
Training Deep Neural Networks to
Reconstruct Nanoporous Structures
From FIB Tomography Images Using
Synthetic Training Data
Trushal Sardhara 1*, Roland C. Aydin 2, Yong Li 3, Nicolas Piché 4, Raynald Gauvin 5,
Christian J. Cyron 1,2 and Martin Ritter 6

1Institute for Continuum andMaterial Mechanics, Hamburg University of Technology, Hamburg, Germany, 2Institute of Material Systems
Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany, 3Institute of Materials Physics and Technology, Hamburg University of
Technology, Hamburg, Germany, 4Object Research Systems,Montreal, QC, Canada, 5Department ofMining andMaterials Engineering,
McGill University, Montreal, QC, Canada, 6Electron Microscopy Unit, Hamburg University of Technology, Hamburg, Germany

Focused ion beam (FIB) tomography is a destructive technique used to collect three-
dimensional (3D) structural information at a resolution of a few nanometers. For FIB
tomography, a material sample is degraded by layer-wise milling. After each layer, the
current surface is imaged by a scanning electron microscope (SEM), providing a
consecutive series of cross-sections of the three-dimensional material sample.
Especially for nanoporous materials, the reconstruction of the 3D microstructure of the
material, from the information collected during FIB tomography, is impaired by the so-
called shine-through effect. This effect prevents a unique mapping between voxel intensity
values and material phase (e.g., solid or void). It often substantially reduces the accuracy of
conventional methods for image segmentation. Here we demonstrate how machine
learning can be used to tackle this problem. A bottleneck in doing so is the availability
of sufficient training data. To overcome this problem, we present a novel approach to
generate synthetic training data in the form of FIB-SEM images generated by Monte Carlo
simulations. Based on this approach, we compare the performance of different machine
learning architectures for segmenting FIB tomography data of nanoporous materials. We
demonstrate that two-dimensional (2D) convolutional neural network (CNN) architectures
processing a group of adjacent slices as input data as well as 3D CNN perform best and
can enhance the segmentation performance significantly.

Keywords: electron microscopy, synthetic training data, 3D reconstruction, semantic segmentation, SEM
simulation, 3D CNN, 2D CNN with adjacent slices, machine learning

1 INTRODUCTION

Nanoporous materials bear great potential in microtechnology, chemical engineering, biomedical
engineering, energy technology and electronics and communication technology. So-called FIB
tomography combines the sequential removal of material layers by FIB with SEM imaging. It is
a powerful technique for 3D imaging of nanoporous materials with a resolution of approx. 1 nm in
the SEM plane and 10 nm in the out-of-plane direction (Knott et al., 2008).

However, accurate 3D reconstruction of nanoporous structures remains a challenge because of the
so-called shine-through effect in FIB tomography data (Prill et al., 2013). Due to this effect, the
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intensity of pixels in the SEM images generally depends not only
on the material at the respective position in the plane currently
imaged but also on structures in deeper layers. This effect occurs
because these structures may shine through the nanopores up to
the surface currently imaged by SEM, in case of back-scattered
electron (BSE) imaging even in infiltrated nanoporous materials.
Hence, there is no unique mapping between the intensity of a
voxel in FIB tomography data and the material composition at
exactly the position of this voxel. This ambiguity makes
segmentation of FIB tomography data of nanoporous materials
highly non-trivial (Figure 1A).

Classical methods like thresholding work best for standard
materials without nanopores (Salzer et al., 2015). However, they
fail for nanoporous materials with strong shine-through effects
because of the ambiguity in the local voxel intensity. Machine
learning algorithms like random forests or the k-means algorithm
can help classify material and pores (Rogge and Ritter, 2018;
Fager et al., 2020). However, deep learning-based (DL) methods,
especially convolutional neural networks (CNN), bear the
potential to outperform such methods when processing
images. Over the last years, CNNs have more and more
outperformed such classical methods across all disciplines
(Krizhevsky et al., 2012; Girshick et al., 2014). For example,
CNNs were used for the semantic segmentation of electron
microscopy images of neuronal membranes (Ciresan et al.,
2012). For the segmentation of FIB tomography images of
porous membranes, the deep learning architecture ResUNet
was applied, using initial training data generated by a random
forest algorithm (Tracey et al., 2019). It is thus consequential to
apply convolutional neural networks like U-Net, which was
originally developed for biomedical images (Ronneberger et al.,

2015), with some modifications also to FIB tomography data
(Fend et al., 2021).

