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Landau-Lifshitz-Gilbert (LLG) spin-dynamics calculations based on the extended
Heisenberg Hamiltonian is an important tool in computational materials science
involving magnetic materials. LLG simulations allow to bridge the gap from expensive
quantum mechanical calculations with small unit cells to large supercells where the
collective behavior of millions of spins can be studied. In this work we present the
AiiDA-Spirit plugin that connects the spin-dynamics code Spirit to the AiiDA
framework. AiiDA provides a Python interface that facilitates performing high-
throughput calculations while automatically augmenting the calculations with metadata
describing the data provenance between calculations in a directed acyclic graph. The
AiiDA-Spirit interface thus provides an easy way for high-throughput spin-dynamics
calculations. The interface to the AiiDA infrastructure furthermore has the advantage
that input parameters for the extended Heisenberg model can be extracted from high-
throughput first-principles calculations including a proper treatment of the data
provenance that ensures reproducibility of the calculation results in accordance to the
FAIR principles. We describe the layout of the AiiDA-Spirit plugin and demonstrate its
capabilities using selected examples for LLG spin-dynamics andMonte Carlo calculations.
Furthermore, the integration with first-principles calculations through AiiDA is
demonstrated at the example of γ–Fe, where the complex spin-spiral ground state is
investigated.

Keywords: spin-dynamics simulation, high-throughput computation, Landau-Lifshitz-Gilbert equation, Monte-Carlo
simulation, spin-spiral state, gamma-Fe, skyrmion, antiskyrmion

1 INTRODUCTION

Magnetic materials play an important role in modern technology. Their most important applications
range from electrical motors to the storing and processing of digital information. The performance of
such applications crucially relies on the performance of magnets where the knowledge of their
magnetic order, the Curie temperature, the magnetic hardness or their chirality plays an important
role. Computational materials design of magnetic materials and devices is a complex multi-scale
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problem. While quantum mechanical calculations allow to
predict the interaction strength among magnetic atoms
(Liechtenstein et al., 1987), large scale simulations for
nanometer to micrometer length scales are unfeasible due to
their computational cost. Mapping these interactions to a classical
Heisenberg model allows to bridge the scales from the atomic
length scale to the length scale of devices. The classical
Heisenberg model is an approximation to the quantum
mechanical problem which assumes that the magnetic
moments are localized on atoms and can be described as
classical vectors which is applicable for a wide range of materials.

Spin-dynamics calculations based on the Landau-Lifshitz-
Gilbert (LLG) equation (Landau and Lifshitz, 1935; Gilbert,
2004) are a widely used tool for this multi-scale modeling of
magnetic materials (Dupé et al., 2014; Hoffmann et al., 2017;
Hoffmann et al., 2021;Weißenhofer et al., 2021), providing access
to the collective behavior of millions of spins (Müller et al., 2019).
This approach allows to find, for instance, the (non-collinear)
magnetic ground state based on an energy minimization of the
extended Heisenberg Hamiltonian or to study the dynamics of
magnetic solitons such as skyrmions (Mu€hlbauer et al., 2009; Yu
et al., 2010; Heinze et al., 2011; Back et al., 2020) or hopfions
(Bogolubsky, 1988; Sutcliffe, 2018; Kent et al., 2021) at finite
temperature. In combination with the geodesic nudged elastic
band method and the harmonic transition state theory (Bessarab
et al., 2012; Bessarab et al., 2015) it furthermore gives insight into
the stability of aforementioned objects (Müller et al., 2019).

In this work we introduce the AiiDA-Spirit plugin that
connects the Spirit code (Müller et al., 2021) to the AiiDA
environment (Huber et al., 2020). AiiDA is an open-source
Python framework designed around the FAIR principles of
findable, accessible, interoperable and reusable data (Wilkinson
et al., 2016) in computational science (Pizzi et al., 2016).
Calculations that run through the AiiDA infrastructure are
automatically stored as nodes in a database together with all
inputs and outputs that are necessary to reproduce the simulation
results. This results in an directed acyclic graph that can connect
different nodes which can be used to reproduce the data
provenance from a final result.

In the context of spin-dynamics simulations, a simulation result
could be the magnetic ordering obtained from a minimization of
the forces on each spin in an LLG calculation. The outcome of such
a simulationwill in general depend on input parameters such as the
geometry (positions of the spins, size of simulation cell, open or
periodic boundary conditions), the exchange coupling constants,
or applied external fields as well as temperature noise. But also the
starting point for the minimization (e.g., starting from an ordered
ferromagnet or from random spin orientations) are important as
local minima in the energy landscape can generally be present in
which metastable states can be stabilized. To ensure reproducible
calculation results, keeping track of the full data provenance of a
simulation is necessary.

AiiDA’s plugin infrastructure allows to orchestrate and
combine different sequences of calculations, possibly using
different simulation software and methods, through a common
interface. Here, we use this to first generate exchange coupling
parameters from DFT calculations using the JuKKR code (The

JuKKR developers, 2021) with the help of the AiiDA-KKR plugin
(Rüßmann et al., 2021a; Rüßmann et al., 2021b). Then, we
proceed with spin-dynamics simulations using the Spirit code
(Müller et al., 2019; Müller et al., 2021) via the newly developed
AiiDA-Spirit plugin (The AiiDA-Spirit developers, 2021). This
allows to include the full history of the input parameter
generation for spin-dynamics calculations in the provenance
graph of a Spirit simulation. Using AiiDA therefore facilitates
multi-scale modeling that combines the predictive power of DFT
calculations and the speed and scalability of spin-dynamics
simulations in the same framework.

The AiiDA engine (Uhrin et al., 2021) provides a highly
scalable infrastructure that is able to deal with thousands of
calculations simultaneously. Together with the simple Python
interface that AiiDA-Spirit provides, spin-dynamics simulations
are possible in an automated way which can be used in a high-
throughput fashion. This opens new possibilities for applying the
Spirit code in automated setups and as part of complex workflows
in conjunction with other simulation methods such as DFT. This
new capability allows to integrate Spirit in the toolbox of methods
that are used in automated computational materials design for
magnetic materials (Himanen et al., 2019).

