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The reliability of turbine engines depends significantly on the environment experienced
during flight. Air humidity, corrosive contaminant substances, and high operating
temperatures are among the attributes that affect engine lifespans. The specifics of the
environment that affect materials are not always known, and damage is often evaluated by
time-consuming manual inspection. This study innovates by demonstrating that machine
learning approaches can identify the environmental conditions that degrade jet engine
metallic materials. We used the state-of-the-art pre-trained neural network models to
assess images of damaged nickel-based superalloy samples to identify the environment
temperature, the exposure time, and the deposited amounts of salt contaminants. These
parameters are predicted by training the model with a database of approximately 3,600
sample images tested in laboratory conditions. A novel tree classification process results in
excellent predictive power for classifying the type of environment experienced by nickel-
based superalloys.
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INTRODUCTION

Commercial flight routes often experience recurrent engine failures due to the adverse
environmental conditions that aircrafts are repeatedly exposed. In reality, the specifics of the
environment experienced by engines are not fully known, and the environmental impacts on jet
engine turbine blades are still a matter of research (Darolia, 2019). To ascertain the response of blade
materials to inflight conditions, researchers have recreated representative environments in
laboratories in which metallic materials are sprayed with a thin layer of salt contaminants and
exposed to high temperatures (Eliaz et al., 2002; Rapp, 2002; Syed et al., 2021). Samples are afterward
inspected with microscopes and weighted to assess the superalloy resistance to corrosion damage.
This time-intensive approach requires expert evaluation to assess the degree of damage induced by
each specific environment.

Machine learning approaches have been demonstrated to have an excellent predictive power
in recognizing patterns in data (Paolanti and Frontoni, 2020). Among a wide range of
algorithms, convoluted neural networks (CNNs), support vector machine (SVM), and
random forest (RF) are popular approaches used to identify underlying associations in
images (AgajanianOluyemiVerkhivker, 2019; Ahmed, 2020). These techniques are
increasingly being introduced in material science to identify concealed property
relationships (Bulgarevich et al., 2018; Himanen et al., 2019; Xia et al., 2020). For instance,
researchers have linked corrosion degradation to surface images, which reduces the need for
human inspection (Shen et al., 2013; Atha and Jahanshahi, 2018; Brandolide Geus et al., 2021; Qu
et al., 2021). Furthermore, these approaches can help discover novel damaging attributes
associated with environments (Raccuglia et al., 2016; Thankachan and Kavimani, 2020).
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Since the quality of the predictions relies on the size of the
training data sets, one of the major difficulties relies on
obtaining enough information. This challenge is particularly
acute for damage prognosis since we often seek to characterize
the extreme rather than the mean of distribution (Nash, 2018).

Several research efforts have implemented machine learning
approaches for quantifying the damage progression rather than
qualifying the environmental attributes that lead to such damage
(Khayatazad et al., 2020; Naik et al., 2020). Leveraging prior
experimental efforts and an ample image database, this work
applies machine learning approaches to identify the
environmental conditions experienced by degraded samples.

We consider the state-of-the-art of pre-trained feature
extractor model along with image classifiers implemented in
the Orange 3 platform. We also devised a data augmentation
strategy and a classification strategy that stratifies predictions and
enriches the prediction of predictive power. The results
demonstrated that a machine learning tree strategy is an
efficient and powerful tool for the identification of
environmental damage on turbine blades and the classification
of the environmental conditions to which nickel-based superalloy
samples are exposed.

DATA AUGMENTATION

As part of our regular material characterization programs, an
experimental dataset was created by exposing Ni-based superalloy
cylindrical samples, as schematically shown in Figure 1. These
samples are exposed to 700°C or 900°C under flowing air
+300 ppm SO2, during 80, 120, 160, 320, or 520 h after spraying
different salt flux concentrations (1.5, 5 or 10 µg

h cm2). These latter
values correspond to the amount of mass of contaminant salt
deposited per hour and unit area, and they will be simply referred
to as low, medium, or high salt fluxes. In addition to these 30
combinations of environment, we consider three (query) types of
nickel-based superalloys identified as materials A, B, C, and Bc, the
latter corresponding to material B with a coating.

The details of the materials are proprietary, but they are not
required in this work since the methodology presented is not

FIGURE 1 | Schematic description of the experimental setup and the
layout of the SEM images.

FIGURE 3 | Example of the steps implemented in data pre-processing and augmentation.

