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High-entropy alloys (HEAs) are materials which leverage the entropy of mixing to motivate
the formation of single-phase solid solutions, even of immiscible elements. While these
materials are well-recognized for their application to structural engineering, there is
increasing interest in the use of HEAs for functional applications such as memory
storage and energy devices. The current work investigates the HEA Al1.3CoCrCuFeNi,
which has been previously shown to be single-phase at high temperatures, but undergoes
phase separation at lower temperatures, transforming the structural and the functional
properties. This phase separation is investigated at high temperatures with in-situ small
angle neutron scattering (SANS) and scanning transmission electron microscopy (EDS).
These techniques show that increasing the temperature up to 800°C, the microstructure of
the HEA adiabatically disorders and abruptly homogenizes near 700°C, which is consistent
with spinodal decomposition. Overall, the microstructural evolution proceeds mainly by the
atomistic redistribution of the constituent elements within simple crystal lattices, producing
coherent phase mixtures.

Keywords: high-entropy alloy (HEA), in situ, spinodal decomposition, microstructure, SANS (small-angle neutron
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INTRODUCTION

High-entropy alloys (HEAs) have been the focus of research since their discovery in 2004 due to their
potential in structural applications (Tong et al., 2005a) and more recently functional devices such as
memory storage and energy technologies (Wang et al., 2021). These materials are comprised of five
or more elements which randomly occupy a single lattice site in an otherwise ordered crystal lattice;
the large entropy from the chemical disorder can stabilize alloy compositions even between
immiscible elements. The AlxCoCrCuFeNi family of HEAs was among the first to be studied,
and continues to provide challenges and opportunities for researchers seeking to better understand
phase stability, phase separation, and microstructure development in advanced alloys (Yeh et al.,
2004; Tong et al., 2005b; Zhang et al., 2014; Santodonato et al., 2015; Gao et al., 2016; Miracle and
Senkov, 2017; Xu et al., 2018; Pan et al., 2021). HEAs were initially recognized for their tendency to
form single-phase solid solutions (e.g., alloys) with excellent mechanical properties such as high yield
strength and hardness, which can be systematically varied by changing the aluminum content
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(x-parameter) (Yeh et al., 2004; Tong et al., 2005b). Subsequent
studies, particularly by Yeh et al. (2004) and Tong et al. (2005b),
have revealed more details about this system, including phase
separation between the Al-Ni and Cr-Fe for compositions with
precentages Al ≥ 1. Commensurate with the phase separation is
an enhancement of the hardness and ductility (Wang et al., 2009;
Singh et al., 2011; Tang et al., 2015). The interface between these
phases has been proposed to be coherent, a feature which strongly
contributes to the improved structural performance in modern
superalloys (Zhao et al., 2003; Prasher et al., 2019). In both the x =
1 and x = 1.3 compositions, phase separation of Al-Ni and Cr-Fe
is reported at room temperature, while at high-temperatures the
material is a single homogenized phase. The dissolution of the
two phases has been proposed to occur by spinodal
decomposition (Welk et al., 2013; Santodonato et al., 2015).
The high-temperature transformation is determined by the
Gibbs free energy, which couples the temperature to the
entropy, affirming the role of the HEA paradigm in
determining the ordering.

The high-temperature, entropically-driven transformation is
the focus of the current work. Our previous work has investigated
the HEA Al1.3CoCrCuFeNi using in-situ diffraction while heating
through the transition, capturing changes in the crystal structure
(Santodonato et al., 2015), but had little sensitivity to the
microstructure or chemical ordering. Using differential
thermal analysis and room-temperature microscopy, it has
been proposed that the transformation occurs by spinodal
decomposition (SD) at ≈600°C. During the SD, the
microstructure is proposed to change abruptly, with discrete,
well-defined phases merging at higher temperatures into a
homogenized alloy. Due to the strong dependence of the
macroscopic structural properties on the microstructure and
compositional disorder (homogeneity), it is critical to develop
a thorough understanding of the structure before, during and
after the SD. The present study uses in-situ heating with small-
angle neutron scattering (SANS) and scanning transmission
electron microscopy (STEM) with energy dispersive x-ray
spectroscopy (EDS) to investigate the temperature-dependent
formation and distribution of phases, confirming the SD
transition in Al1.3CoCrCuFeNi.