This paper is structured as follows. First the methods section
introduces the theory behind spin-dynamics simulations. Then
the AiiDA-Spirit plugin is presented which is then applied to 1) a
parameter exploration based on a toy model and a large number
of high-throughput AiiDA-Spirit calculations, 2) to a simple
Monte Carlo example to find the critical temperature of a
model system, and 3) multi-scale modelling combining DFT
and LLG calculations at the example of γ–Fe. Finally the
paper concludes with a discussion of the results.

2 METHODS

2.1 Spirit Theory
All spin-dynamics simulations shown throughout the paper were
performed with the Spirit code (Müller et al., 2019; Müller et al.,
2021). The Spirit code provides a framework for atomic-scale spin
simulations and combines both a graphical user interface as well
as an easy accessible Python API. All simulations performed with
Spirit are based on an extended Heisenberg Hamiltonian
describing the interaction of spins �Si � �Mi/μi (μi � | �Mi|)
sitting at lattice sites i. It can be written in its most general
form as

H � − ∑
〈ij〉

Jij �Si · �Sj( ) − ∑
〈ij〉

�Dij · �Si × �Sj( )
− ∑

i

K⊥( �Si · �̂ez)2 −∑
i

μi
�B · �Si

− μ0
8π

∑
i≠j

3 �Si · �̂rij( ) �Sj · �̂rij( ) − �Si · �Sj
r3ij

− ∑
〈ijkl〉

Kijkl
�Si · �Sj( ) �Sk · �Sl( ) .

(1)

Here, thefirst line contains the isotropic andantisymmetric exchange
interactions, the later also referred to as Dzyaloshinskii-Moriya
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interaction. The second and third line describe the on-site
anisotropy, the Zeeman energy due to an external magnetic
field �B, as well as the dipolar contribution. The last term
allows to include higher-order exchange interactions
(Hoffmann and Blügel, 2020) such as the conventional four-
spin or four-spin-four-site interaction (Heinze et al., 2011), the
four-spin-three-site interaction (Krönlein et al., 2018), as well as
the biquadratic interaction (Szilva et al., 2013). The list of pairs
〈ij〉 and quadruplets 〈ijkl〉 as well as their respective parameters
Jij, �Dij, and Kijkl can be defined by the user based on the desired
use case. Furthermore, the system geometry such as the lattice
symmetry and lattice size can be chosen arbitrarily and Spirit
allows to introduce defects such as vacancies or atoms of different
types. To obtain ground state as well as thermal properties of the
investigated system, either the Monte Carlo method based on a
Metropolis algorithm or Landau-Lifshitz-Gilbert dynamics can
be used.

A more detailed description of the Spirit framework as well
as its further functionalities, such as the possibility to
calculate lifetimes of magnetic textures based on the
combination of geodesic nudged elastic band and
harmonic transition state theory calculations, can be found
in Ref. (Müller et al., 2019).

2.2 The AiiDA-Spirit Plugin
AiiDA’s plugin system allows to combine various simulation
codes and methods (to date more than 60 plugins exist
already (The AiiDA team, 2021)) on the same footing while
augmenting the calculation done through the AiiDA
infrastructure with the stored data provenance. Albeit their
significance in research on magnetic materials, spin-dynamics
calculations have not been at the center of the AiiDA community
so far. To the best of our knowledge, besides the AiiDA-Spirit
plugin presented here, only a first version of the AiiDA-UppASD

plugin (Xu et al., 2021) exists for the UppASD code (Skubic et al.,
2008) to combine AiiDA with a spin dynamics simulation engine.

In the context of AiiDA, a calculation plugin needs to be able
to generate typical input files that are required to run a calculation
through a bash script that will be generated when a calculation is
submitted to a computer or as a job on a supercomputer. At the
heart of the AiiDA-Spirit plugin lies the SpiritCalculation that
connects the Spirit code via the Spirit Python API to AiiDA. The
Layout of the SpiritCalculation is shown in Figure 1. To run a
Spirit calculation a number of input nodes are required:

• a structure node describing the lattice of spins (i.e., their
positions in the unit cell),

• an array of the corresponding jij_data that contains the
pairwise Jij and �Dij parameters for the extended Heisenberg
Hamiltonian (Eq. 1),

• the SpiritCode that is an installation of the Spirit Python
API on the computer where the calculation should run,

• and run_options as well as input parameters that control the
type of the Spirit run (e.g., LLG or Monte Carlo) or further
settings like strength and direction of external fields,
respectively.

Additionally, input modes that trigger special features of the
Spirit code such as disorder and defects in the structure or
pinning of spins to certain directions can be controlled with
the corresponding optional input nodes. The SpiritCalculation
then implements the functionality to translate this information
into the appropriate input files and runs the calculation using the
Spirit Python API. The AiiDA daemon automatically takes care of
creating a suitable job script, copying necessary input files, and of
submitting and monitoring the calculation run. Once the
calculation job finishes, important output files are copied back
to the retrieved folder in the AiiDA file repository associated to

FIGURE 1 | Layout of the SpiritCalculation that is at the heart of the AiiDA-Spirit plugin. On the left hand side the possible input nodes are shown which are
translated by the SpiritCalculation into the appropriate input files needed to execute Spirit. The run_options and parameters input nodes are optional that default to a
basic LLG calculation starting from random orientation of the spins and without external fields or temperature. The typical output nodes for a LLG calculation are shown
on the right hand side.
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the AiiDA database. Then, the SpiritParser extracts useful
information that should be stored in the database. For the
example of a LLG calculation this entails settings such as the
number of LLG steps until convergence, the used wall clock time
on the computer where the calcualtion ran, an array of the
energies (i.e. exchange energy per spin), and the initial and
final directions of the spins in the magnetization array.

Apart from the SpiritCalculation and SpiritParser, AiiDA-
Spirit comes with some tools that can be used in the typical
jupyter notebook environment that is often used in the context of
AiiDA. In particular we mention the show_spins tool of AiiDA-
Spirit which provides the Spirit visualization capabilities in a
simple Python API. This consists of a WebAssembly and WebGL
version of the VFRendering library (Vfrendering, 2021) in
combination with a JavaScript interface that can be used to
visualize the directions of the spins from the web-browser
based environment natural to jupyter notebooks.

