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The magnetocaloric effect (MCE) of La0.5Ca0.1Ag0.4MnO3 (LCAMO) is simulated using a
phenomenological model (PM). The LCAMOMCE parameters are calculated as the results
of simulations for magnetization vs. temperature at different values of external magnetic
field (Hext). The temperature range of MCE in LCAMO grew as the variation in Hext

increased, eventually covering the room temperature at high Hext values. The MCE of
LCAMO is tunable with the variation of Hext, proving that LCAMO is practically more helpful
as a magnetocaloric (MC) material for the development of magnetic refrigerators in an
extensive temperature range, including room temperature and lower and higher ones. The
MCE parameters of LCAMO are practically greater than those of some MC samples in
earlier works.
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INTRODUCTION

The need to solve the problem of emission of hazard gases, which come out of conventional
vapor refrigerators, results in increased interest in functioning magnetic refrigerator (MR), the
idea of which depends on functioning magnetocaloric effect (MCE) (Dhahri et al., 2014; El-
Sayed and Hamad, 2019a; El-Sayed and Hamad, 2019b; Ahmed et al., 2021a, Ahmed et al.,
2021b; Hamad et al., 2021; Jebari et al., 2021), because the MR provides high efficiency for
cooling without any negative impact on the environment and has low energy consumption,
availability of mechanical stability, and fewer noise events during cooling operation (Dhahri
et al., 2015; Hamad, 2015a; ErchidiElyacoubi et al., 2018a, ErchidiElyacoubi et al., 2018b; Hamad
et al., 2020; Sharma et al., 2020; Belhamra et al., 2021). MCE is described as a change in magnetic
entropy (ΔSM) with a variation in the external magnetic field (Hext) exerted on the material,
causing a change in temperature (Masrour et al., 2016; ErchidiElyacoubi et al., 2018c; Kadim
et al., 2020, Kadim et al., 2021a, Kadim et al., 2021b). Numerous research over decades have
studied various magnetic materials to discover their suitability as magnetocaloric (MC)
materials suitable for the MR industry (Hamad, 2015b; Masrour et al., 2017; Jebari et al.,
2021; Labidi et al., 2021). It is preferable to use MCmaterials that have a magnetic transition type
of the second degree with a suitable Curie temperature (θC) as appropriate for use in a wide
temperature range, including room temperature (Choura-Maatar et al., 2020; Henchiri et al.,
2020; Laajimi et al., 2020). The current efforts are directed towards the use of manganite as an
effective substance in MRs due to its great chemical stability during frequent use, lack of eddy
current, ease of preparation, high electrical resistance, and the possibility of improving their
properties through doping and changing the oxygen content (Alzahrani et al., 2020; Choura-
Maatar et al., 2020; Henchiri et al., 2020; Laajimi et al., 2020). Felhi et al. prepared
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La0.5Ca0.1Ag0.4MnO3 (LCAMO) via the ceramic method and
reported an increase in Hext and an increase in broad
ferromagnetic (FM) phase transition of LCAMO covering
room temperature under high Hext (Jeddi et al., 2020).

These results motivate us to investigate the MCE of
LCAMO, expecting that the MCE of LCAMO covers a large
range of temperatures, especially cryogenic temperature and
room temperature. Furthermore, it is believed that LCAMO, as
a manganite, has low material processing costs, high chemical
stability, and high resistivity, which are advantageous for
reducing the overall eddy current heating. In this research,
the MCE of LCAMO is studied using a phenomenological
model (PM) to simulate the isofield magnetization vs.
temperature curves, concluding with simulated ΔSM, heat
capacity change (ΔCP,H), and relative cooling power (RCP).

THEORETICAL CONSIDERATIONS

According to PM, as described in Hamad (2012, 2015c, 2015d),
the magnetization (M) vs. temperature is simulated by:

M(T) � (Mi −Mf

2
)[tanh(α(θC − T))] + β(T − θC)

+ (Mi +Mf

2
) (1)

FIGURE 1 | Isofield magnetization vs. temperature.

FIGURE 2 |Magnetization vs. temperature for La0.5Ca0.1Ag0.4MnO3. The dashed curves are modeled results, and the symbols represent experimental data from
Jeddi et al. (2020).
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where Mi and Mf are values of magnetization at the onset and
finalization of the FM paramagnetic transition as pointed out in
Figure 1, respectively.

α � 2(β − γ)
Mi −Mf

(2)

where γ � (dMdT )T�θC.

β � (dM
dT

)
average

for FM phase (3)

The numerical evaluation of ΔSM of LCAMO under Hext

variation (ΔH) can be derived from Maxwell’s relation and
derived from Eq. 1 as follows:

ΔSM � ∫Hmax

0

(zM
zT

)
H

dH � ( − (β − γ) sech2(α(θC − T)) + β)ΔH.

(4)
From Eq. 4, we can easily calculate ΔSM(T) by determining the

Mi, Mf, θc, β, and γ from isofield M(T) curves. Moreover, a
maximum value of ΔSM(ΔSMax), where T � θC, can be assessed
according to the following equation:

ΔSMax � γ ΔH (5)

FIGURE 3 | (A) ΔSM and (B) ΔSM(T) was calculated by Maxwell relation,
and ΔSM(T) was calculated by a phenomenological model.

