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This study evaluated the influence of surface free energy (SFE) of titanium disks on the
adsorption and conformation of fibronectin (FN) and the biological behavior of osteoblasts
cultured on the FN-treated modified surfaces. High [H]-SFE titanium disks were irradiated
by a 30W UV light, while low (L)-SFE titanium disks received no treatment. The surface
characteristics of the titanium disks were examined using scanning electron microscope,
optical surface profilometer, X-ray photoelectron spectroscopy, and contact angle
measurements. Adsorbed FN on different groups was investigated using attenuated
total reflection-Fourier transform infrared spectroscopy. MG-63 cells were cultured on
FN-treated titanium disks to evaluate the in vitro bioactivity. The experiment showed H-SFE
titanium disks adsorbed more FN and acquired more ß-turn content than L-SFE group.
MG-63 cells cultured on FN-treated H-SFE titanium disks showed better osteogenic
responses, including adhesion, proliferation, alkaline phosphatase activity and
mineralization than that on FN-treated L-SFE titanium disks. Compared to L-SFE
titanium disks, integrin-β1, integrin-α5 and Rac-1 mRNA levels were significantly higher
in MG-63 cells on FN-treated H-SFE after 3 h of culture. These findings suggest that the
higher SFE of H-SFE compared to L-SFE titanium disks induced changes in the
conformation of adsorbed FN that enhanced the osteogenic activity of MG-63 cells.
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INTRODUCTION

Titanium and titanium-based alloys are widely used as orthopedic implant materials.
Osteointegration is a major factor influencing the success rate of orthopedic implants.
Osteointegration is related to implant macroscopic surface structure, surface topography, surface
wettability, surface charge, surface free energy (SFE), surface hydrophilicity, pore structure, release of
bioactive molecule (Chen et al., 2018), and coating (Smeets et al., 2016). Osteoblasts are not in direct
contact with the implant surface immediately after implantation (Barberi and Spriano, 2021). Rather,
implants adsorb a thin layer of proteins, including immunoglobulins, vitronectin, fibrinogen and
fibronectin (FN), which modulate a pro-inflammatory response and clotting to create the correct
microenvironment for osteointegration (Raphel et al., 2016; Barberi and Spriano, 2021). Recently,
extensive research efforts have focused on the analysis of protein adsorption to synthetic surfaces
(Keselowsky et al., 2003). Findings have showed that altering the surface of titanium-implant
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materials affects protein adsorption, cell–substrate interactions,
and tissue integration (Rapuano et al., 2012; Isoshima et al., 2019;
Yao et al., 2019; Zeng et al., 2019; Bayrak et al., 2020; Lin et al.,
2020).

FN is a glycoprotein in the extracellular matrix that promotes
osteoblast adhesion to a substrate. FN is a dimer of subunits
joined by two disulfide bonds at their C-terminal ends. Each
subunit has six domains, which perform different functions
(Maurer et al., 2016). The arginine-glycine-aspartate (Arg-Gly-
Asp, RGD) domain is a binding receptor for integrins, and
directly associated with cell adhesion (Asghari Sana et al.,
2017). The RGD domain is located in a ß-turn structure in
FN, and increasing ß-turn content is associated with improved
cell adhesion properties (Hasan et al., 2018). FN has a dynamic
structure and must transition from a compact to an extended
conformation to expose the RGD domain and mediate cell
adhesion (Maurer et al., 2016).

Studies show that implant material and surface properties,
including pH, temperature, surface polarity and surface charge,
affect the adsorption and conformation of FN (Osterlund, 1988;
Kowalczynska et al., 2009; Lv et al., 2017; Gossart et al., 2018;
Hasan et al., 2018); however, the influence of the SFE of an
implant on the adsorption and conformation of FN, and the
biological behavior of osteoblasts cultured on the FN-treated
surface, remains to be elucidated. SFE is of fundamental
importance when characterizing interactions between liquids
and solids as it relates to adhesion, binding affinity, adsorption
and interfacial attractive forces. To date, the most widely used
method of determining SFE is by measuring the contact angle
between the liquid and solid (Zhang et al., 2019). In this study, we
exposed titanium disks to ultraviolet-C (UVC) light to evaluate
the effects of changes in the SFE of titanium implants on the
adsorption and conformation of FN and the biological behavior
of cultured osteoblasts.