Due to shine-through effects in FIB tomography datasets,
structures are visible through several subsequent SEM slices.
Taking this information into account is an important step
towards accurate segmentation of FIB tomography data of
nanoporous materials. The machine learning architecture
called CNN 2.5D has recently been reported to be particularly
powerful (Vu et al., 2020) to incorporate such partial spatial
information in a specific direction. CNN 2.5D feeds several
adjacent slices into channels of a 2D CNN architecture. A
similar approach, but with 3D kernels, is pursued by two
other recently proposed machine learning architectures, 3D
U-Net (Çiçek et al., 2016), and VNet (Milletari et al., 2016).
The latter seeks to prevent information loss when the network
grows deeper (Milletari et al., 2016).

Deep learning requires, however, a large amount of
training data. In the context of the semantic segmentation
of FIB tomography data, a sufficient amount of images is
required whose pixels are labelled as belonging to specific
categories (e.g., the solid or the pore phase in a nanoporous
material). Obtaining sufficient training data from
experiments can be expensive and time-consuming. To
overcome this problem, synthetic training data is
frequently used (Nikolenko, 2019).

In electron microscopy, two steps are required to generate
synthetic training images for deep learning segmentation
methods. The first step is the generation of a realistic
geometric structure. The second step is the computer
simulation of the FIB tomography of this structure,
i.e., synthetic back-scattered electron (BSE) imaging data.

FIGURE 1 | Back-scattered electron scanning microscope images of epoxy-infiltrated nanoporous gold (npg) and hierarchical nanoporous gold (hnpg). (A)
nanoporous gold structures below the cross-section plane shine through the epoxy-filled pores so that for some pixels it is unclear whether they belong to the solid (gold)
or the pore (epoxy) phase (arrow with the question mark). (B) The influence of the shine-through effect is increased in hierarchical nanoporous gold due to the small pore
sizes within the ligaments.
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For the first step (Fend et al., 2021), previously used geometric
primitives like spheres and cylinders. However, these do not
adequately resemble the microstructure of the nanoporous
materials of our interest. Therefore, these are suitable only to
a limited extent for generating synthetic training data for the case
we are interested in.

For the second step, Monte Carlo simulations of electron
microscopy imaging can be performed. These simulate the
trajectories of numerous electrons, thereby providing realistic
information on the appearance of SEM images of specific
structures. In order to perform such simulations on very
simple geometries, first programs were developed more than
two decades ago and have seen continuous improvements
(Lowney J, 1994; Lowney, 1995; Karabekov et al., 2003; Zhang
et al., 2012; Hovington et al., 1997; Gauvin et al., 2006).

In this paper, we compare different deep learning
architectures for accurately segmenting FIB tomography data
of nanoporous structures despite shine-through effects. We
present a novel approach to generate synthetic FIB-SEM
images using Monte Carlo (MC) simulations to overcome
the lack of training data for deep learning methods. To
obtain as realistic synthetic training data as possible, these
simulations are not performed on geometries consisting of
simple geometric primitives. Instead, we compare three
different ways to generate largely realistic microstructures
and use the most promising of them, the so-called levelled-
wave algorithm (Li et al., 2020) as a basis for our study. Using
the in silico training data generated this way, we demonstrate
that 2D CNN with a group of adjacent slices as input data and
3D CNN can surpass the segmentation performance of classical
methods by more than 100%. In the absence of ground-truth
data, we measure the segmentation performance with a novel
approach, which exploits specific geometrical properties of
nanoporous gold and hierarchical nanoporous gold, such as
isotropy.