FIGURE 2 | Examples of images obtained with the SEM for material B after being exposed to corrosive environments at 900°C with a medium salt flux coating for
80, 160, and 520 h, respectively.
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specific to the performance of the material. After testing, all
samples were mounted in resin and then sectioned across the
centerline of the specimen and polished back to a mirror finish
using oil-based lubrication to avoid the dissolution of any salt
residue. A bespoke digital microscope system that captures
optical images at predefined intervals around the
circumference of the specimen was used; in this case, 30
images were captured, i.e., every 12° around the circumference,
examples of which are shown in Figure 2. The entire dataset
corresponds to a total of 3,600 images that were converted to a
portable network graphics (PNG) lossless format. It is noted that
this dataset is significantly larger than those typically reported in
the literature, particularly for nickel-based superalloy assessments
(Senanayake and Carter, 2020).

The process of cropping images with a specified region is an
effective approach for exploring a region of interest (ROI) and
increasing the machine learning accuracy (Mishra et al., 2020).
The ROI of an image varies depending on the content of the
images and the classification target. In our case, since the
degradation of the environment occurs primarily on the
specimen surface, we defined the ROI as the perimeter of the
sample. Hence, each image was cropped along the perimeter
(Figure 3) to augment the data and focus the model on the

environmental interactions. The augmentation procedure was
automatized by cropping a rectangular box centered at the middle
point of the perimeter, which was located on the original images
(Figure 3), with a MATLAB algorithm. The box was extracted
using the standard imcrop command to trim images into four
pieces, according to the ROI that has been selected. These images
were labeled and saved automatically.

MACHINE LEARNING MODEL

Our baseline model presented in Figure 4 was implemented in the
Orange 3 platform (DemšarCurkErjavecGorupHočevaret al., 2013).
The model consists of four main parts corresponding to the colored
widgets: yellow—image analysis, orange—data classification,
pink—model adjustment, and blue—model evaluation; all
calculations were performed on an Intel Core i5 Mobile.

After comparing different combinations of data extractors and
classifiers available in Orange 3, we present the results for three
methods VGG16, VGG19, and inception v3. The visual geometry
group (VGG) (Simonyan, 2015) is a CNN approach with 16 or 19
layers deep while the inception v3 extraction model (Szegedy and
Wojna, 2016) corresponds to a pre-trained convolutional neural
network. All approaches are pre-trained on a dataset containing
1,000 different classes from the original ImageNet dataset with
one million classes of images. Inception v3 employs different-
sized convolution kernels, which allows the existence of different-
sized perceptual fields and ultimately the stitching to achieve the
fusion of features at different scales. The approach differs from
other pre-trained CNNs in that

• It applies a 1 × 7 convolution and a 7 × 1 convolution
instead of a 7 × 7 convolution, which results in using only
about (1 × 7 + 7 × 1)/(7 × 7) = 28.6% of the
computational power.

FIGURE 4 | Baseline model training implementation in Orange 3

TABLE 1 | ResNet50 model accuracy using different numbers of images for
training and evaluating the exposure temperature for material A only.

Number of images
used for training

Number of images
used for testing

Prediction accuracy

5 25 0.85
10 20 0.95
15 15 0.99
20 10 1.00
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• It applies a 1 × 3 convolution and a 3 × 1 convolution instead of
a 3 × 3 convolution, which results in using only about (1 × 3 +
3 × 1)/(3 × 3) = 67% of the computational power.

This strategy accelerates the computational calculations, increases
the non-linearity of the network, and reduces overfitting ().

We also consider two classifiers, RF and the SVM. RF implements
(Breiman, 2001) a set of decision trees, each of which is selected from
a bootstrap sample. Each tree is constructed by selecting the best
attributes from a random subset. The final model relies on sampling
the results from individual trees in the forest. The SVM defines

hyperplanes that enable data to be separated into two categories in
space, hence the name “binary classifier” (Chang, 2011). The
approach maximizes the separation of different classes of data by
computing a hyperplane, which is an effective strategy for solving
non-linear and high-dimensional image classification problems
(Chang, 2011). By choosing different kernel functions, the SVM
can be adapted to various classification problems. If the classification
problem to be solved is only of two types, then the activation of the
SVM is set to “linear,” and the loss is set to “hinge”. If the SVM is to
solve a multivariate classification problem, the activation is set to
“SoftMax,” and the loss is set to “square hinge” (Reddy, 2021).

FIGURE 5 | Comparison of two samples for material A exposed at 900°C for 160 h with low (A) and medium (B) salt contaminants. The models are initially applied
to these cases, given the evident difficulty in distinguishing the imagers.

TABLE 2 |Comparison of the accuracy and training time of variousmodels in predicting the contaminant salt flux level for material A samples exposed to 900°C during 160 h.
Precision, sensitivity, and specificity were computed from cross-validation with the default implementation of various models in Orange 3.