2.3 DFT-Based Calculation of Exchange
Coupling Constants
The density functional theory (DFT) results of this work were
produced within the generalized gradient approximation (GGA-
PBE) (Perdew et al., 1996) using the full-potential scalar-
relativistic Korringa-Kohn-Rostoker Green’s function method
(KKR) (Ebert et al., 2011) as implemented in the JuKKR code
package (The JuKKR developers, 2021). We use an ℓmax = 3 cutoff
in the angular momentum expansion with an exact description of
the atomic cells (Stefanou et al., 1990; Stefanou and Zeller, 1991).
After the self-consistent DFT calculations, the method of
infinitesimal rotations (Liechtenstein et al., 1987) was used to
compute the exchange interaction parameters Jij. The series of
DFT calculations in this study are orchestrated using the AiiDA-
KKR (Rüßmann et al., 2021a) plugins to the AiiDA infrastructure
(Huber et al., 2020). The complete dataset that includes the full
provenance of the calculations is made publicly available in the
materials cloud repository (Talirz et al., 2020; Rüßmann et al., 2021).

3 RESULTS

3.1 Automated Landau-Lifshitz-Gilbert
Calculations for Model Parameter
Exploration
To illustrate the usage of AiiDA-Spirit we first consider a toy
model consisting of a single layer of spins in a simple-cubic lattice.
The complete example is part of the dataset that accompanies this
publication (Rüßmann et al., 2021). We assume only nearest
neighbor interactions with isotropic exchange J1 = 10 meV and
Dzyaloshinskii-Moriya interactions with a strength of D1 =
6 meV. This choice of parameters does not reflect any
concrete physical system but is chosen for illustration
purposes because it is known to produce skyrmions with small
radii. The generation of the corresponding input node for the
SpiritCalculation where including the directions of the DMI
vectors can be seen in the following code snippet.

Here i, j index the lattice site in the unit cell (situated at �ri,
�rj) and da, db, dc describe offsets into unit cells further away
such that �Rij � �rj − �ri + da �a + db �b + dc �c describes the distance
between two spins ( �a, �b, �c are the Bravais vectors of the lattice),
Jij and Dx, Dy, Dz denote the exchange interaction and the
three components of the DMI vector. For this example we
consider an isolated layer of spins with periodic boundary
conditions in the plane. We choose a supercell for the
SpiritCalculation of 50 × 50 × 1 spins. Furthermore we apply
an external field of various strength (in the code snippet we show
the input parameters for a value of 25 T) in the direction
perpendicular to the film in the following code snippet.

Starting from random orientations of the spins we then
perform a time evolution using the LLG method with the
Depondt solver (Depondt and Mertens, 2009). The parameters
for the LLG calculations are summarized in Table 1.

To harness the high-throughput capabilities of the AiiDA-
Spirit plugin we perform a series of SpiritCalculations to screen a
range of external fields and temperatures. We change the
temperature from 0 to 75 K in 2.5 K steps and vary the
external field from − 50 T to + 50 T in steps of 2.5 T. The
calculations for each parameters set are repeated 5 times
starting from different random orientations of the spins for
statistical averaging. This amounts to 31 × 41 × 5 = 6,355

TABLE 1 | Parameters for the LLG calculations of the toy model. Arrays are
indicated by the square brackets. Except for external_field_magnitude and
llg_temperature all parameters are kept fixed in the simulations.

Parameter Value Description

n_basis_cells (50, 50, 1) Size of the simulation cell
boundary_conditions (True, True, False) Periodic boundary conditions
llg_n_iterations 100,000 Number of iterations
llg_damping 0.3 Damping constant
llg_beta 0.1 Non-adiabatic damping
llg_dt 0.001 Time step dt (ps)
llg_force_convergence 10−7 Force convergence parameter
llg_temperature 0. . .75 Temperature (K)
external_field_magnitude − 50. . .50 Magnitude of the external field
external_field_normal (0.0, 0.0, 1.0) Direction of the external field
mu_s (2.0) Spin moment (μB)
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individual SpiritCalculations that were submitted to an in-house
compute cluster. We stress that the AiiDA daemon (Uhrin et al.,
2021) conveniently takes care of creating submission scripts and

automatically retrieves and parses the outcome of the calculations
without the need for any user interaction. A visualization of the
dataset and the provenance graph for this application is shown in
Figure 2.

In order to analyze the outcome of the SpiritCalculations we
chose to investigate the topological charge in the simulation cell at
the end of the LLG simulation. For a continuous vector field �m it
is defined as

ρT � 1
4π

∫ �m · z �m

zx
×
z �m

zy
( )dxdy . (2)

We added a custom post-processing step to the
SpiritCalculation which uses the get_topological_charge
function of the spirit Python API. This function calculates the
topological charge from the discretized form of Eq. 2 as a
summation over all contributions of triangles formed by
neighboring spins in the simulation cell (Müller et al., 2019).

Figure 3 shows the outcome of these simulations where the
topological charge is shown for all 1,271 pairs (T, Bz) together
with selected spin configurations of representative calculations
marked by the symbols (Figures 3B–G). The real-space spin
configuration at the end of the LLG calculations were visualized
using the show_spins tool of the AiiDA-Spirit plugin. It can be
seen that a small external field leads to the appearance of
skyrmions which in this case have a topological charge of ±
1, depending whether they form in a ferromagnetic background
of spins pointing in − z (Figure 3C) or + z (Figure 3E) direction.
In general, the topological charge counts the difference between

FIGURE 2 | Provenance graph of the SpiritCalculations discussed in
section 3.1. The graph consists of several thousand calculations that all use
the same crystal structure as input (the black circle in the center) with which
they are connected. The inset shows a magnified view of one of these
calculations (red circle) which is connected to outgoing nodes (colored in light
orange).