MATERIALS AND METHODS

Specimens
Titanium disks were15 mm in diameter and 1 mm thick. Titanium
disks were abraded with a sequence of successively finer silicon
carbide papers; washedwith acetone, anhydrous ethanol and dH2O
for 15min each; dried for 1 h at room temperature; etched in
mixed acid solution (water: H2SO4:HCl 2:1:1 v/v); and washed
3 times with water. Disks were divided into two groups. The SFE of
one group of titanium disks (high [H]-SFE) was increased by
exposing the disks to a 30W light tube that emitted UV light at
wavelengths of 200–275 nm (Philips, Holland) for 24 h. The disks
in the low (L)-SFE group received no treatment.

The surface morphology of the titanium disks was observed
with a scanning electron microscope (SEM, Regululs8239,
Hitachi, Japan).

Surface roughness of the titanium disks was measured with an
optical surface profilometer (BMT EXPERT, BMT, Germany).
The arithmetic mean roughness (Sa), and average height over the
measurement field (Sz) were calculated as amplitude parameters
to characterize surface topography.

Contact angles were measured with a contact angle meter
(OCA40 Micro, dataphysics, Germany).

SFE was calculated using contact angle data and the Owens-
Wendt model:

[γSL � γS + γL − 2(γDS · γDL )1/2 − 2(γPS · γPL)1/2]
The Owens- Wendt model (Zhang et al., 2019) considers

dispersion and polar contributions (e.g., γS � γSD + γSP) to
describe the solid (S)-liquid (L) interfacial tension (γSL).
Photo-induced changes in the SFE of titanium disks are
temporary (Rupp et al., 2010); therefore, our analyses were
performed immediately after irradiation.

The chemical composition of the titanium disks was
confirmed with X-ray photoelectron spectroscopy (XPS,
ESCALAB 250, Thermo-VG, America), using C1s at 284.8 eV)
as the charge reference and by comparing the amount of surface
hydroxyl (OH) groups.

Protein Adsorption and Secondary
Structure Analysis
Human plasma FN (Sigma-Aldrich, MO, United States) was
adsorbed onto titanium disks from a 1mg/ml FN solution at
37°C for 3, 6, and 24 h. FN was desorbed from the titanium disks
by shaking with 5% SDS in PBS at 37°C for 1 h. Protein was estimated
using a BCA Protein Assay kit (MA0082, United States).

The secondary structure of adsorbed FN was investigated
using attenuated total reflection-Fourier transform infrared
(ATR-FTIR) (Nicolet 6700-Contiuµm, Thermo, England)
spectroscopy, particularly in the amide I band IR
absorption range, 1,600–1700 cm−1 (Buchanan and El-
Ghannam, 2009). After FN adsorption for 24 h, titanium
disks were dried at 37°C and ATR-FTIR spectra were
acquired. The secondary structure of FN was determined
by evaluating the amide I band through second derivative/
Gaussian curve fitting analysis.

Effect of SFE of Titanium Disks on
Osteoblast Behavior
Human plasma FN (Sigma) was adsorbed onto titanium disks
from a 1 mg/ml FN solution at 37°C for 24 h prior to investigating
osteoblast behavior.

Cell Culture
Human osteosarcoma cells (MG-63) were provided by Procell
Life Science and Technology Co., Ltd. Cells were cultured in α-
Minimum Essential Medium (α-MEM, Gibco, United States)
supplemented with 10% fetal bovine serum (FBS, Gibco,
United States) and 1% P/S (Gibco, United States) at 37°C and
5% CO2. Culture media was replaced every 2 days, and cells were
passaged by trypsinization at 80% confluence.

Cell Adhesion and Proliferation
MG-63 cells were seeded at 1 × 104 cells/titanium disk, incubated
for 3, 6 and 24 h, and rinsed 3 times with PBS to remove
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nonadhered cells. Cells were permeabilized with DAPI (P0131,
Beyotime) for 30 min and visualized with an inverted fluorescent
microscope (X50; DMi8, Leica, Germany). 10 fields of view per
disk were captured to determine the mean number of adhered
cells. Images were analyzed with ImageJ software.