FIGURE 5 | |ΔSMax| vs. ΔH for La0.5Ca0.1Ag0.4MnO3.

FIGURE 4 | ΔCP,H vs. temperature for La0.5Ca0.1Ag0.4MnO3.
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The full-width at half-maximum (δTFWHM) of LCAMO can be
given as follows:

δTFWHM � 2
α
cosh−1⎛⎜⎜⎜⎜⎜⎜⎝∣∣∣∣∣∣∣∣∣∣∣∣∣


2α(Mi −Mf)

α(Mi −Mf) + 2β

√√ ∣∣∣∣∣∣∣∣∣∣∣∣∣⎞⎟⎟⎟⎟⎟⎟⎠ (6)

A magnetic cooling efficiency of LCAMO is expected by
considering the magnitude of |ΔSMax(T,Hmax)| and δTFWHM

(Hamad, 2012). RCP is calculated as follows:

RCP � δTFWHM × |ΔSMax(T,Hmax)| (7)
The ΔCP,H of LCAMO can be given as follows (Hamad, 2012):

ΔCP,H � −ΔHα2 T(Mi −Mf) tanh(α(θc − T))sech2(α(θc − T)).
(8)

RESULTS AND DISCUSSION

At values of Hext <5 T, there are two magnetic transitions of
LCAMO, as can be observed in Figure 2, at two different

temperatufvariation, which is about 57% of the correspondingres.
It is possible that this is due to the presence of a canted FM phase in
the FMmatrix, which can be attributed to the additional Ag content
(Jeddi et al., 2020), thus expecting two peaks in the ΔSM curves.
However, at Hext = 5 T, it seems like a single magnetic transition of
LCAMO, expecting a single peak in the ΔSM curve. It is possible that
this is due to the presence of a strong interatomic double exchange
interaction at Hext = 5 T. To simulate the MCE of LCAMO, the PM
parameters (Mi, Mf, ɵc, β, and α) of LCAMO for each magnetic
transition were determined directly from experimental data (isofield
magnetization vs. temperature) as in Jeddi et al. (2020). We can see
from Figure 2 that there is a good agreement between the
experimental and theoretical results of M(T), confirming the good
fit of this model for simulating the MCE of LCAMO. This work
demonstrates the good coincidence between the experimental data
and the continuous curves given by PM, indicating that this model
allows us to predict the MCE for LCAMO under different magnetic
fields. The M(T) curves of LCAMO demonstrate the magnetic
transition from the FM phase to a paramagnetic one under
different magnetic fields. The θC increases as Hext increases due
to the increased alignment of the local spins, resulting in an increase
in the interatomic double exchange interaction. As shown in
Figure 3A, there are two peaks in the ΔSM(T) curves when Hext

<5 T. However, atHext = 5 T, there is a single peak in the ΔSM curve
due to the large interatomic double exchange. ΔSM reaches a peak of
2.75 J/kg K. Though the maximum ΔSM is 2.75 J/kg K upon 5T
applied field variation, which is about 57% of the corresponding
value of the compound that belongs to the same system as
La0.5Ca0.2Ag0.3MnO3 (ΔSMax = 4.8 J/kg K upon 5 T), the value of
RCP (273.5 J/kg upon 5 T) is larger, and the ΔSM distribution of
LCAMO is much more broad than that of La0.5Ca0.2Ag0.3MnO3

(RCP = 168 J/kg δTFWHM = 35 upon 5 T), covering a wider range of
temperature (Felhi et al., 2019). Figure 3B shows that ΔSM(T) was
calculated by Maxwell relation from experimental isothermal
magnetization as a function of H in Ref. 31, and ΔSM(T) was
calculated by PM, ranging between 240 and 270 K and covering
the highest temperature transition. There is a good agreement and
approach between the calculated results of bothMaxwell relation and
PM. Therefore, these results confirm that Eq. 4 still holds at ΔH of
0.5, 1, 3, and 5 T.

FIGURE 6 | δTFWHM vs. ΔH for La0.5Ca0.1Ag0.4MnO3.

FIGURE 7 | Relative cooling power vs. ΔH for La0.5Ca0.1Ag0.4MnO3.

FIGURE 8 | ΔCP,H(max) vs. ΔH for La0.5Ca0.1Ag0.4MnO3.

Frontiers in Materials | www.frontiersin.org February 2022 | Volume 9 | Article 8327034

Hamad and Alamri Magnetocaloric Effect in La0.5Ca0.1Ag0.4MnO3

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Figure 4 shows that ΔCP,H(T) has an inverse change from a
negative change to a positive one at around θC for each magnetic
transition, causing a modification in the total specific heat. This
oscillating temperature dependence of ΔCP,H(T) at different
temperatures is a reflection of ΔSM(T) behavior. The behavior of |
ΔSM| and ΔCP,H(T) curves suggests how the range of temperature for
functioning LCAMO in theMR can be expanded. It is clear that the |
ΔSM| and ΔCP,H peaks of LCAMO extend over a large temperature
range. This temperature range of |ΔSM| and ΔCP,H expanded with
increasing variation in Hext, i.e., the peaks broaden, covering room
temperature upon high values of ΔH. This indicates that larger |ΔSM|
and ΔCP, H are expected at higher values of ΔH. Moreover, the
variation ofHext allows the tuning of θC of LCAMO. This tunable θC
makes LCAMOpracticallymore helpful for the development ofMRs.