FIGURE 3 | Topological charge of the toy model discussed in the text. (A) Dependence of the topological charge ρT on the external magnetic field and temperature calculated
from the final spin texture after an LLG calculation. The black arrow highlights the inflection point where |ρT(Bz)| has a minimum with respect to Bz. For the parameters marked by the
symbols (B–G) the resulting spin textures are shown in the corresponding panels. The arrows in (F) highlight the two skyrmions that result in a topological charge of ρT = − 2.
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the amount of skyrmions in up-domains (ρT > 0) and skyrmions
in down-domains (ρT < 0) as seen for vanishing external field in
(Figure 3D) where several skyrmions with opposite topological
charges lead to a near cancellation of the total topological
charge.

At very large fields, the Zeeman exchange coupling term
becomes larger than the DMI energy and a homogeneous
ferromagnet forms (Figures 3B,G). Temperature
fluctuations tend to deform the skyrmions (Figure 3F) and
destabilize them. Thus, at elevated temperatures smaller
magnitudes of the external magnetic field leads to a
vanishing topological charge. As highlighted by the black
arrow in (Figure 3A), this is however only true up to a
certain critical temperature. For T > 40 K the topological
charge increases again which can be explained by the
energy barrier of skyrmion formation and destruction. At
these elevated temperatures the fluctuations of the spin
directions are larger than 40 K · kB ≈ 3.45 meV which we
conjecture is the energy barrier for skyrmion formation. While
the energy barrier can in principle be calculated by performing
geodesic nudged elastic band calculations, this is beyond the
scope of this paper and therefore will be omitted. The larger
temperature fluctuations also prohibit reaching the force
convergence criterion set in the LLG calculation which
means that the LLG simulation runs until the maximal
simulation time of 100 ps is reached. During this simulation
time, skyrmions can spontaneously form and disappear which
results in a finite topological charge measured at the end of the
run. In the future the real time dynamics of skyrmion creation
and collapse may be the focus of the investigation. However,
this approach may become unfeasible for situations where the
skyrmion lifetime is very long compared to the typical time
step in LLG calculations. Finally, we highlight that with
increasing temperature fluctuations we also find a larger
variance in the number of skyrmions when averaging over
the five different starting configuration for each pair (T, Bz).
This supports our interpretation that skyrmions are
spontaneously created and annihilated by temperature
fluctuations.

3.2 Curie Temperature Using Monte Carlo
The Monte Carlo (MC) method is a well established tool in
physics which, when applied to spin systems, allows to
estimate the critical temperature of the magnetic ordering
(Curie temperature) (Binder and Heermann, 1997). The
Spirit code (Müller et al., 2019) implements a Metropolis

algorithm which can be used from AiiDA-Spirit by choosing
the mc simulation method (instead of the previously used
LLG method). We demonstrate the MC at the example of a
simple-cubic ferromagnet with only nearest neighbor
interactions J1 = 1 meV. We perform calculations for
varying supercell sizes between 10 × 10 × 10 and 40 ×
40 × 40 with the MC parameters given in Table 2. The
results of the calculation are shown in Figure 4 where,
together with the total magnetization M, the isothermal
susceptibility

χ � 1
kBT

(〈M2〉 − 〈M〉2) (3)

with M � | 1N∑i
�Si| the average magnetization of the sample is

shown. We see thatM(T) converges with increasing supercell size
indicating that boundary effects become less important. The
corresponding susceptibilities show a diverging behavior at Tc.
Our calculation results agree well with the expected value of Tc =
1.44J1/kB = 16.71 K. We stress that these calculations require a
series of steps consisting of, for example, thermalization and
decorrelation steps at each temperature value in the scanning
interval. Within AiiDA-Spirit this complexity is conveniently
absorbed in the SpiritCalculation which greatly facilitates the
application of MC calculations.

TABLE 2 | Parameters for the MC calculations of the simple-cubic ferromagnet discussed in the text. Note that the chosen settings result in temperature steps of 0.5 K.

Parameter Value Description

n_thermalisation 5,000 Number of thermalization steps before n_samples are taken
n_samples 250,000 Number of samples taken in metropolis algorithm
n_decorrelation 2 Number of decorrelation steps
n_temperatures 40 Number of temperature steps
T_start 25 Start of temperature scanning range
T_end 5 End of temperature scanning range

FIGURE 4 | Results of the Monte Carlo calculations for a simple-cubic
ferromagnetic with nearest neighbor J1 = 1 meV exchange interactions.
Shown are results for 10 × 10 × 10 to 40 × 40 × 40 supercells where the solid
lines show the normalized value of the total magnetization M and the
dashed lines the corresponding susceptibility χ. The dashed vertical line
indicate the expected value of the critical temperature at Tc = 16.71 K.
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3.3 Multi-Scale Modeling: γ–Fe
We now demonstrate how the integration of the Spirit code into
the AiiDA framework through the AiiDA-Spirit plugin can
facilitate multi-scale modeling for magnetic materials. In this
example we first calculate the exchange interaction parameters for
γ–Fe using density functional theory which are then passed to the
AiiDA-Spirit plugin for LLG simulations.

The γ phase of Fe is a metastable high-temperature phase
where the atoms crystallize in the fcc lattice (Knöpfle et al., 2000;
Sjöstedt and Nordström, 2002). This has a drastic consequence on
the exchange interactions where, in contrast to the ferromagnetic
bcc Fe, frustrated exchange interactions can lead to the formation
of spin-spirals. Experimentally this structure of Fe can be realized
in a Cu matrix (Tsunoda, 1989; Tsunoda et al., 1993). It is known
that a variation of the lattice constant of γ–Fe can have drastic
consequences for the magnetic ordering (Sjöstedt and
Nordström, 2002). Here, we investigate bulk crystals of γ–Fe
for varying lattice constants between alat � 3.2�A and alat � 4.0�A
around the lattice constant of Cu (alat � 3.6�A).