1 × 104 MG-63 cells were seeded at 1 × 104 cells/titanium disk,
incubated for 1, 3, 5, and 7 days, and culture media was removed.
MG-63 proliferation was evaluated with a CCK-8 assay (CA1210,
Solarbio) using absorbance at 450 nm (SpectraMax Plus384, MD,
United States), according to the manufacturer’s instructions.

Alkaline Phosphatase Assay
Differentiation of osteoblasts was investigated by evaluating
alkaline phosphatase (ALP) activity. ALP is a mineralization-
related protein and an important marker of early osteoblast
differentiation (Xu et al., 2015). MG-63 cells were seeded at
1×104 cells/titanium disk and cultured for 7 and 14 days.
Culture media was removed and disks were rinsed 3 times
with PBS. Cells were lysed with 200 μl cell lysis buffer (P0013J,
Beyotime, China), and centrifuged at 14,000 g at 4°C for 5 min.
ALP activity in the supernatant was determined with an ALP
assay kit (P0321S, Beyotime, China) using absorbance at 405 nm,
according to the manufacturer’s instructions.

Mineralization
Mineralization of osteoblasts was investigated with alizarin red
staining. MG-63 cells were seeded at 1 × 104 cells/titanium disk
and incubated for 14 days. Disks were rinsed 3 times in PBS,
incubated with 1 ml alizarin red solution (G1450, Solarbio) for
30 min, rinsed with ddH2O, and observed under a light
microscope (S9i, Leica, Germany). Images were analysed with
ImageJ software.

Real-Time Reverse Transcription Polymerase Chain
Reaction
To evaluate MG-63 cell adhesion, integrin-β1, integrin-α5, FAK,
Src, Rac-1, and RhoA mRNA levels were analyzed by RT-PCR.
MG-63 cells were cultured at 2 × 105 cells/disk for 3 and 6 h on
FN-treated H-SFE and L-SFE titanium disks. Total RNA was
isolated with a SteadyPure Universal RNA Extraction Kit
(Accurate Biotechnology Co.,Ltd., AG21017, China). cDNA
was synthesized using an Evo M-MLV RT Mix Kit (Accurate
Biotechnology Co., Ltd., AG11728, China), according to the
manufacturer’s instructions. Gene expression analysis was

performed using a SYBR Green Premix Pro Tap HS qPCR Kit
(Accurate Biotechnology Co., Ltd., AG11701, China) on an Real-
Time PCR system (Loghtcycler 96, Roche, Switzerland). Sequence
specific primers (Table 1) were purchased from Telenbiotech
DNA Technologies (China). Differential gene expression was
calculated using mRNA levels from MG-63 cells cultured on
L-SFE titanium disks as the reference.

Statistical Analysis
Statistical analyses were performed with SPSS 19.0 (SPSS Inc.,
United States). All experiments were repeated in triplicate. Data
are reported as means and standard deviations. Comparisons
between H-SFE and L-SFE disks were performed with the
independent samples t-test and nonparametric Mann-Whitney
U test. p ≤ 0.05 was considered statistically significant.

RESULTS

Surface Characteristics of H-SFE and L-SFE
Titanium Disks
The surface characteristics of the H-SFE and L-SFE titanium disks
are shown in Figure 1, Tables 2, 3. L-SFE (Figures 1A,B) and
H-SFE (Figures 1C,D) titanium disks had pore sizes of 2–3 µm.
There were no significant differences in amplitude parameters
(Figures 1E,F) Sa or Sz (Table 2) between H-SFE and L-SFE
titanium disks. The water contact angle (Figures 1G,I; Table 3) at
room temperature was significantly higher for L-SFE compared to
H-SFE titanium disks; there was no significant difference in the
diiodomethane contact angle (Figures 1H,J; Table 3) at room
temperature.

SFE was significantly higher for H-SFE compared to L-SFE
titanium disks (p < 0.001; Table 3).

The surfaces of the L-SFE and H-SFE titanium disks had high
percentages of C, O, N, Ti. The C1s and O1s XPS spectra for L-SFE
and H-SFE titanium disks are shown in Figure 2.

Adsorbed FN
The FN adsorption capabilities of H-SFE and L-SFE titanium
disks after immersion in a 1 mg/ml FN solution at 37°C for 3, 6,
and 24 h are shown in Figure 3. FN adsorption levels were
significantly increased on H-SFE compared to L-SFE titanium
disks after immersion for 3 and 6 h, but there was no significant
difference in FN adsorption level after immersion for 24 h

TABLE 1 | Lists of primer sequences used for RT-PCR analysis in this study.