2 MATERIALS AND METHODS

2.1 Generation of Synthetic Training Data
Synthetic FIB tomography data can be generated in two steps.
The first step is the generation of virtual microstructures, and the
second step is the generation of virtual SEM images of these
microstructures using MC simulations.

2.1.1 Generation of Virtual Microstructures
To generate artificial microstructures that closely resemble the
ones of nanoporous materials, we compared three different
methods: the levelled wave method (LWM), self-similarity
method (SSM) and random pore generation method (RPGM).

2.1.1.1 Levelled Wave Method
Nanoporous materials are often produced by dealloying.
Theoretical analysis reveals (Li et al., 2020) that this leads to a
microstructure whose geometry can be described by a
superimposition of several wave vectors with an identical
wavelength but different random orientations (Li et al., 2020).

Subsequently, the Gaussian random field generated this way is
subjected to a thresholding algorithm to divide it into a solid and
a pore phase, resulting in microstructures as illustrated in
Figure 2A.

2.1.1.2 Self-Similarity Method
A structure is called self-similar if it resembles exactly or partly
itself. In this method, a hierarchical microstructure is generated
using the thresholded images of a real nanoporous gold structure,
hence the name “self-similarity method (SSM)”. In the first step,
FIB-SEM images of nanoporous gold are segmented to get binary
images identifying the solid phase (intensity 255) and pore phase
(intensity 0) using the k-means algorithm. Then, these binary
images are resized using bilinear interpolation (Press et al., 1992)
according to required voxel dimensions. In the next step, a mask,
smaller in size than the binary images from the previous step, is
prepared by resizing binary slices and rotating them at a random
angle. Final output images are then calculated by performing
arithmetic AND operations on binary images with masks using
convolution (Supplementary Figure S13). These AND
operations with masks generated from the original binary
structure make the final structure self-similar. One slice from
SSM is shown in Figure 2B.

2.1.1.3 Random Pore Generation Method
RPGM is a relatively simple method. In the first step, a volume
that is fully solid (intensity 255) is chosen. Subsequently, void
spheres are introduced at random locations and with a radius
drawn from a Gaussian random distribution using a masking
operation (Supplementary Figure S14). The advantage of RPGM
is that it is a straightforward method. Its disadvantage is that it
produces microstructures that exhibit considerable differences
compared to actual nanoporous materials, limiting their value for
training accurate machine learning-based segmentation
algorithms in our case. The final sample geometry generated
by this method is shown in Figure 2C.

2.1.2 Monte Carlo Simulation of Electron Microscopy
The virtual microstructures generated in the above-described
ways are used in Monte Carlo simulations to generate
synthetic FIB tomography data. The simulation of the BSE
images is performed using the software MCXray. This
software is an extension of the Monte Carlo simulation tools
Casino (Hovington et al., 1997) and Win X-Ray (Gauvin et al.,
2006). It was developed by (Gauvin and Michaud, 2009) and then
incorporated in the Dragonfly Software [ORS, Montreal, Canada]
(Object Research Systems, 2018). MCXray allows simulations of
complex microstructures even consisting of different materials.
Simulated BSE images of virtual microstructures generated by the
above described three methods are presented in Figure 3. In all
the Monte Carlo simulations for this paper, we assume beam
energy of 2 kV, a beam current of 5 × 10–11A, FIB sample stage tilt
angle of 0 degrees, and detector to sample distance of 104mm. We
performed these simulations for nanoporous gold and
hierarchical nanoporous gold, and considered pores in vacuum
(Figure 3) as well as infiltrated with epoxy resin (see for example
Figures 4–B). These simulations have a high shine-through effect
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and mimic images from a less surface sensitive through-the-lens
(TLD) back-scattered electron detector.