Figure 5 summarizes the results of the DFT calculations that
were done with the AiiDA-KKR plugin (see methods section for
numerical details). The total energy as a function of the lattice
constant (shown in panel Figure 5A) reveals a phase transition
from the low-spin state (for alat < 3.6�A) to the high-spin state
(alat ≥ 3.6�A) of γ–Fe as seen in the jump of the spin moment to
μs > 2.5 μB. This coincides with a smaller exchange splitting seen
in the density of states (Figure 5B) and consequently a smaller
value of the spin moment (Figure 5C). For lattice constants below

3.37�A we find that the magnetic moment vanishes. Panel
(Figure 5D) shows the calculated exchange interactions Jij as a
function of distance between two Fe atoms. Clearly, the sign of the
nearest neighbor interaction shows the most drastic change with
the transition from high-spin to low-spin state at smaller lattice
constant of γ–Fe. While in the high-spin state the first and second
nearest neighbor interaction are both ferromagnetic (Jij > 0), for
the low-spin state the nearest neighbor interaction changes from
being weakly ferromagnetic to antiferromagnetic (Jij < 0).

In the following, the consequences of this change for the
magnetic ordering are investigated based on a series of LLG
calculations using the AiiDA-Spirit plugin. In the DFT
calculation we use the primitive cell which contains a single
atom in the unit cell. For the spirit calculations we map the
calculated exchange interactions onto the conventional unit cell
consisting of four atoms. The parameters of the LLG simulations
are summarized in Table 3. We study the magnetic ordering in a
40 × 40 × 40 × 4 = 256,000 spins supercell without external
magnetic fields and at temperature T = 0 K. Here we focus on the
ground state that forms and therefore neglect effects of
temperature fluctuations and external fields which can, for
example if T is high enough, overcome the energy barrier
between different (metastable) magnetic orderings. We further
neglect the influence of anisotropy (K⊥ = 0) in this work and we
also do not include higher order exchange terms (Ki,j,k,l = 0). We
choose open boundary conditions in order to not bias the
eventually resulting spin-spiral wavelength by the periodicity
of the supercell. Table 4 summarizes the DFT calculated

FIGURE 5 | Results of the DFT calculations for γ–Fe. Total energy as a function of the lattice constant (A)where the green and violet lines show parabolic fits to low-
spin (alat <3.6�A) and high-spin (alat ≥3.6�A) states. (B) Corresponding density of states (value in the legend indicates the lattice constant) which clearly separates into
low-spin (LS) with smaller exchange splitting and high-spin (HS) states with larger exchange splitting. Note that the positive (negative) values of the DOS indicate
the majority (minority) spin channels. (C) Spin moment as a function of the lattice constant where the transition from non-magnetic (first four data points) over the
low-spin state to the high-spin state is evident. (D) Resulting exchange coupling constants (Jij) as a function of the pairwise distance between the Fe atoms in γ–Fe (the
lattice constant is given in the legend).
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values for magnetic moments and exchange coupling
constants for varying lattice constants that were used in
the respective SpiritCalculations. Note that the exchange
coupling constants are only shown up to the seventh shell
of neighbors but the calculations included pairs up to the 15th
shell that are however much smaller than the values reported
in Table 4.

We start the discussion of the LLG calculations with the
results for γ–Fe in the lattice constant of Cu (alat � 3.61�A).
Figure 6A shows the resulting spin texture at the end of the
LLG calculation for the central layer of spins in the yz-plane
(shown in the inset Figure 6B). We can see that a spin-spiral
forms in z-direction with ferromagnetically ordered spins in y-
direction. At the open boundaries we see that the missing
neighbors on one side influence the magnetic ordering that
deviates from the spin-spiral in the center for a distance of
about five lattice constants. In order to quantify the spin-spiral
we pick the two cardinal directions in this plane (indicated by
blue and orange lines in Figure 5A) and extract the z-
component of the spin Sz. We combine the projections onto
the yz-plane from two adjacent layers of spins (indicated by the
two grey planes in Figure 5B) to not restrict our analysis to a
single sub-lattice only. This allows to describe also
antiferromagnetic structures in the sub-lattices with
ferromagnetic ordering within one sub-lattice, which will be
important later. Figure 6C shows that, except for boundary
effects, Sz stays constants when following the y-direction.
Along the z-axis we see a complex beating pattern with the
site index that can be decomposed into two π/2-shifted spin-

spirals in the two different sub-lattices. The corresponding
Fourier transformation

F j(q) � 1���
2π

√ ∫ e−iqrjSz(rj) drj (4)

with j = y, z computed with the fast Fourier transform algorithm
(FFT) is shown in (Figure 6D). As expected, the FFT of the
predominantly ferromagnetically ordered spins along the y-
direction |F y| mainly shows a signal at q = 0 whereas |F z|
shows the appearance of four peaks at q ≈± 0.2 2π

alat
and

q ≈± 0.8 2π
alat

� (1 − 0.2) 2π/alat which are attributed to the two
π/2-shifted oscillations in the two sub-lattices. We point out that
the reflection symmetry around q = 0 is a consequence of the real-
valued input to the FFT and is therefore not discussed further. As
seen from the FFT in y-direction and from the corresponding
spin texture in (Figure 6A) the spins in the direction
perpendicular to the propagation direction of the spin spiral
(i.e., the z-direction in this example) are ordered
ferromagnetically. Therefore the spin-spiral wavevector is
�q � (0, 0, 0.2) 2π/alat. After having characterized the spin-spiral
ground state of γ–Fe we continue with a discussion of the
magnetic ordering depending on the changing exchange
coupling parameters with changing lattice constant.

Figure 7 summarizes the LLG calculations for γ–Fe for
varying lattice constants using the respective set of exchange
parameters shown in Figure 5D. The lines in Figure 7A show
the energy at the end of the LLG calculation starting either
from a random spin configuration (E, dashed orange) or from
the ferromagnetic (EFM, solid blue) state. We find that for
lattice constants alat ≥ 3.65�A the ferromagnetic state
minimizes the energy (E − EFM = 0). We attribute this to
the increasing ferromagnetic interaction for nearest neighbor
spins in the high-spin state which was discussed with
Figure 5D. At smaller lattice constants (alat ≤ 3.6�A), the
ferromagnet (FM) is not the ground state anymore. Here
we find either a spin-spiral (SS) ground state or an
antiferromagnetic (AFM) phase. Figure 7C shows three
representative images of the SS, AFM and FM states.