Gene Forward primers (59→39) Reverse primers (59→39)

Integrin-β1 CCTACTTCTGCACGATGTGATG CCTTTGCTACGGTTGGTTACATT

Integrin-α5 CATGATGAGTTTGGCCGATTTG CCCCCAGGAAATACAAACACTA

FAK TGGGCGGAAAGAAATCCTGC GGCTTGACACCCTCGTTGTA

Src TGAGGCATGAGAAGCTGGTG AGTCCAGCAAACTCCCCTTG

Rac-1 TCCGCAAACAGATGTGTTCTTA CGCACCTCAGGATACCACTTT

β-actin GTCACCAACTGGGACGACAT TAGCAACGTACATGGCTGGG

RhoA AGCCAAGATGAAGCAGGAGC TACCCAAAAGCGCCAATCCT
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FIGURE 1 | Surface characteristics of H-SFE and L-SFE titanium disks. Surface microstructures of L-SFE (A, B) and H-SFE (C, D) titanium disks; Optical Profiler
images of the surface topography of L-SFE (E) and H-SFE (F) titanium disks; water (G, I) and CH2I2 (H, J) contact angles; (A, C) = ×2,000 magnification; (B, D) =
×10,000 magnification.

TABLE 2 | Surface topography of H-SFE and L-SFE titanium disks.

Group Sa Sz

H-SFE 0.83 ± 0.08 16.29 ± 1.80

L-SFE 0.85 ± 0.08 14.86 ± 1.47

P 0.29 0.19

Data are mean ± standard deviation.
p ≤ 0.05 was statistically significant.

TABLE 3 | Contact angles and surface free energy (SFE) of H-SFE and L-SFE
titanium disks.

Group dH2O(°) CH2I2(°) SFE(mN/m)

H-SFE 8.03 ± 1.33 22.37 ± 5.95 73.78 ± 0.68

L-SFE 67.27 ± 14.59 21.90 ± 3.58 50.66 ± 4.44

P 0.019 0.913 0.001

Data are mean ± standard deviation.
p ≤ 0.05 was statistically significant.
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(Figure 3A). ATR-FTIR spectra showed the ß-turn content in
adsorbed FN was significantly increased on FN-treated H-SFE
compared to L-SFE titanium disks (Figures 3B,C).

Osteoblast Behavior
MG-63 cell adhesion on FN-treated H-SFE and L-SFE titanium
disks after 3, 6, and 24 h of culture is shown in Figure 4A. The
number of MG-63 cells adhered to FN-treated H-SFE and L-SFE
titanium disks increased with time, with maximum MG-63 cell
adhesion on FN-treated H-SFE titanium disks after 24 h of
culture (Figure 4B).

MG-63 cell proliferation on FN-treated H-SFE and L-SFE
titanium disks increased with time, with maximum MG-63 cell
proliferation on FN-treated H-SFE titanium disks after 7 days of
culture (Figure 4C).

MG-63 cell adhesion and proliferation were significantly
greater in FN-treated H-SFE compared to L-SFE titanium
disks at each time point.

ALP activity of MG-63 cells was significantly increased in
FN-treated H-SFE compared to L-SFE titanium disks after 7
and 14 days of culture (Figure 5A). MG-63 cell
mineralization was significantly increased in FN-treated
H-SFE compared to L-SFE titanium disks after 14 days of
culture (Figures 5B,C).

mRNA Levels of Cell Adhesion Molecules in
Osteoblasts
Integrin-β1, integrin-α5, FAK, Src, Rac-1, and RhoA mRNA
levels in MG-63 cells cultured on FN-treated H-SFE and
L-SFE titanium disks are shown in Figure 6. Integrin-β1,
integrin-α5, and Rac-1 mRNA levels were significantly higher
in MG-63 cells on FN-treated H-SFE compared to L-SFE
titanium disks after 3 h of culture, while there were no
significant differences in FAK, Src, and RhoA mRNA levels
(Figure 6A). Integrin-β1, integrin-α5, FAK, Src, and RhoA
mRNA levels were significantly higher in MG-63 cells on FN-
treated L-SFE compared to H-SFE titanium disks after 6 h of
culture, while there was no significant difference in Rac-1 mRNA
level (Figure 6B).