2.2 Preprocessing of Training Data
In our study, we applied noise and blur filters to make the
simulated images more similar to actual FIB tomography data.
Subsequently, we applied the online data augmentation technique
to increase the size of the training dataset.

2.2.1 Adding Noise
Electron microscopy images typically exhibit two types of noise
(Cizmar et al., 2008). Primary electrons can generate Poisson noise,
and the rest of the electrons from five noise sources can generate
Gaussian noise (Timischl et al., 2012). Not all five sources are
equally important, and noise added by detection systems is often
assumed to be negligible (Sim et al., 2004; Goldstein, 2003).
MCXray (Gauvin and Michaud, 2009) simulations of BSE
images naturally include Gaussian noise (Hovington et al.,
1997). We added the remaining Poisson noise and some

additional Gaussian noise to understand the effect of noise in
synthetic SEM images. To this end, we used the Scikit image
library1 in this project. First, Poisson noise was added to the image,
and then Gaussian noise, to get a realistic noisy simulated BSE
image. For the Gaussian noise, we heuristically chose a zero mean
value and a variance of 0.001. After adding the noise, the intensities
of the image were renormalized to a range from -1 to 1, converting
the noisy image thereby to a standard unsigned 8-bit image. As
training data for our study, we used these resulting noisy images.

2.2.2 Blurring of Edges
In the images generated by MCXray simulations2, the edges were
observed to be unrealistically sharp. Simple solutions like
applying Gaussian filtering to the whole image may not work

FIGURE 2 | Virtual microstructures generated by (A) levelled wave method (B) self-similarity method (C) random pore generation method.

FIGURE 3 | Simulated BSE images using Monte Carlo simulation method and data generated using (A) LWM as initial virtual structure (B) SSM as initial virtual
structure (C) RPGM as initial virtual structure.

1https://scikit-image.org
2Dragonfly software version 2021.1.0.118 13. Blurring of edges may not require in
future versions of the software
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as it may remove necessary Gaussian randomness of intensities
from the solid ligaments in the simulated image. Therefore, it is
very important to blur only the edges of the ligaments. This can be
achieved by the following steps of masking and blurring.

1. Find edges of the solid ligaments
2. Generate mask with maximum weights at the edges from

step (1)
3. Blur whole original image
4. Blend source image and blurred image from step (3) by mask

from step (2)

The difference between this procedure and standard Gaussian
blurring is illustrated in Figure 4. The image generated by the
above 4-step procedure looks more realistic.

2.2.3 Data Augmentation
Data augmentation is a very powerful technique in deep learning
when there is not enough training data available (Wang et al.,
2017). Herein, we used online data upsampling; during the training
process itself, the training data was augmented by applying random
flips, rotations, brightness changes, and stretch transforms.

2.3 Machine Learning Architectures for
Segmentation
In our synthetic FIB tomography data - as in real data - shine-through
effects occur. Hence, it can be expected that accurate segmentation is
not possible by processing image data layer by layer but rather in the
group of the layers. Herein, we tested two machine learning
architectures for segmentation that address this need.

FIGURE 4 | Synthetic SEM image after applying (A) standard Gaussian blur filter and (B) the 4-step blurring procedure introduced herein (C) intensities of pixel
located at a random location in the xy-plane across slices before blurring (blue), after applying Gaussian blur filter (orange) and 4-step blurring procedure (green).
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2.3.1 2D CNN With Adjacent Slices
Shine-through effects establish a correlation between adjacent
slices. To account for this in semantic segmentation, one has to
segment different slices not separately but rather process
information from several adjacent slides in each
segmentation operation. As a way to avoid computationally
costly 3D convolutions, one can process information from
several adjacent layers simultaneously by 2D CNN (Figure 5).
To this end, we used the 2D CNN architecture U-Net
(Ronneberger et al., 2015). A general limitation of this
approach is that the number of slices that can be included
at a time is naturally limited by the number of slices available
in the 3D image stack that forms the FIB tomography data.
Indeed this limits the depth to which segmentation can be
performed.

