normally in nanoscale
layered structures are studied by the general transfer matrix
method. Different factors affecting the band structures are
considered. Numerical results are presented and discussed.
During the calculations, we refer to Ref. (Yan et al., 2020) for
the material constants and list the values in Table 1. For
convenience, the frequency is normalized as ϖ1 � ωl/c1 with c1 �





μ1/ρ1

√
.

4.1 Nanoscale Random Disordered
Layered PCs
Firstly, In order to check the correctness of the present method,
the 1D nanoscale periodic layered structures arranged alternately
by HfO2 (A) and ZrO2 (B), as shown in Figure 1A, are studied.
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The same material constants as the Ref. (Yan et al., 2020) are
selected, and the results are shown in Figure 2A. We find that the
present results (black solid lines) are in good agreement with the
results (red solid lines) of Figure 2C in Ref. (Yan et al., 2020),
which verifies the correctness and effectiveness of the current
method. In the following, In order to reveal the influence of
random disorder of the sub-layers on the band structures by
considering the internal characteristic lengths and the external
thicknesses, the localization factors in the cases of τ1 � 0, l1 �
l2 � 0.5, τ2 � 0.18 + δV2











(−2 ln(S)/S)√
(i.e., disorder is

considered only for the internal characteristic length of the
second sub-layer B) and
τ1 � 0.18 + δV1











(−2 ln(S)/S)√
, τ2 � 0.18 + δV2











(−2 ln(S)/S)√
,

l1 � 0.5 + δV1











(−2 ln(S)/S)√
, l2 � 0.5 + δV2











(−2 ln(S)/S)√
(i.e., disorder is considered for both internal characteristic lengths
and external thickness of sub-layers A and B), are calculated and
the results are illustrated in Figures 2B,C. The disorder degree
denoted by δ is assumed to be δ � 0, 0.02 and 0.04, respectively. It
can be seen that there is one peak point a in Figure 2B and two

peak points b, c in Figure 2C whose positions are determined by
the cut-off frequency of a specific material sub-layer. The second
peak point c in Figure 2C is a cut-off frequency beyond which the
localization factor becomes stable and positive, which means that
the elastic waves cannot propagate through the structure over the
cut-off frequency. In addition, the dense band zones (DBZs) as
defined in Ref (Yan et al., 2020) appears, where the localization
factors are very big with multiple, dense, flat and narrow band-
gaps in the frequency range (7.28, 7.35) in Figure 2B and
(5.47, 5.56) in Figure 2C, meaning a very strong wave
localization phenomenon. The disorder degree has little effect
on the DBZ, the cut-off frequency and the localization factor
whose frequencies are larger than the peak points a and c.
However, when the disorder caused by the sub-layer’s length
or thickness is introduced to the periodic phononic crystals, the

TABLE 1 | Material constants.

Component materials HfO2 ZrO2 Al Cu

Mass density (Kg/m3) ρ = 10,873 ρ = 6,488 ρ = 2,730 ρ = 8,950
Shear modulus (Pa) µ = 6.60 × 1010 µ = 6.88 × 1010 µ = 2.87 × 1010 µ = 7.53 × 1010

FIGURE 2 | The results obtained by the current method are compared
with the reference (A). The influences of δ on the localization factors and the
disordered parameters are internal characteristic length τ2 of the second sub-
layer (B) and the internal characteristic length and the external thickness
of sub-layers A and B (C), respectively.

FIGURE 3 | The influences of disorder on the localization factors for δ =
0.08. The internal characteristic lengths and the external thickness of the same
sub-layer (A), the disorder of different sub-layers (B) and the number of
disorder (C), respectively.
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disorder degree still has some influences on the band structures in
both pass-bands and band gaps, which are demonstrated by the
enlarged sub-figure in Figures 2B,C. For example, in the pass-
band (6.519, 6.704) for δ � 0 shown in the partly enlarged
regions in Figure 2B, the localization factors become positive
with the increase of δ, indicating a wave localization
phenomenon, and the localization degree increases with the
increase of δ in the pass-bands while the localization degree
decreases with the increase of δ in the band gaps. Next, the
disorder of the internal characteristic length and the external
thickness of the same sub-layer, the disorder of different sub-
layers and the number of disorder are considered to show more
detailed results in Figures 3A–C, respectively. The disorder
degree is δ � 0.08. It can be seen from Figure 3A that the
influences of the disorder caused by the internal characteristic
lengths are a little bigger than those caused by the external
thicknesses. In addition, in Figures 3B,C the localization
factors change a lot and have a strong dependence on the
disorder of different sub-layers and the number of disorder.
Moreover, with the increase of the number of disorder, the
degree of wave localization in the pass-bands increases, and
the localization phenomenon becomes more and more
obvious. From Figure 3, we can conclude that the disorder
degree and the localization factor depend on different types of
disorders of each sub-layer.