DISCUSSION

In this study, we exposed titanium disks to UVC light to evaluate
the effects of changes in the SFE of titanium implants on the
adsorption and conformation of FN and the biological behavior
of osteoblasts cultured on the FN-treated modified surfaces. Pure
titanium quickly forms a nanometer thick layer of titanium oxide
when exposed to air. Titanium oxide is a semiconductor and will

FIGURE 2 | Surface composition of H-SFE and L-SFE titanium disks (A); XPS spectra (B, C).
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undergo a photocatalytic reaction when irradiated with
ultraviolet light (Sharmin and Ray, 2012; Khanna and Shetty,
2013; Assadi et al., 2014). This reaction will decompose
hydrocarbons and water on the surface of H-SFE titanium
disks to reduce C content and form a large number of
hydroxyl groups (Diebold, 2003; Bikondoa et al., 2006; Sun
et al., 2012). Therefore, our H-SFE titanium disks had a high
SFE and hydrophilicity, consistent with the results of studies.
Exposure to UV irradiation does not change the surface
morphology and roughness of pure titanium, eliminating the
influence of these surface characteristics on our findings.

As a component of the extracellular matrix, FN is involved in
cell-implant interaction events. It can bind to integrins on the cell
membrane, resulting in a conformational change in these proteins
(Marconi et al., 2021). In our study, the FN adsorption
capabilities of H-SFE and L-SFE titanium disks increased with
time. FN adsorption levels were significantly increased on H-SFE
compared to L-SFE titanium disks after titanium disks were
immersed in a 1 mg/ml FN solution at 37°C for 3 and 6 h.
This suggests high SFE can promote the early adsorption of

FN on a pure titanium surface. Although there was no significant
difference in FN adsorption level on H-SFE compared to L-SFE
titanium disks after immersion for 24 h, the ß-turn content in FN
was significantly increased on FN-treated H-SFE compared to
L-SFE titanium disks. OH groups on titanium surfaces may react
with the amino groups of an adsorbed protein through
electrostatic interactions and cause a change in protein
conformation (Hong et al., 2014). This may expose ß-turns. In
the present study, XPS spectra showed the binding energy at
531.5 eV, the position expected for surface OH groups, was higher
for H-SFE compared to L-SFE titanium disks, while ATR-FTIR
spectra showed the ß-turn content in FN was significantly
increased on FN-treated H-SFE compared to L-SFE titanium
disks. These data suggest H-SFE titanium disks may adsorb FN
faster than L-SFE titanium disks by optimizing ß-turn exposure.

FN interacts with integrins on the cell surface, arbitrates
mechanical anchoring, and establishes focal adhesions between
intracellular actin bundles and the extracellular matrix.
Extracellular signals are translated into cellular responses at
focal adhesions (Marconi et al., 2021). The biological behavior

FIGURE 3 | FN adsorption capabilities of H-SFE and L-SFE titanium disks. FN adsorption levels (A); ATR-FTIR spectra of the amide I band (1,600–1700 cm−1) (B);
ß-turn content in adsorbed FN (C). #p ≤ 0.05.
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of osteoblasts in vitro can be used as a reference that reflects the
biological activity of artificial materials. There was no significant
difference in FN adsorption level on H-SFE compared to L-SFE
titanium disks after immersion for 24 h, but osteogenic responses
were significantly improved in MG-63 cells cultured on H-SFE
compared to L-SFE titanium disks after 24 h FN adsorption. This
implies that the osteogenic responses ofMG-63 cells are related to
protein adsorption level and the secondary structure of the
adsorbed proteins. Protein adsorption is the first step in cell-
biomaterial interactions (Hubbell et al., 2009; Petros and
DeSimone, 2010; Scharnagl et al., 2010; Grafahrend et al.,
2011). In vivo, proteins that are adsorbed onto an implant
surface play a key role in cell/implant interactions (García
et al., 1999; Hynes, 2002; Mao and Schwarzbauer, 2005; Roach
et al., 2005; Vogel and Sheetz, 2006; Tsapikouni and Missirlis,
2008). We have shown that the physicochemical properties of the
surface of a biomaterial impact the secondary structure of
adsorbed proteins, and then impact cell adhesion and the
behavior of attached cells (Toworfe et al., 2009; Kushiro et al.,
2016). FN is a dimeric glycoprotein that promotes osteoblast
adhesion, migration, and differentiation (Pankov and Yamada,
2002; Cantini et al., 2012). Unfolding of FN may expose binding