2.3.2 3D CNN
While 2D CNNs are computationally cheaper than 3D CNN,
they may always be prone to miss out on recognizing some

spatial features. To overcome this problem, we also tested 3D
CNN. These use full 3D convolutions. We compared the 3D
CNN architectures 3D U-Net (Çiçek et al., 2016), VNet
(Milletari et al., 2016) and ResUNet3D with minor
modifications. In the U-Net architecture (Ronneberger et al.,
2015) we used padding in the convolutional blocks to retain the
original image size. Moreover, we also added residual
connections in one of our 3D U-Net models. We considered
the number of encoding blocks as a hyperparameter and tuned it
to improve performance.

2.4 Training of Neural Networks
All machine learning architectures were implemented using
PyTorch; data loaders were written in Python, and models
were trained on Tesla K80 GPUs.

2.4.1 2D CNN With Adjacent Slices
Input to the deep neural network was provided using the sliding
window technique (Figure 6), where small patches (64 × 64
pixels) were generated from the original training dataset and
used as the final training set for the network. We used 3, 5, 7 and
9 slices as the number of adjacent slices, making the input

FIGURE 5 | Basic block diagram of 2D CNN receiving as input for the segmentation of slice z also the slices z − 1 (above) and z + 1 (below).

FIGURE 6 | Sliding window method.

TABLE 1 | Parameters used for training 2D CNN with adjacent slices.

Parameter Value

Patch size 64
Stride 0.5
Batch size 64
Epochs 100 with early stopping with patience = 10
Loss Dice loss
Optimizer Adam
Learning rate 0.00001 with reducing it by factor of 0.10 with patience of 10

TABLE 2 | Parameters used for training 3D CNN.

Parameter Value

Patch size 64
Stride 0.5
Batch size 1
Epochs 100 with early stopping with patience = 10
Loss Dice Loss
Optimizer Adam
Learning rate 0.0001 with reducing it by factor of 0.10 with patience of 10
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window size 64 × 64 × 3, 5, 7 and 9, to understand the effect of
the number of adjacent slices on the segmentation performance.
Additional parameters used for the training process are
specified in Table 1.

2.4.2 3D CNN
We trained and compared a total of three 3D CNNmodels, namely
U-Net3D, ResUNet and VNet. We used the same sliding window
technique for all of them. However, unlike for the 2D CNN, the
windowwasmoving in all three spatial directions with a given stride.
The training parameters are summarized in Table 2. Inspired by
(Milletari et al., 2016), we used a squared Dice loss layer with the

necessary smoothness value to avoid zero division in all three 3D
CNN architectures. We used the mean Dice loss as the final loss
value to account for possible data imbalance (Milletari et al., 2016).

2.5 Evaluation Criteria
Due to the unavailability of labelled datasets, the CNNmodels were
trained based on synthetic training and validation data. Moreover,
to evaluate the performance of various segmentation methods for
real BSE images, we used the concept of anisotropy
(Supplementary Section S1). The shine-through effect makes
the images anisotropic in the z-direction (though the underlying
material microstructure is in a statistical sense isotropic, that is,

FIGURE 7 | SEM images of hierarchical nanoporous gold simultaneously recorded with (A) TLD and (B) ICD detector (C) intensities of pixel located at a random
location in the xy-plane in SEM TLD (orange) and ICD (orange) images.
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lacking any preferred direction). Therefore, if the segmented
images are isotropic, then it can be concluded that the
segmentation method has (likely) been able to filter the shine-
through effect and performs well. To measure anisotropy of the
segmented images, we used two-point correlation functions
(TPCF), Supplementary Figures S7, S8, and lineal path
functions (LPF) for segmented ICD images (Supplementary
Figures S10, S11) using our method and Otsu’s thresholding
method. This set of real imaging data, referred to henceforth as
hnpg_epoxy dataset, has a voxel size of 2.6 × 2.6 × 10 nm3, which
was interpolated to 5.2 × 5.2 × 5.2 nm3 using bicubic interpolation.
To quantify anisotropy of the segmented images, we calculated the
TPCF and LPF in the x-, y- and z-direction. Subsequently, we
computed the relative L2 differences for the TPCF and LPF in
z-direction and compared them to the relative L2 differences for
the TPCF and LPF in x- and y-direction, respectively. Generally,
the relative L2 difference between two functions f and g can be
computed in a discrete setting with n given data points as