EXPERIMENTAL

Samples were fabricated using standard arc melting techniques as
described previously (Zhao et al., 2003; Ohmura et al., 2006; Lee
et al., 2018; Lee et al., 2020a; Lee et al., 2020b). The samples for in-
situ STEM heating experiments were prepared by first sectioning
the as-cast ingots into ≈5 mm cube-shaped pieces. A Hitachi
NB5000 Ga+ focused ion beam (FIB) operated at 40 kV Ga+ was
then used to extract and thin (≈100 nm) specimens, followed by a
low 5 kV surface cleaning procedure. An in-situ
micromanipulator was subsequently employed to transfer the
specimen onto a MEMS fabricated heating microchip device,
(Protochips, Inc. Morrisville, NC), following the protocol
outlined by Duchamp et al. (2014) FIB milling is an
established technique for traditional TEM specimen

preparation (Giannuzzi and Stevie, 1999) and it is well known
that preparation using this method results in Ga+ implantation
(Langford and Petford-Long, 2001). However, the final cleaning
at 5 kV reduces the Ga defects in the final specimen (Langford
et al., 2001). The in-situ STEM heating experiments were
performed from room temperature to 800°C on a Hitachi HF-
3300 STEM, operating at 300 kV, ramping the temperature at 5°C
per minute then holding the temperature constant for 30 min
before imaging. STEM-EDS elemental maps were acquired using
a Bruker silicon drift EDS detector at 256 × 192 pixels, a pixel
dwell time of 13 ms, with an overall acquisition time of 11 min.
Small-angle neutron scattering studies were conducted at the
High Flux Isotope Reactor (HFIR) on the General-Purpose SANS
beamline (GP-SANS) (Wignall et al., 2012). This technique is
sensitive to the microstructure of the material, specifically
chemical phase separation and the resulting change in the
nuclear scattering length density. The instrument was
configured to use a neutron wavelength (λ) of 8 Å with the
resolution Δλ/λ of 0.15. The sample-to-detector distance of
19.3 m was chosen to provide a q-range of 0.002 Å-1 to 0.04 Å-

1 for observing microstructural features in the size range of
160–3,100 Å. A tube furnace exposed to atmosphere was used
to control the sample temperature during the SANS
measurements, up to 800°C, allowing in-situ measurement of
the structure. The temperature was initially heated to 400°C with
a ramp rate of 20°C/s and then ramped to higher temperatures by
50°C every 15 min. The SANS prepared samples were 10 mm
diameter disks with a thicknesses of 1 mm.

RESULTS AND DISCUSSION

The first step of the in-situ STEM-EDS study was to reproduce the
previously reported room-temperature microstructure of the
Al1.3CoCrCuFeNi alloy (Santodonato et al., 2018). The as-cast
metal has a dendritic microstructure, with Cu-lean dendrites and
Cu-rich inter-dendrites, spanning several hundred microns in
scale (not shown). Within the dendrites, a periodic
microstructure consisting of Cr-Fe rich plates in a matrix of
Al-Ni of is observed and shown in Figure 1. The Cr-Fe has a
body-centered-cubic (BCC) structure, with the plate growth
direction normal to the <1 0 0 > vectors (Wang et al., 2009);
the Al-Ni matrix has an ordered BCC (i.e., B2) structure. These
two phases have nearly equal lattice parameters of ≈2.9 Å,
allowing for a coherent interface, characterized previously by
Welk et. al. (Welk et al., 2013) The Co (not shown) is included in
both the Cr-Fe and the Al-Ni phases, with a signal appearing
throughout the dendrites. The Cu is shown to form its own plates
that are separate from both the Cr-Fe and the Al-Ni, which have a
face-centered cubic (FCC) structure (Xu et al., 2018). Most of the
Cu in the sample forms FCC phases in the inter-dendritic regions
(Tong et al., 2005b; Santodonato et al., 2015; Xu et al., 2018).
These FCC inter-dendritic zones are stable to temperatures near
the melting point of pure Cu (1,085°C). In contrast, the oriented-
plate microstructure of the dendrite region undergoes significant
changes between room temperature and 800°C; which is the main
focus of the present in-situ study.
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The STEM-EDS images in Figure 1 show that the
microstructure of the sample gradually changes as the alloy is
heated from room temperature to 600°C. STEM images showing
the microstructure were published in a previous work
(Santodonato et al., 2015). As the Cr images emphasize, at
600°C the plates become larger, with an increasingly diffuse
boundary. Increasing the temperature to 650°C further
degrades the plates, causing them to lose their well-defined
structure and coherent orientation. At 650°C the Fe leaves the
Cr, entering the Al-Ni phase, which now forms a matrix with
voids for Cr and Cu.