In the SS state the magnetization rotates from left to right (i.e.
along the y-axis) and shows antiparallel alignment of the rows in
z-direction. Along the x-axis (direction perpendicular to the
drawn plane) the spins are aligned ferromagnetically, except
for boundary effects at the open ends of the simulation cell
(seen in the direction of the first layer of spins). In z-direction,
adjacent layers are antiferromagnetically ordered. Thus the
spin-spiral wavevector for these lattice constants has the

TABLE 3 | Parameters for the LLG calculations for γ–Fe. Note that the simulation cell consists of 40 × 40 × 40 × 4 = 256,000 atoms due to the choice of the conventional unit
cell with four atoms. The spin moment μ is extracted from the DFT calculation at the respective lattice constant and open boundary conditions are chosen. Parameters
not listed here are set to the same value as in Table 1.

Parameter Value Description

n_basis_cells (40, 40, 40) Size of the simulation cell
boundary_conditions (False, False, False) Open boundary conditions
llg_temperature 0 Temperature (K)
external_field_magnitude 0 Magnitude of the external field
mu_s (μ, μ, μ, μ) Spin moment (μB)

TABLE 4 | Input parameters extracted from DFT that are used in the
SpiritCalculations for γ–Fe for different lattice constants alat (given in Å). Listed
are the magnetic moment μ (in μB per spin) and the exchange coupling parameters
Jij for the first seven shells (denoted J1 to J7) which are given in meV.

alat μ J1 J2 J3 J4 J5 J6 J7

3.39 0.52 0.42 0.85 −0.04 −0.03 −0.27 0.00 0.05
3.43 0.83 0.60 2.23 −0.17 0.03 −0.48 0.00 0.04
3.46 0.97 0.42 3.15 −0.31 0.16 −0.57 −0.04 0.00
3.50 1.08 −0.05 3.79 −0.45 0.38 −0.61 −0.07 −0.04
3.54 1.20 −0.98 4.28 −0.64 0.80 −0.62 −0.11 −0.10
3.57 1.40 −2.92 4.56 −1.11 1.83 −0.59 −0.09 −0.16
3.61 2.55 7.27 5.46 −3.82 5.33 0.29 −0.87 0.12
3.65 2.59 9.05 5.75 −3.48 4.57 0.29 −0.87 0.12
3.68 2.62 10.19 5.85 −3.19 4.05 0.30 −0.86 0.12
3.72 2.66 11.03 5.84 −2.96 3.67 0.32 −0.83 0.11
3.75 2.70 11.66 5.79 −2.75 3.33 0.35 −0.80 0.10
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form �q � (0, q, 1) 2π/alat which due to the cubic symmetry of the
crystal is equivalent to �q � (q, 0, 1) 2π/alat. Note that �qAF �
(0, 0, 1) 2π/alat is the antiferromagnet because the distance between
two layers in the (0, 0, 1) direction of the fcc lattice is alat/2.

In the AFM phase the direction of the spins separate into four
sub-lattices that correspond to the four atoms in the conventional
fcc unit cell. Within each sub-lattice the spins are aligned parallel
and form a right angle with their neighboring spins from different
sub-lattices. This is highlighted with a red box in the middle panel
of (Figure 7C). In the FM phase (lower panel) all spins point in
the same direction. Note that in all these calculations the spins
can collectively rotate since we neglected contributions from
single-ion anisotropies and do not apply an external field.

The summed magnitude of the Fourier transform along the
three cardinal axes

|F(q)| � ∑
j�x,y,z

|F j(q)| (5)

is shown in Figure 7B for different lattice constants. Note that we
have summed here over the symmetry-equivalent directions
along the x- y- and z-directions because of the rotational
invariance of the complete spin-structure. Starting from the
smallest lattice constant of alat � 3.39�A we see a peak in
|F(q)| at �q � (± 0.195, 0, 1) 2π/alat which corresponds to a
wavelength of the spin-spiral of 5.13 alat. Here we focus our
discussion on the peak at smaller q values as the same arguments
hold for the second peak at 2π/alat − q as discussed above. With

increasing lattice constant the spin-spiral wavelength increases to
7.82 alat/2 ( �q � (± 0.128, 0, 1) 2π/alat) at a lattice constant of
alat � 3.5�A. For 3.5�A< alat < 3.6�A the AFM state is found,
which in the Fourier transform is characterized by the
dominating peak at q = ±2π/alat. Note that we still get a
considerable signal at q = 0 because we sum over all three
cardinal directions and there is ferromagnetic ordering along
one direction (see Figure 7C). As discussed above, for larger
lattice constants the spin-spiral state briefly shows up again at
alat � 3.61�A with a wavelength of 5.59 alat which however has
ferromagnetically ordered spins in both directions perpendicular
to the direction of spin-spiral propagation ( �q �
(± 0.179, 0, 0) 2π/alat) until for alat ≥ 3.65�A the FM state is
found which only shows a significant Fourier amplitude at q = 0.

The appearance of the AFM phase for 3.5�A< alat < 3.6�A can
be attributed to the sign change of the nearest neighbor
interaction from ferro- to antiferromagnetic. To verify this
hypothesis we employ a series of LLG calculations through
AiiDA-Spirit. We chose to start from the setup of the
calculation for alat � 3.61�A, which was found to reproduce
the spin-spiral phase. We then modify the strength of the
nearest neighbor interaction J1 ranging from − 5 meV to +
15 meV and run LLG calculations starting from the FM state,
from the AFM state, from the SS phase and random spin
orientations. For the AFM state we construct the row-wise
AFM orientation of the spins. All other parameters for the LLG
calculation are kept constant. In total this is another set of 84