Accuracy Precision Sensitivity Specificity Training time (mins)

Orange 3 Baseline model: Inception v3+ SVM 0.89 0.74 0.74 0.87 12
Inception v3+ Random Forest 0.88 0.72 0.72 0.86 18
VGG16 + SVM 0.77 0.60 0.60 0.79 16
VGG16 + Random Forest 0.73 0.55 0.56 0.77 19
VGG19 + SVM 0.86 0.71 0.72 0.85 20
VGG19 + Random Forest 0.74 0.59 0.52 0.78 20

TABLE 3 | Model accuracy and training time for the simultaneous prediction of the contaminant salt flux, temperature, and exposure time applied to material Bc.

Prediction accuracy Training time (mins)

Neural Networks (Oluwafemi et al., 2021), (Li and Liu, 2019), (Reddy, 2021), (Breiman, 2001) 0.815 40
Baseline model with cost = 1 and gamma = auto 0.794 20
Parameter-tuned baseline model, cost = 10, gamma = 0.5 0.976 20

TABLE 4 | Comparison of the independent prediction accuracy and training time for salt flux, exposure time, and temperature for all materials combined using various
models.

Salt flux Exposure time Temperature Training time (mins)

ResNet50 0.594 0.813 0.925 830
Parameter-tuned baseline model, cost = 10, gamma = 0.5 0.765 0.937 0.97 30
Parameter-tuned baseline model with tree strategy 0.905 0.97 0.97 120
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Furthermore, the SVM model depends on the cost and gamma
parameters, which determine the accuracy and generalization of the
model. Our baseline model uses a cost equal to 1 and the option for
automatic selection of gamma. Compared to fully connected layers in
the CNN, the SVM is based on the principle of structural risk
minimization, which avoids the overlearning problem and has a
high generalization capability (Li and Liu, 2019).

Training
The augmented images were classified in Orange 3 and
imported into the models. The datasets were allocated
using the holdout method in Orange 3, which divides the
datasets into training and validation sets accordingly. A total
of 70% of the images were used in the formulation phase of
model training, to train the hypothesis function (i.e., to
determine the general parameters). The 30% validation
set is used to evaluate the final generalization capability
of the model. The relative fraction for training
and validating was chosen after performing a comparison
using a ResNet50 neural network model (Oluwafemi et al.,
2021). In this case, we evaluated the number of images
required to maximize the temperature predictive power for
Material A. The outcomes presented in Table 1 demonstrate
that 15 to 20 images (50–33%) are sufficient to fully train the
models.

RESULTS

A. Performance for Environment
Identification
Our first analysis explores the predictive power of machine
learning approaches to distinguish material A samples tested

at 900°C, exposure for 160 h, and three salt flux levels. As shown
in Figure 5, the images from these samples are hardly
distinguishable by simple inspection, and even an experienced
expert would find difficulty in their classification. Previous efforts
(Oluwafemi et al., 2021) with ResNet50 neural network analysis
with these images resulted in an accuracy of 0.72 and required
20 min training in our system. Table 2 presents the results for
various Orange 3 models with default settings, and it
demonstrates that inception v3 with the SVM reaches better
accuracy on a shorter running time. We further performed a
cross-validation analysis in which each dataset was divided into
10 subsets. For each iteration of the 10-fold cross-validation,
different subsets are used for training and testing. In the first
iteration, the first subset is used for testing, and the remaining
subsets are used for training. The second iteration uses the second
subset for testing and so on. To obtain the final result, an average
of 10 classification accuracies is computed, and each accuracy
comes from a single iteration of 10-fold cross-validation.
Similarly, we computed the precision, sensitivity, and
specificity. Overall, our baseline model outperforms all other
implementations both on the quality of the results and the
training time. Furthermore, Appendix A presents the
confusion matrices for the flux predictions. It is noted that all
models use the default attributes and without any parameter
optimization.

Next, we consider all temperatures, exposure time, and
fluxes for material Bc, for which the dataset was divided into
70% training and 30% testing. Prior work with ResNet50 by
Oluwatobi et al. (Oluwafemi et al., 2021) yielded an accuracy
of about 80%, as shown in Table 3. The results on this table
demonstrate that the SVM with the default automatic
selection of parameters yields an accuracy almost identical
to that from ResNet50 but requires half the training time.
Since Orange 3 does not provide an optimization
application, the accuracy of the baseline model parameters
was evaluated for a combination of the cost parameter
between 1 and 20 and the gamma parameter between 0
and 2. Upon optimizing the SVM parameters, an
impressive accuracy above 95% is achieved without
affecting the training time.

Next, we considered the baseline model with tuned parameters
(cost = 10, gamma = 0.5.) and used all four materials and 30
environmental conditions each. The accuracy results on Table 4
demonstrate that compared to the accuracy obtained with neural
networks, our baseline model shows significant improvements in
accuracy and a dramatic reduction in the running time by a factor
of 20.