eL2 f, g( ) � 2 ×
������������∑n

i�1 fi − gi( )2√��������∑n
i�1 fi( )2√

+
��������∑n

i�1 gi( )2√( ) (1)

where the fi, gi with i = 1, . . . , n are the given data points. Finally,
we averaged the L2 differences of the z-direction compared to the
x- and y-direction. This average is referred to henceforth (e.g., in
Table 4) as TPCF or LPF eL2 difference. The larger both are, the
higher the anisotropy of the segmented images, which can be
considered a hint that the associated segmentation method has
not been able to filter shine-through effects.

As an additional measure of anisotropy, we calculated the
average diameters of ligaments in xy-, yz- and xz-planes using
lineal path functions (Dxy, Dyz, Dxz). Then, we computed the
averaged relative difference eDL2 of the diameters in the xz- and
yz-planes compared to the one in the xy-plane as

eDL2 �
1
2

�����������
Dxz −Dxy( )2

D2
xy

√√
+

�����������
Dyz −Dxy( )2

D2
xy

√√⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2)

Generally, the average diameter of ligaments in the z-direction
is expected to be larger than in the x- and y-direction in the
presence of non-filtered shine-through effects. Therefore,
pronounced shine-through effects can be expected to result in
large eDL2.

In the absence of ground truth, we also checked the
congruency between images from two different sensors. We
segmented FIB-SEM images from a low-loss in-column back-
scattered electron detector (ICD) and compared the results
with segmented images from the TLD. The ICD detector is
situated at an upper position in the column, ensuring that only
the most elastically scattered electrons (i.e., back-scattered
electrons) are collected. The signal is highly sensitive to
Z-contrast with almost no topographical information. Also,
low energy loss increases the probability of near-surface
interaction and therefore near-surface information (Ritter,
2019) (Figures 7–B). Therefore, one can expect the ICD
images to have relatively small shine-through effects anyway
so that they can provide at least some hint at the (not exactly
known) ground truth. We calculated the fraction of misplaced
pixels by

MP � TP − IP( )
TP

× 100 (3)

where TP is the total number of pixels, IP the number of pixels
identically segmented for TLD and ICD images, and MP is the
fraction of pixels where the segmentation of TLD and associated
ICD images disagreed.

TABLE 3 | Performance of different segmentation methods applied to dataset npg40.

Target data DL method
(SSM)

DL method
(LWM)

DL method
(RPGM)

Otsu’s algorithm k-means clustering
(k = 3)

Solid volume fraction (ϕ) 0.34 0.34 0.34 0.36 0.55 0.49
Relative error of solid volume fraction (%) 0.00 −1.99 0.50 4.33 33.69 17.94
Dice coefficient 1.00 0.98 0.99 0.89 0.75 0.78

TABLE 4 | Impact of preprocessing on segmentation performance for real hnpg_epoxy dataset.

DL model Preprocessing ϕ (TLD) ϕ (ICD) MP eL2 TPCF eL2 LPF eDL2

2D CNN with adjacent slices No 0.11 0.08 0.08 0.12 0.07 0.02
2D CNN with adjacent slices Yes 0.16 0.10 0.10 0.07 0.008 0.004
3D CNN No 0.19 0.11 0.12 0.15 0.18 0.12
3D CNN Yes 0.18 0.13 0.10 0.13 0.12 0.08

TABLE 5 | Specifications of real FIB-SEM gold datasets used in this study.
Note: All dataset discussed in the table have epoxy material as pore
filling.