FIGURE 6 | Spin-spiral ground state for γ–Fe at a lattice constant of alat � 3.61�A. (A) Cut through the central yz-plane of the 40 × 40 × 40 supercell. Each unit cell
consists of 4 Fe atoms on the sub-lattices A, B,C andD shown in the inset (B). The colored points on the grey sphere in the lower left of panel (A) show a projection of the
direction of the spins onto the unit sphere. (C) z-component of the spin along the y- (orange line) and z-directions (solid blue line) indicated in (A) with the corresponding
colored stripes. Each direction combines the spins from two adjacent yz-planes to cover more than a single sub-lattice per direction (i.e. sites in y-direction consist
of atoms A-B-A-. . .). The dashed and dotted lines in (C) are a decomposition of Sz(z) into the sub-lattices A andD. Note that the orange and dashed and dotted blue lines
are shifted by ± 2 with respect to the solid blue line. (D)Magnitude of the Fourier transformation of Sz along the y- and z-directions, i.e. solid orange and blue lines in (C),
respectively.
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SpiritCalculations where we find that starting from a random
spin configuration coincides with starting from the SS. The
random starting point is therefore omitted in the following
discussion. Figures 8A,B show the dependence of the energy
per spin at the end of the LLG calculations. We point out that
the LLG calculations for the FM and AFM states are converged
in the very first iteration which indicates that the FM and AFM
phases are local minima in the energy landscape. We find that
the SS state is lowest in energy with a maximal energy gain of ~
7 meV/spin in the transition region where EFM − EAFM changes
sign. From the final spin structure of the spin-spiral solution
we proceed with an analysis of the Fourier components as
introduced in equations 4 and 5. This is shown in Figure 8C.
As highlighted by the grey line, we see an increase in the spin-
spiral wavevector with increasing J1 up to the point where EFM
and EAFM cross around J1 = 7.3 meV. As in the previous analysis
for changing lattice constant we find that the spin-spiral state is
characterized by two wavevectors at q and 2π/alat − q (grey dashed
line). Furthermore, the Fourier transform for all states show

significant signals at q = 0 (indicating parallel spins) and q =
±2π/alat (indicating antiparallel spins).

Overall we can conclude that the resulting spin-texture in the
256,000 spin unit cell with open boundary conditions is a result of
the complex competition of distance-dependent exchange
couplings that favor ferromagnetic or antiferromagnetic
alignments of spins or can compete and stabilize spin-spiral
ground states.

4 DISCUSSION

In this article we have presented the AiiDA-Spirit plugin that
connects the spin-dynamics code Spirit to the AiiDA framework.
AiiDA enables high-throughput calculations while automatically
keeping track of the data provenance (Huber et al., 2020). We
have demonstrated the capabilities of the AiiDA-Spirit plugin
with three examples; 1) high-throughput spin-dynamics
calculations based on the Landau-Lifshitz-Gilbert (LLG)

FIGURE 7 |Magnetic ground state in γ–Fe from spin-dynamics simulations via the AiiDA-Spirit plugin. (A)Calculated energies per spin of the final state after an LLG
calculation. Each data point uses the exchange constants computed from DFT (cf. Figure 5D). The solid blue and dashed orange lines indicate the energy computed
starting from random spin configuration or the ferromagentic (FM) state. The white, grey and red shaded areas indicate if, respectively, a spin-spiral (SS),
antiferromagnetic (AFM) or FM ordering is found to be the ground state. (B) Normalized Fourier transform of the z-component of the magnetization in the yz-plane
for different lattice constants, shifted for clarity. Solid lines correspond to SS, dashed lines to AFM and dotted lines to FM solutions, respectively. The arrows highlight the
principal wavenumber of the spin-spiral and highlight their change with the lattice constant. (C) Visualization of representative spin structures for (from top to bottom) SS,
AFM and FM states where the red box in the AFM structure highlights a unit cell with the four sub-lattices. The colored points on the grey sphere in the lower left panels
show a projection of the direction of the spins onto the unit sphere.
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equation for a toy model that shows skyrmions, 2) Monte Carlo
calculations for finding the critical temperature of a simple-cubic
model ferromagnet, and 3) multi-scale modelling combining
density functional calculations with spin-dynamics simulations
for γ–Fe.

In our high-throughput LLG calculations we performed more
than 6,000 simulations of a model system consisting of a 2D
lattice of spins in the simple-cubic lattice. The model parameters
were chosen such that topologically nontrivial skyrmions appear
in the magnetic textures. We varied the temperature and the
external magnetic field as external parameters and investigate the
change in the topological charge, which is a measure of the
number of skyrmions that appear in the system. We find that,
starting from T = 0, the transition to the homogeneous
ferromagnetic phase happens at lower magnetic fields. At a
certain critical temperature however the number of skyrmions
starts increasing again. We interpret this as the surpassing of the
energy barrier for skyrmion formation which can be overcome by
temperature fluctuations of the spins. This goes hand in hand
with a larger variance in the topological charge that we measure
from averaging multiple runs for each pair of (T, Bz). These
calculations demonstrate the possibility to employ the AiiDA-
Spirit plugin for high-throughput spin-dynamics simulations
which make parameter exploration easier accessible.

In our Monte Carlo calculations we showed how the complex
series of calculations necessary for finding the ordering
temperature of a simple-cubic ferromagnet (several
calculations across the transition region from ferromagnetically

ordered to paramagnetic state have to be performed) can be
found from a single SpiritCalculation of the AiiDA-Spirit plugin.
Our simulation result is in good agreement with the theoretically
expected result. The ease-of-use for these calculations facilitate
the incorporation of AiiDA-Spirit calculations in complex
workflows in materials informatics for magnetic materials.
Here, finding the critical temperature of a magnetic material is
a very common problem.