We further re-assessed the results by implementing a new
strategy that uses the SVM in sequence. The accuracies for

FIGURE 6 | Tree strategy architecture. The next attribute (e.g., salt flux)
is predicted using a model trained with a subset of images exclusively
corresponding to the prior attribute predicted (Images tested at the
temperature predicted).

TABLE 5 | The accuracy of predicting unknown and known dataset temperatures, salt fluxes, and exposure times.

Testing datasets Temperature
(%)

Salt
flux (%)

Exposure
time (%)

Material B evaluation using the parameter-tuned baseline model with the tree strategy trained with materials A, C,
and Bc

85 36 50
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predicting exposure time and temperature are both very high.
However, the exposure time comprises five categories, which
renders the number of images in the next flux or temperature
training subset as too small and reduces the overall predictive
power. Therefore, we introduced the tree strategy shown in
Figure 6, in which the model is first trained to identify the
temperature (either 700°C or 900°C). We implemented the same
approach to identify the exposure time but using an algorithm
trained with images from samples exposed at the corresponding
temperature. Similarly, we concluded the analysis by identifying
the flux with an algorithm trained with images from the
temperature and exposure predicted earlier. The tree strategy
in Figure 6 allows for sufficient subsets of images to be trained,
which dramatically improves the predictive power, as shown in
Table 4. Here, the tree strategy performs better than the baseline
model at the expense of increasing a factor of three times the
running time. Nevertheless, the tree strategy is seven times faster
than the prior CNN approach.

B. Material Type Generalization and Other
Indicators
We further consider the ability of the models to predict the
environment while being trained with materials other than those
used for testing. Hence, we trained the model using the images
from materials A and Bc, and we validated the models with
images from material B. The results on Table 5 demonstrate the
accuracy in predicting temperature and exposure time of 85 and
50%, respectively, and the accuracy drops below 40% for
predicting the salt flux. Hence, the identification of
temperature is less sensitive to the material type while the
interaction of the salt flux and exposure time with the material
seems strongly dependent on the composition. These results
suggest that some attributes can be predicted with a general
database (i.e., temperature), while others may require a database
compatible with the material of interest. In any case, we
demonstrated that some predictive power is inherited from
testing other materials, which has helped reduce the costs of
developing robust experimental databases.

Finally, we also considered the sample mass change quantified
on experiments, which is used as a simple guide in monitoring
environmental condition experiments. Therefore, we attempted
to identify the mass change of superalloys after corrosion by
classifying sample images into four quartiles of mass change. The
results yielded an accuracy above 80% in predicting the quartiles
for the mass change.

DISCUSSION AND CONCLUSION

This work evaluated the potential of various machine learning
approaches to classify images from corroding metallic materials
in order to classify the environment to which samples were
exposed. We considered different nickel-based superalloys

used on jet engines, which were exposed to detrimental
environments at two temperatures, five exposure time periods,
and sprayed with three amounts of contaminant salts. These test
conditions are typical for laboratory evaluation of materials and
are thought to be representative of in-service damage.

Different machine learning approaches were evaluated along
with an image augmentation strategy and a novel tree prediction
approach. The results demonstrated a high accuracy of machine
learning approaches in classifying an unknown damaging
environment. We further demonstrated that an inception
v3 pre-trained CNN + SVM classifier model was the most
reliable when different attributes from the environment were
subsequently predicted in decreasing the order of accuracy. This
expected accuracy can be computed considering all the attributes
together. In addition, we showed that some attributes can be
predicted accurately even when the models are trained with
images from other types of alloys. As a result, we
demonstrated that machine learning approaches can be flexible
and instrumental in detecting anomalous environmental
conditions experienced by aircraft regular services.

This work represents an initial milestone in using machine
learning to identify realistic in-service environments that affect
materials’ life cycle. This approach requires extensive
experimental characterization and a mechanistic
understanding of damage processes that justify the testing
conditions. Nevertheless, the value of the approach justifies
further work that aims to classify jet engine components taken
from service with our trained model. The results serve to validate
laboratory testing conditions and further correlate with the
degree of damage and component remaining life. Furthermore,
this approach leverages on the analysis of component images to
link the environment with failure mechanisms.
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APPENDIX ACONFUSION MATRIX FROM
VARIOUS ANALYSES

Confusion matrices correspond to tables that visualize the
accuracy of learning algorithms. In this case, the matrix

columns symbolize the contaminant fluxes predicted whereas
rows represent the actual fluxes.

FIGURE 1 | Schematic description of the experimental setup and the layout of the SEM images.
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