4.2 Nanoscale Aperiodic Layered PCs
Due to the lack of periodicity, a finite but sufficiently large
number of unit-cell n is very important to calculate the
localization factor. After trial calculation, n � 1024 is taken in
the following computations. Next, the influences of the material
combinations on the band structures are analyzed by considering
changing the order of material components, only the single sub-
layer material and two sub-layers are both changed, respectively.
Specifically, the order of material components is selected as
HfO2/ZrO2, ZrO2/HfO2 and HfO2/Cu, Cu/HfO2. Only the
change of the second sub-layer material is taken as HfO2/Cu,
HfO2/ZrO2 and HfO2/Al. The examples where the materials of
two sub-layers are both changed are ZrO2/Cu, HfO2/ZrO2 and
Cu/Al. The band structures for the nanoscale Thue-Morse
laminate with the change in order of material components are

plotted in Figure 4. The ratio of internal characteristic length and
the thickness of the unit-cell is τ1 � τ2 � 0.18. It can be seen that
with the exchange of material components, the distance between
the two peak points becomes narrower, and the two peak points
and the first distinct band gap move to the low frequency zone.
Furthermore, Compared with the two DBZs (5.42, 5.56) and
(6.53, 7.34) for HfO2/ZrO2, the first and the second DBZs move
left to (4.1, 4.21) and (4.98, 5.56) for ZrO2/HfO2, respectively.
While the two DBZs for Cu/HfO2 move left to (4.61, 4.72) and
(5.3, 5.56) compared with the corresponding DBZs (5.31, 5.56)
and (5.9, 6.54) for HfO2/Cu. It is worth noted that compared with
the first peak points for HfO2/ZrO2 and HfO2/Cu, the second
peak points, i.e., the cut-off frequencies, stay in the almost same
position for ZrO2/HfO2 and Cu/HfO2, that is to say, the cut-off
frequencies for ZrO2/HfO2 and Cu/HfO2 are almost ϖ � 5.56
which are exactly the right edges of the corresponding DBZs,
i.e., the cut-off frequency of the material HfO2. In addition, when
the frequency is higher than the cut-off frequency, the value of the
localization factor will become stable at approximately 3.23 (as
illustrated by the dashed lines in Figure 4).

In the following, we only change the material of the second
sub-layer and the localization factors for the nanoscale aperiodic
Thue-Morse sequences with different material combinations are
presented in Figure 5. Here, the material combinations is taken as
HfO2/Cu, HfO2/ZrO2 and HfO2/Al, respectively. It can be
observed that the peak points, i.e., the DBZs with the
frequency ranges of (5.3, 5.56), (6.48, 6.54), (7.03, 7.35) and

FIGURE 4 | The influences of the mateiral component order on the
lovalization factors of the Thue-Morse systems aperiodic systems.

FIGURE 5 | The localization factors of the SHwave propagating normally
in the nanoscale aperiodic Thue-Morse sequences consisting of HfO2/Cu (A),
HfO2/ZrO2 (B) and HfO2/Al (C) for τ1 = τ2 = 0.18.
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(7, 7.32) correspond to materials HfO2, Cu, ZrO2 and Al,
respectively. The band structures between the two DBZs have
almost the same distributions, however, when the frequency is
lower than the first peak point, the localization factors change a
lot. More specifically, the first distinct band gap becomes wider
and moves to the low frequency zone. Compared with Figures
5B,C shows the two DBZs are located at almost the same position,
because the transverse wave velocities of the two materials ZrO2

and Al, have almost similar values. In addition, the examples
where the materials of two sub-layers are both changed are
chosen as ZrO2/Cu, HfO2/ZrO2 and Cu/Al, respectively. It can
be seen from Figure 6 that the position of the peak point shown
by the dashed line corresponds to materials Cu and HfO2 because
the shear wave velocities of the two materials have the similar
values. The larger the difference in transverse wave velocity, the
farther the two DBZs are from each other.

Next, the band structures of the systems with different
aperiodic arrangements are calculated. As shown in Figures
1B–D, three different aperiodic arrangements are chosen,
i.e., the Thue-Morse sequence, the Rudin-Shaprio sequence
and the Fibonacci sequence, respectively. Figure 7 shows the
influences of aperiodic arrangements on localization factors of the
SH wave propagating normally in the nanoscale aperiodic
systems consisting of HfO2/ZrO2 for τ1 � τ2 � 0.18. It can be
seen that the tendencies of all curves are coincident for the three

aperiodic systems, which implies the aperiodic arrangements
have little effect on the peak points, the DBZs and the cut-off
frequency. For example, the localization factors oscillate quickly
with big values between the two peak points. The cut-off
frequencies are all around about ϖ � 7.34. However, the band
structures before the first peak point becomes different for the
three aperiodic arrangements. i.e., the main band gaps of the
Fibonacci structure change a lot with the gradual disappearing
and narrowing of the band gaps. Specifically, in the dot rectangle,
compared with the Fibonacci structure, the localization factor is
more like a defect state for the Thue-Morse and Rudin-Shapiro
structures.