Dataset name Gold structure Pixel size [nm3] Detector type

hnpg epoxy ICD hnpg 2.6_2.6_10 ICD
hnpg epoxy TLD hnpg 2.6_2.6_10 TLD
npg ICD npg 3.4_3.4_7 ICD
npg TLD npg 3.4_3.4_7 TLD
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3 RESULTS AND DISCUSSION

3.1 Selection of Best Synthetic Training
Data
The first question we sought to address was which of the three
above described methods of generating synthetic training data
(LWM, SSM, RPGM) is most suitable for training deep neural
networks for semantic segmentation.We performed a study using
the CNN architecture U-Net to answer this question. We trained
the U-Net on the above three types of synthetic data, splitting
them into training data (60%), validation data (20%), and test
data (20%). Subsequently, we compared the performance of the
trained U-Nets to two classical segmentation methods, Otsu’s
thresholding algorithm (Otsu, 1979) and k-means clustering
(Lloyd, 1982) with k = 3.

To evaluate the performance of these segmentation methods,
we generated a synthetic dataset called npg40, which was
prepared using MC simulations on synthetic microstructures
generated by k-means segmentation of real nanoporous gold
SEM images. The performance of the models was then
evaluated using metrics as the relative error of solid volume
fraction and the Dice coefficients. As shown in Table 3, the deep
learning model trained on the LWM data exhibits the lowest solid
volume fraction error and highest Dice coefficient. Therefore, we
trained all our deep learning models, shown below, using
synthetic LWM data only after this preliminary test.

3.2 Role of Preprocessing
It is instructive to compare the performance of segmentation
methods trained on synthetic training data with and without
preprocessing (“blur the edges” and subsequent addition of
noise). To this end, we trained 3D CNN and 2D CNN
processing adjacent slices (on synthetic LWM data) and
subsequently compared their segmentation performance on the
(real) hnpg_epoxy dataset. Table 4 reveals that preprocessing
increases segmentation performance for both 2D CNN processing
adjacent slices and 3D CNN, underlining that preprocessing indeed
helps to generate more realistic synthetic training data.

3.3 Semantic Segmentation
We validated our trained models and their performance both by the
segmentation of one synthetic LWM dataset and four sets of real
FIB-SEM images (see Table 5). Results are presented in Tables 6, 7,
and 8. In these tables, it is apparent that the L2 differences for the
TPCF and LPF and also the ligament diameter anisotropy is much
lower for the novel segmentation methods based on deep learning
introduced in this paper compared to classical methods like Otsu’s
method or k-means clustering (with k = 3). This suggests that our
novel deep learning methods filter shine-through effects much
better than classical methods and thus produce a geometry
much closer to the real one. The excessive solid volume fraction
of the segmented ICD data compared to the associated TLD data
suggests that, in particular, Otsu’s thresholding method in many

TABLE 6 | Performance of different segmentation methods applied to synthetic LWM dataset. MP is here computed not using ICD images as reference but exact synthetic
microstructure generated by the LWM.

Model name ϕ (TLD) ϕ (LWM) MP eL2 TPCF eL2 LPF eDL2

k-means clustering 0.33 0.12 0.26 0.83 0.75 0.95
Otsu's algorithm 0.54 0.12 0.43 0.96 0.65 0.71
2D CNN 0.12 0.12 0.04 0.18 0.03 0.02
2D CNN with adjacent slices 0.13 0.12 0.03 0.18 0.02 0.02
3D CNN 0.12 0.12 0.03 0.17 0.01 0.003

TABLE 7 | Performance of different segmentation methods applied to real hnpg_epoxy_TLD dataset.