Figures 5–8 show the values of |ΔSMax|, δTFWHM, RCP, and
ΔCP,H(Max) (maximum value of ΔCP,H) for LCAMO, respectively.
It is clear that |ΔSMax|, RCP, and ΔCP,H(max) show a general
increase with an increase in ΔH due to enhancing the variations of
alignment in the local spins with an increase in ΔH, resulting in
an increase in MC properties.

These large values of |ΔSMax|, δTFWHM, RCP, and ΔCP,H(Max) in
LCAMO prevailed as well in perovskite manganite due to the strong
coupling between spin and lattice (Dhahri et al., 2008). Since lattice
change is associated to magnetic transition in the manganite, this
caused a further change in themagnetismofmanganite (Dhahri et al.,
2008). Furthermore, the bond distance of <Mn–O> plus bond angle
<Mn–O–Mn> changes to favor the spin orderingwith a high value of
Hext, leading to enhanced |ΔSMax|, δTFWHM, RCP, and ΔCP,H(Max) in
LCAMO (Radaelli et al., 1995; Hamad, 2015b).

Table 1 gives a comparative importance of the MCE
parameters of LCAMO with those of various materials in
terms of the high values of ΔH in previous works (Álvarez-
Alonso et al., 2013; Hamad, 2013; Saadaoui et al., 2013; Ho et al.,
2014; Bhumireddi et al., 2015; Boutahar et al., 2015; Jerbi et al.,
2015; Gupta and Poddar, 2016; Mansouri et al., 2016; Oubla et al.,

2016; Long et al., 2018; Biswal et al., 2019; El Boubekri et al.,
2020). The MCE parameters of LCAMO are significantly larger
than some MCE parameters of MC samples in the corresponding
values of ΔH and the higher ones. From this comparative image,
we conclude that LCAMO can function as a favorableMCmagnet
for the MR.

CONCLUSION

Based on thermodynamic calculation via PM, the MCE of
LCAMO is simulated under different values of variation in
Hext. The MCE of LCAMO is strongly tunable with the value
of the variation of Hext. Therefore, LCAMO can be used over a
wide temperature range as an effective material for MR, covering
a large range of temperatures, including room temperature and
lower and higher ones. The MCE of LCAMO is tunable with the
variation ofHext, proving that LCAMO is practically more helpful
as a MC magnet for the development of MRs in an extensive
temperature range, including room temperature. The values of
the MCE parameters of LCAMO are practically greater than the
MCE ones of some MC samples in earlier works.
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TABLE 1 | The comparison of magnetocaloric effect parameters for La0.5Ca0.1Ag0.4MnO3 (LCAMO) with corresponding ones of various magnetocaloric effect materials in
high ΔH.

Compounds θC (K) ΔH (T) |ΔSMax| (J/kg K) Relative cooling
power (J/kg)

Reference

LCAMO 282 5 2.75 273.5 This work
Fe68.8Cr11.2Si6B14 300 5 1.8 340.2 Álvarez-Alonso et al. (2013)
Yb0.9Er0.1MnO3 3.7 8 2 23.1 Bhumireddi et al. (2015)
Yb0.8Er0.2MnO3 3.7 8 2.1 23.8 Bhumireddi et al. (2015)
Fe68Cr12Si8B12 360 5 2.1 310 El Boubekri et al. (2020)
La0.5Ca0.5Mn0.9V0.1O3 263 5 2.42 162.8 Mansouri et al. (2016)
SmCrO3 190 5 0.11 1.7 Gupta and Poddar, (2016)
La1.1Bi0.3Sr1.6Mn2O7 340 5 1.65 134.4 Oubla et al. (2016)
La0.45Bi0.15Sr0.4CoO3 190 5 1.24 106.6 Saadaoui et al. (2013)
La0.6Sr0.4CoO3 230 5 2.28 143.6 Saadaoui et al. (2013)
Pr0.5K0.05Sr0.45MnO3 310 5 1.66 272.5 Jerbi et al. (2015)
Pr0.5Na0.05Sr0.45MnO3 270 5 1.60 266.2 Jerbi et al. (2015)
Ce0.67Sr0.33MnO3 48 5 1.65 41.41 Hamad (2013)
Fe60Ru20B20 255 5 1.52 394 Boutahar et al. (2015)
LaCrO3 288 9 0.11 1.1 Biswal et al. (2019)
Pr0.5Sr0.5CoO3 218 5 2.2 84 Ho et al. (2014)
Pr0.6Sr0.4CoO3 204 5 1.9 52 Ho et al. (2014)
La0.5Sr0.5CoO3 253 5 2.49 141.2 Long et al. (2018)
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