Additionally, the influences of the ratio of the mass density
ρ1/ρ2 and the ratio of the transverse wave velocity c1/c2 on the
localization factors are examined. Here, the nanoscale Cu/Al
Fibonacci aperiodic laminate is selected as an example. It can
be observed from Figure 8 that when the ratio of the mass density
ρ1/ρ2 is not equal to 1, the first distinct band gap emerges, while
for ρ1/ρ2 � 1, it disappears (enlarged regions shown in Figure 8).
The positions of the two DBZs, the two peak points, the cut-off
frequency and the localization factors whose frequencies are
larger than those of the first peak point have no changes. For
example, after the first peak point, the tendencies of all curves are

FIGURE 6 | The localization factors of the SHwave propagating normally
in the nanoscale aperiodic Thue-Morse sequences consisting of ZrO2/Cu,
HfO2/ZrO2 and Cu/Al for τ1 = τ2 = 0.18. FIGURE 7 | The influences of aperiodic arrangements on localization

factors of the SH wave propagating normally in the nanoscale aperiodic
systems consisting of HfO2/ZrO2 for τ1 = τ2 = 0.18.
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coincident, i.e., the localization factors oscillate quickly with big
values after the first peak point, and then the second peak point
appears. More detailed results are illustrated in Figure 9 for the

FIGURE 8 | The influences of ratio of mass density on lacalization factors
in the nanoscale Fibonacci systems consisting of Cu/Al for τ1 = τ2 = 0.18.

FIGURE 9 | The localization factors varying with the normalized
frequency and ρ1/ρ2for the SH wave propagating normally in the nanoscale
Cu/Al Fibonacci laminate for τ1 = τ2 = 0.18.

FIGURE 10 | The influences of the ratio of transverse wave velocities on
localization factors in the nanoscale Fibonacci systems consisting of Cu/Al for
τ1 = τ2 = 0.18.

FIGURE 11 | The localization factors varying with the normalized
frequency and c1/c2 for the SH wave propagating normally in the nanoscale
Cu/Al Fibonacci laminate for τ1 = τ2 = 0.18.
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localization factors varying with the normalized frequency and
ρ1/ρ2. Compared with the results in Figure 8, the first distinct
band gap disappears for ρ1/ρ2 � 1, when ρ1/ρ2 is less than 1 or
ρ1/ρ2 is bigger than 1, the first distinct band gap appears and
becomes wider with ρ1: ρ2 decreasing or increasing. Combining
Figures 8, 9, we can conclude that the first distinct band gap will
emerge for ρ1/ρ2 ≠ 1. and the ratio of the mass density has no
influences on the peak points, the cut-off frequency, the DBZs
and the localization factors whose frequencies are larger than
those of the first peak point. From Figure 10, we can see that there
is only one peak point when the ratio of transverse wave velocity
is c1/c2 � 1, i.e., the cut-off frequency, and when the velocity ratio
changes, the position of the peak point remains unchanged.
However, when the ratio is not equal to 1, there are two peak
points. Among them, when the ratio of velocity is less than 1, one
peak point tends to the high-frequency region, and when the ratio
is larger than 1, a peak point tends to the low-frequency region. In
addition, the low-frequency band gap is more likely to emerge
with the increase of the ratio. This shows that the ratio of
transverse wave velocity has significant effect on the cut-off

FIGURE 12 | The influences of the ratio of external characteristic
thickness on localization factors in the nanoscale Fibonacci systems
consisting of Cu/Al for τ1 = τ2 = 0.18.

FIGURE 13 | The localization factors varying with the normalized
frequency and l1/l2 for the SH wave propagating normally in the nanoscale Cu/
Al Fibonacci laminate for τ1 = τ2 = 0.18.

FIGURE 14 | The influences of the ratio of the internal characteristic
length on localization factors in the nanoscale Fibonacci systems consisting
on Cu/Al for l1 = l2 = 0.5.