Finally, heating to 700°C further homogenizes the sample,
resulting in a disordered dispersion of Cr-rich and Cu-rich
precipitates. The Co micrograph shows that at high
temperatures the Co is intermixed predominantly with the
AlFeNi matrix. High-temperature neutron diffraction spectra
presented in Santodonato et al. (2015) shows little change to
the underlying crystal structure between room temperature and
1,000°C. Comparing the STEM-EDS results shown here to the
diffraction spectra indicates that the microstructural changes
occur without significant changes to the underlying crystal
structures, consistent with SD.

While the STEM images show the local microstructure in the
FIB-defined flake sample, a broader perspective of the bulk
microstructure is necessary to confirm these results. Small
angle neutron scattering is used as a bulk-technique, which is
sensitive to microstructural changes in the proposed length scales
but is insensitive to the crystal structure. The platelets of the
different phases each have a distinct calculated neutron scattering
length density: Cr (3.28 × 10−6 Å−2), Cu (6.55 × 10−6 Å−2), and
AlFeNiCo (6.02 × 10−6 Å−2). This difference enables the neutron
to diffract from the plates, providing the measured signal.

Furthermore, the Cu is largely segregated to the inter-dendrite
boundary which is sufficiently large in scale (>1 μm) that it will
not show up in the SANS data.

The SANS measurements were performed with in-situ heating
from room temperature to 800°C using the Al1.3CoCrCuFeNi
sample, presented in Figure 2A. The SANS scattering patterns are
plotted as a radial average of the intensity as a function of the
scattering vector, Q. All of the SANS patterns show a smoothly
changing, Porod-like decay. The size distribution of the
microstructural phases was determined by analyzing the SANS
patterns using the IRENA package (Ilavsky and Jemian, 2009).
This package uses the cross-sectional scattering formula of

I(Q) � ∣∣∣∣Δϱ∣∣∣∣2 ∫ |F(Q, r)|2(V(r))2Np(r)dr

Where, I(Q) is the 1D scattering intensity, Δϱ is the difference in
scattering length density, F(Q, r) is the structure factor, V(r) is
the volume fraction, andNp(r) is the number of particles. For the
calculated analysis method, the experimental scattering pattern
can be reasonably well characterized by assuming an average
spherical shape, scattering length density difference and contrast
for all the particles in this sample. This analysis performs a least-
squares fit to determine the real-space size distribution of features
within the sample. The room-temperature data shows a bimodal
distribution, with a peak at ≈120 Å (Figure 2B), consistent with
the periodicity of the platelets in the STEM images. The second,
broader peak in the room-temperature curve occurs at ≈550 Å.
This peak is not present in the 400°C data and is proposed to be a
magnetic scattering peak as it agrees well with the expected
magnetic transition below 400°C. (Huang et al., 2016) This
indicates that the sample likely contains magnetic domains
spanning across areas of the sample much larger than the

FIGURE 1 | EDS elemental maps acquired during in-situ STEM heating experiments of Al1.3CoCrCuFeNi: (top to bottom) 20, 600, 650, and 700°C. Images show
the compositional distributions for (left to right) Cr, Cu, Al, Fe, and Ni. Scale bar is 5,000 Å.
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platelets. Upon increasing the temperature to 600°C, the SANS
data shows a continuous shift to larger diameters of the scattering
centers. Accompanying this shift is a continuous decrease in the
relative volume fraction (Figure 2D). These details are again
consistent with the STEM-EDS results, which showed that the
plate-like structure became larger upon approaching the SD
temperature. At 600°C the STEM images also show that the
boundaries of the plates are merging together as seen in the
significant increase in the full-width at half-maximum of the size
distribution (Figure 2C red curve), increasing their size beyond
the range of these measurements and thus decreasing the
apparent volume fraction.