Model name ϕ (TLD) ϕ (ICD) MP eL2 TPCF eL2 LPF eDL2

k-means clustering 0.39 0.13 0.39 0.20 0.41 0.37
Otsu's algorithm 0.38 0.29 0.12 0.21 0.29 0.24
2D CNN 0.20 0.10 0.16 0.14 0.05 0.01
2D CNN with adjacent slices 0.16 0.10 0.10 0.07 0.008 0.004
3D CNN 0.18 0.13 0.10 0.13 0.12 0.08

TABLE 8 | Performance of different segmentation methods applied to real npg_TLD dataset.

Model name ϕ (TLD) ϕ (ICD) MP eL2 TPCF eL2 LPF eDL2

k-means clustering 0.33 0.24 0.57 0.46 0.28 0.24
Otsu's algorithm 0.54 0.40 0.19 0.40 0.18 0.12
2D CNN 0.24 0.21 0.18 0.38 0.20 0.10
2D CNN with adjacent slices 0.40 0.36 0.17 0.16 0.07 0.05
3D CNN 0.44 0.31 0.20 0.12 0.06 0.04
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cases fails to classify pixels visible due to the shine-through effect.
Our deep learning-based segmentation methods exhibit much
lower MP values compared to Otsu’s method and k-means
clustering. That is, they succeed in more cases to classify pixels
in TLD and ICD imaging data identically. Following the concept of
sensor fusion, also this is indicative of a better performance of our
deep learning-based segmentation methods. It is interesting to
discuss why there is a particularly large number of misplaced pixels
for both real data sets when using k-means clustering. To explain
this, it is important to note that we selected k = 3 for k-means
clustering to account for the presence of a total of three different
clusters, namely a solid phase, a pore phase and artifacts (i.e. pixels
due to the shine-through effect). This assumption is certainly
reasonable for TLD images because of their sensitivity to shine-
through effects. By contrast, ICD images are much less prone to
this problem, so k = 3 may no longer be a good assumption,
resulting in poor performance of the associated segmentation.

Among the CNN-based segmentation methods, the 2D CNN
with adjacent slices and the 3D CNN performed better than the
standard 2D CNN. They probably can generalize better to the
different datasets. For example, the very low solid volume fraction
in Table 8 for the 2D CNN segmentation suggests that this
method fails to classify solid pixels for the npg_TLD dataset.

We also studied the effects of window size (number of adjacent
slices) on segmentation performance. It is evident from Figure 8
that 2D CNN processing adjacent slices provided the best
performance for windows of sizes 9 and 5 for the
hnpg_epoxy_TLD and the npg_TLD datasets, respectively.

4 CONCLUSION

Deep learning can play an important role in the segmentation of FIB
tomography data. A potential caveat is the limited availability of
training data. We demonstrated that the lack of training data can be
overcome by generating virtualmicrostructures and simulating them

using the MCXray method, providing ample synthetic FIB
tomography training data. We compared three different methods
to generate realistic synthetic nanoporous geometries. Our results
reveal that the training data generated by the levelled wave method
(LWM) is most effective for deep learning of image segmentation. A
major problem in this context is the typically missing availability of
ground truth. That is, for real materials, most often, there is no
information available that would characterize their microstructure
more accurately and reliably than segmented FIB tomography data,
which makes it naturally difficult to evaluate the performance of a
specific segmentation method. Herein, we introduced a novel
approach to measure the extent to which shine-through effects -
which can be expected to be the dominant source of errors in the
semantic segmentation of images of nanoporous materials - are
filtered out by different segmentation methods. This method did not
require any full ground truth but rather exploited that nanoporous
materials typically exhibit an isotropic microstructure. This way, the
degree of anisotropy of the segmented images could be used as a
proxy of the segmentation error. We tested different deep learning
architectures for the segmentation of FIB tomography data and
identified 2D CNNs with adjacent slices as image channels and 3D
CNNs as the best architectures of the ones tested herein. Generally,
3D CNNs were found to be computationally more expensive to train
than 2D CNN with adjacent slices.
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