sites (Felgueiras et al., 2014), such as the RGD sequence, which
can be recognized by cell integrins (Shen et al., 2008). In FN, the
RGD domain is located in a ß-turn structure, and increasing ß-
turn content is associated with improved cell adhesion properties
(Hasan et al., 2018). These data suggest that the higher SFE of
H-SFE compared to L-SFE titanium disks may have induced
changes in the conformation of adsorbed FN that enhanced the
osteogenic activity of MG-63.

Integrins play key structural roles in cells as they are
transmembrane proteins that engage with the extracellular
matrix and regulate the organization of the actin
cytoskeleton. In addition, a and ß integrins are important
initiating and regulating factors in signal transduction
(Juliano et al., 2004) and integrin-α5 and integrin-β1
recognize and connect to the RGD domain in FN, resulting
in focal adhesions FAK and Src are key components of the
signaling pathways controlling focal adhesions. Cytoplasmic
tails (β1, β3, and β5) of ß integrin promote activation of
FAK through an undefined mechanism (Toutant et al., 2002).
Src can be activated by binding directly to the cytoplasmic
domain of ß integrin (Arias-Salgado et al., 2003), and Src can
also activate FAK through phosphorylation. Interactions

FIGURE 4 | MG-63 cell adhesion (A, B) and proliferation (C) on FN-treated L-SFE and H-SFE titanium disks. #p ≤ 0.
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between Src and FAK and integrin-mediated signaling pathways
can activate the Rho family of small GTPases, which mediate the
biological activities of cells (Turner, 2000; Wozniak et al., 2004;
Nayal et al., 2006; Morgan et al., 2009; Tang et al., 2018; Rajah

et al., 2019). Rac-1 regulates the formation of plate-shaped
pseudopodia and promotes cell migration (Tang et al., 2018;
Liu et al., 2020), while RhoA is involved in maintaining cell
adhesions (Warner et al., 2019).

FIGURE 5 | MG-63 cell ALP activity after 7 and 14 days in culture (A) and mineralization, depicted by alizarin red S stained calcium phosphate deposits, after
14 days in culture (B,C), on FN-treated L-SFE and H-SFE titanium disks. #p ≤ 0.05.

FIGURE 6 | The expression of relative mRNA at 3 h (A) and 6 h (B).
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In the present study, the expression of some genes related
to focal adhesions, and Rac-1, the gene related to cell
migration, was significantly higher in MG-63 cells on FN-
treated H-SFE compared to L-SFE titanium disks after 3 h of
culture. After 6 h of culture, the expression of genes related to
focal adhesions was significantly higher in MG-63 cells on
FN-treated L-SFE compared to H-SFE titanium disks, while
there was no significant difference in the expression of Rac-1.
We speculate that MG-63 cells on FN-treated H-SFE titanium
disks were migrating and developing focal adhesions after 3 h
in culture, and proliferating and differentiating after 6 h in
culture. In contrast, MG-63 cells on FN-treated L-SFE
titanium disks were migrating and developing focal
adhesions after 6 h in culture. These data suggest that
increasing the SFE of titanium disks promotes
conformational changes in FN and biological behavior in
cultured osteoblasts.

CONCLUSION

In this study, titanium disks with high SFE were generated by UVC
irradiation. There were no significant differences in surface
characteristics such as pore size, Sa, or Sz between H-SFE and
L-SFE titanium disks. MG-63 cells cultured on FN-treated H-SFE
titanium disks showed better osteogenic responses, including
adhesion, proliferation, ALP activity and mineralization, than
MG-63 cells cultured on FN-treated L-SFE titanium disks.
Although the underlying mechanisms remain to be elucidated,
UVC irradiation may have increased the number of OH groups on
the surface of FN-treated H-SFE titanium disks, which induced
changes in the conformation of adsorbed FN, exposed RGD
binding sites, and enhanced the biological activity of MG-63 cells.
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