As the temperature increased to the SD range, at 650°C the
distribution of the scattering center sizes increases significantly in
width and decreases in their average size. This trend is consistent
with a reduction in the periodicity of the plate structure and the
merging of the Al, Fe and Ni features seen in the STEM-EDS
images in Figure 1. Finally, heating above 650°C, the size
distribution is largely flat, indicating the loss of long-range
regularity of the plate-like structures.

To summarize the combined SANS and STEM-EDS results, an
expected magnetic transition is observed by SANS between 20 and
400°C due to the loss of the magnetic domain structure present at

lower temperatures. Subtle changes in the microstructure occur with
increasing temperatures between 400 and 600°C; these gradual
changes correspond primarily to structures in the 120–200 Å
range. The STEM-EDS images corroborate the growth of the
nanoscale plate-like microstructure of the sample. At 650°C the
STEM-EDS results show that the plates begin to lose their regularity
and structure, then at 700°C the sample transforms from an ordered,
quasi-oriented structure to a disordered microstructure. The
sequence of gradual elemental redistribution, followed by an
abrupt microstructural change, strongly suggests that a spinodal
transformation occurs in Al1.3CoCrCuFeNi, and likely in other
similar alloys, as suggested in the early HEA literature (Wang
et al., 2021).

CONCLUSION

The microstructure evolution of the high-entropy alloy
Al1.3CoCrCuFeNi is shown to occur by the precipitation/
dissolution of ordered Fe-Cr and Al-Ni nanoplatelet phases.
These chemically distinct phases have similar lattice structures
and parameters, allowing for a coherent interface between them,
but making it difficult to distinguish them by diffraction. The

FIGURE 2 | (A) The 1D (SANS) for Al1.3CoCrCuFeNi and the size distribution analysis. (B) Size distribution from the IRENA size distribution tool. (C) Trends in the
data of the size distribution of mode and full-width at half maximum (FWHM). (D) Volume fraction as percentage.
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current in-situ measurements (SANS and STEM-EDS) are
uniquely sensitive to the chemical phase separation and were
used to directly probe this phase transition. Using this sensitivity,
the present work provides a direct look at the spinodal
decomposition previously proposed. In addition to the SD
between the Al-Ni and Fe-Cr phases, Cu-rich and Cr-rich
secondary phases are observed to persist throughout the
matrix at high temperatures. Throughout the transformation
and homogenization process, the sample maintains a similar
lattice structure and nearly constant size (Santodonato et al.,
2015), implying the transformation is predominantly chemical
ordering, with minimal structural contributions.

The current work, together with the previous studies (Yeh
et al., 2004; Tong et al., 2005b; Santodonato et al., 2015; Zhang
et al., 2016; Butler and Weaver, 2017; Xu et al., 2018), confirms
that Al1.3CoCrCuFeNi has a unique structure, consisting of a
solid-solution matrix with a large fraction of secondary phases
at room temperature, and up to 650°C. The secondary phases
arise from both spinodal decomposition and the independent
precipitation Cu-rich phases, occurring in stages at different
temperatures. These phase separation processes may be used to
selectively tune heat treatment for beneficial properties if
properly understood and controlled. The coexistence of
different formation mechanisms and the coherency of some
of the resulting phases provides opportunities to explore
property optimization through microstructure control. It
has been noted that many important engineering alloys,
such as Ni-based superalloys, owe their strength to the
presence of coherent precipitates, hence similar features
developed in high-entropy alloys may bring extraordinary
benefits (Santodonato et al., 2015). It is in this context that
the AlxCoCrCuFeNi family of alloys should undergo further
scientific and technical study, providing great opportunities
for advanced alloy development.
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