Frontiers in Materials | www.frontiersin.org March 2022 | Volume 9 | Article 84207310

Yan and Yang Band Structure Analysis in Metamaterials

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


frequency, the DBZ, the peak point and the low-frequency band
gap. Furthermore, the localization factors varying with
normalized frequency and c1/c2 are presented in Figure 11.
There is only one peak point when the ratio of transverse
wave velocity is c1/c2 � 1, i.e., the cut-off frequency of material
Al, and when the velocity ratio changes, the position of the peak
point remains unchanged since c2 is a fixed value. On the
contrary, the peak point other than the cut-off frequency
moves the high-frequency region when c1/c2 is less than 1,
and moves the low-frequency zone when c1/c2 is larger than 1.
Combining Figures 10, 11, we can conclude that the position and
the number of the peak point, i.e., the DBZ have strong
dependence on c1/c2. There exists a wide pass-band when
c1/c2 is less than 1, and the pass-band becomes wider with the
decrease of c1/c2.

Finally, the influences of the structural parameter, i.e., the
ratio of external characteristic thickness l1/l2 and the ratio of
internal characteristic length τ1/τ2 on the localization factors
are investigated. The localization factors for the nanoscale
Fibonacci laminates with different values of l1/l2 are
presented in Figure 12, From Figure 12, we can see that
the pass-bands and band-gaps are affected by varying the
ratio of external characteristic thickness, while the two peak
points, the two DBZs and the cut-off frequency remain in the
same position. Detailed results are shown in Figure 13, the
position of the cut-off frequency remains unchanged, but the
localization degree enhances with the increase of l1/l2. From
Figure 14, we can see that the bigger the difference of internal
characteristic length between the two materials, the farther
the distance between the two peak points. The first distinct
band gap disappears with the increase of τ1/τ2. More detailed
numerical results are shown in Figure 15, It can be seen that
the cut-off frequency does not appear when τ1/τ2 ≤ 0.2,
However, when 0.3≤ τ1/τ2 ≤ 1, the cut-off frequency
appears and decreases with the τ1/τ2 increasing. When
τ1/τ2 > 1, the cut-off frequency remains unchanged and the
first peak point tends to the low-frequency zone with the τ1/τ2
increasing. In addition, the localization degree of the cut-off

frequency, the pass-bands and the band gaps varies with the
τ1/τ2. And the localization degree whose frequencies are
larger than the cut-off frequency decreases with τ1/τ2
increasing.

5 CONCLUSION

The results presented in this study are obtained by the
numerical calculations of the wave localization properties in
the nanoscale layered structures by using the general transfer
matrix method based on the nonlocal elastic continuum
theory. The key conclusions from this analysis can be
summarized as follows:

1) No matter what kind of disorders, the disorder degree has
little effect on the DBZ, the peak point, the cut-off
frequency and the localization factor whose frequencies
are larger than the cut-off frequency. However, the
influences of the disorder caused by the internal
characteristic lengths are a little bigger than those caused
by the external thicknesses. The localization factors have a
strong dependence on the disorder of different sub-layers
and the number of disorder.

2) The first distinct band gap, the peak point, the cut-off
frequency, the DBZ and the localization factor have
strong dependence on the material combinations. With
the exchange of material components, the distance
between the two peak points becomes narrower, and the
two peak points and the first distinct band gap move to the
low frequency zone. The position of the peak point and the
DBZ depends on the sub-layer materials under
consideration.

3) The aperiodic arrangements have little effect on the peak
points, the DBZs and the cut-off frequency. However, the
band structures before the first peak point becomes different
for the three aperiodic arrangements.

4) The first distinct band gap will emerge for ρ1/ρ2 ≠ 1. and the
ratio of the mass density has no influences on the peak
points, the cut-off frequency, the DBZs and the localization
factors whose frequencies are larger than those of the first
peak point.

5) There is only one peak point when the ratio of transverse
wave velocity is c1/c2 � 1. However, when the ratio of
velocity is less than 1, one peak point tends to the high-
frequency region, and when the ratio is larger than 1, a peak
point tends to the low-frequency region. In addition, the
low-frequency band gap is more likely to emerge with the
increase of the ratio. There exists a wide pass-band when
c1/c2 is less than 1, and the pass-band becomes wider with the
decrease of c1/c2.

6) The pass-bands and band gaps are affected by varying the
ratio of external characteristic thickness, while the two peak
points, the two DBZs and the cut-off frequency remain in the
same position. In addition, the localization degree enhances
with the increase of l1/l2.

FIGURE 15 | The localization factors varying with the normalized
frequency and τ1/τ2 for the SH wave propagating normally in the nanoscale
Cu/Al Fibonacci laminate for τ1 = τ2 = 0.18.
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7) When 0.3≤ τ1/τ2 ≤ 1, the cut-off frequency appears and
decreases with the τ1/τ2 increasing. When τ1/τ2 > 1, the cut-
off frequency remains unchanged and the first peak point tends
to the low-frequency zone with the τ1/τ2 increasing, And the
localization degree whose frequencies are larger than the cut-off
frequency decreases with τ1/τ2 increasing.
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