Finally, we discussed the use case of LLG calculations for the
study of the magnetic ordering of γ–Fe, which is the high-
temperature fcc phase of Fe. From experiments, where Fe
clusters were embedded in a Cu matrix, it is known that a
spin-spiral ground state with wavevector �q � (0.1, 0, 1) 2π/alat
is found for γ–Fe around the lattice constant of Cu (Tsunoda,
1989; Tsunoda et al., 1993). Note that q = (0, 0, 2π/alat)
correspond to the antiferromagnet since the distance between
two layers in the (0, 0, 1) direction of the fcc lattice is alat/2.
Theoretically, this wavevector was reproduced from first-
principles calculations with good agreement where �q �
(0.15, 0, 1) 2π/alat (Knöpfle et al., 2000) and �q �
(0.16, 0, 1) 2π/alat (Sjöstedt and Nordström, 2002) were found.
However, a significantly different lattice constant compared to
the lattice constant of Cu is required for γ–Fe in the calculation
compared to the experiments, which makes this agreement
unsatisfactory (Sjöstedt and Nordström, 2002). In our work,
instead of looking for the spin-spiral energies from first-
principles calculations, we chose to explore the predictive
power of a combination of DFT and LLG calculations for

FIGURE 8 | (A) Spin-spiral (SS) energies as a function of the nearest neighbor interaction J1 in comparison to ferromagnetic (FM) and antiferromagnetic (AFM)
states. Exchange coupling constants were taken from the alat � 3.61�A calculation and the nearest neighbor couplings J1 were modified in the range from − 5 to 15 meV.
(B) Zoom into the transition regionmarked by the black box in (A). The grey area highlights the energy gain in the SS state compared to FM or AFM states. (C)Normalized
Fourier transform of the z-component of the magnetization in the yz-plane. The spectra are shifted for clarity. Dashed lines indicate where EAFM − ESS < 2 meV and
dotted lines are used for EFM − ESS < 2 meV. The solid and dashed grey lines are guides to the eye highlighting the change in the spin-spiral wavevector with J1.
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γ–Fe with changing lattice constants.We found a change from the
low-spin to high-spin ground state in our DFT results that were
performed with the JuKKR code (The JuKKR developers, 2021)
through the AiiDA-KKR plugin (Rüßmann et al., 2021a;
Rüßmann et al., 2021b). This agrees well with earlier DFT
calculations where a similar change in the spin moment of the
Fe atoms from μ ~ 1 μB to > 2.5 μB is seen (Knöpfle et al., 2000;
Sjöstedt and Nordström, 2002).

In contrast to the spin-spiral energy calculations of Refs.
(Knöpfle et al., 2000; Sjöstedt and Nordström, 2002) we
calculate the exchange parameters for the extended Heisenberg
model from the method of infinitesimal rotations (Liechtenstein
et al., 1987) around the collinear, ferromagnetically ordered state.
These parameters are then used in the SpiritCalculations where
the collective magnetic ordering is investigated in a 256,000 spin
supercell. We find a strong influence of exchange interactions on
the lattice constant of γ–Fe which results in a competition of
ferromagnetic, antiferromagnetic and spin-spiral orderings. In
our analysis of the spin-spiral wavevectors we chose to study the
Fourier transform of the z-component of the spin around the
three cardinal axes which are symmetry-equivalent in our
approach. At the lattice constant of Cu (alat � 3.6�A) we find a
spin-spiral with �q � (0.2, 0, 0) 2π/alat in contrast to the spin-
spiral �qexp � (0.1, 0, 1) 2π/alat found experimentally which has
an antiferromagnetic component (Tsunoda, 1989). We attribute
this discrepancy to neglecting the change in the spin moment
with the spin-spiral wavevector in our simulations based on the
Heisenberg Hamiltonian. This change is known to be significant
and can be as large as 0.8 μB (Sjöstedt and Nordström, 2002). For
lattice constants alat ≤ 3.5 we do find the correct spin-spiral with
�q � (q, 0, 1) 2π/alat that reappears after the spin-spiral with
ferromagnetic ordering perpendicular to �q transforms into the
ordered antiferromagnet. With smaller lattice constant the spin-
spiral wavevector increases from �q � (0.13, 0, 1) 2π/alat at alat �
3.5�A up to �q � (0.2, 0, 1) 2π/alat at alat � 3.39�A which is in
reasonable agreement with earlier calculation results (Knöpfle
et al., 2000; Sjöstedt and Nordström, 2002). Incorporating a
change of the spin moment with the spin-spiral wavevector
might further improve our agreement to the earlier ab initio
results of Knöpfle et al. (Knöpfle et al., 2000) and Sjöstedt and
Nordström (Sjöstedt and Nordström, 2002) and also the
experimental spin-spiral wavevector (Tsunoda, 1989). The
need to include spin moment change is also observed in the
high-pressure ε-phase of iron (Lebert et al., 2019). Furthermore,
including higher order exchange interactions (Ki,j,k,l ≠ 0) could
also be important. Especially for magnetically frustrated systems,
those additional terms can be essential in describing the magnetic
ground state as seen, for example, in iron chalcogenides where the
biquadratic term is required for a correct description based on the
Heisenberg model (Glasbrenner et al., 2015).

The change of the ordering to the antiferromagnetic state and
then the reappearance of the spin-spiral state at even smaller
lattice constant compared to the lattice constant of Cu on the
other hand agrees well with the previously stated observation of
competing magnetic orders, which are very close in energy and
could coexist (Sjöstedt and Nordström, 2002). We further

demonstrated the sensitivity of the magnetic ordering with a
numerical experiment where we chose to modify the strength of
the nearest neighbor exchange interaction J1. The resulting strong
change in the spin-spiral wavevector and the magnetic ordering
highlights the rich energy landscape that is underlying the
complex magnetic ordering in γ–Fe.

In conclusion, we have shown how augmenting spin-dynamics
calculations with the Spirit code through the AiiDA-Spirit plugin
enables high-throughput spin-dynamics simulations via the
AiiDA infrastructure. This was applied to model systems and,
in combination with DFT calculations through the AiiDA-KKR
plugin, to the multi-scale problem of the magnetic ordering in
γ–Fe. Our results demonstrate that typical spin-dynamics
simulations benefit from the possibility to run a large number
of calculations in a high-throughput fashion. Automation of
SpiritCalculations through AiiDA can be a great asset when
complex model parameter spaces (i.e. external fields,
temperatures, different geometries, . . .) are screened in order
to find structure-property relations of magnetic materials. The
feature of AiiDA to keep track of the data provenance is here
indispensable to get reproducible results and to eventually
engineer recipes for the creation and control of
unconventional topological solitons in magnetic structures
such as skyrmions or hopfions in the future.
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