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Stimuli-responsive drug delivery systems are urgently required for injectable site-specific
delivery and release of drugs in a controlled manner. For this purpose, we developed novel
pH-sensitive, biodegradable, and antimicrobial hydrogels from bio-macromolecule pectin,
polyvinylpyrrolidone (PVP), 3-aminopropyl (diethoxy)methyl silane (3-APDEMS), and
sepiolite clay via blending and solution casting technique. The purified sepiolite (40 um)
was functionalized with 3-APDEMS crosslinker (ex-situmodification) followed by hydrogels
fabrication. FTIR and SEM confirmed crosslinked structural integrity and rod-like
morphology of hydrogels respectively. The swelling properties of hydrogels could be
controlled by varying the concentration of modified clay in pectin/PVP blends. Moreover,
the decrease in pH increased the swelling of hydrogels indicating the pH-responsiveness
of hydrogels. All hydrogels were degraded after 21 days in phosphate buffer saline pH 7.4
(human blood pH). In-vitro cytotoxicity against 3T3 mouse fibroblast cell line analysis
confirmed cytocompatibility of all hydrogels. Ceftriaxone sodium (CTX-S) was selected as
amodel drug. The release profile of the hydrogel showed 91.82% release in PBS for 2 h in a
consistent and controlled manner. The chemical structure of the drug remained intact
during and after release confirmed through UV-Visible spectroscopy. Overall, these
hydrogels could be used as potential scaffolds for future biomedical applications.

Keywords: hydrogel, pectin, 3-aminopropyl (diethoxy) methylsilane, polyvinylpyrrolidone, drug delivery, pH-
responsive

1 INTRODUCTION

Conventional methods of drug delivery lead to the diffusion of drugs evenly throughout the body
causing considerable damage to normal cells while reducing bioavailability. To overcome unfavorable
actions, site-specific distribution of therapeutic medicine is essential. The smart hydrogel-based drug
carriers can offer distinct advantages as targeted delivery (Raza et al., 2021), site-specificity, slow release
of the drug, drug stability, optimized drug absorption, physiochemical compatibility with drug, non-
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toxicity, and biodegradability (Veronovski et al., 2014; Rasool et al.,
2019; Peers et al., 2020; Ko et al., 2021; Liu et al., 2021). A variety of
polymer-based stimuli-responsive (pH, temperature, light,
enzymes, electricity, ultrasound, glucose) hydrogels have been
synthesized (Yang et al., 2009; Peers et al., 2020; Liu et al.,
2021; Song et al., 2021) due to their high swelling rate, soft
tissue compatibility, and capability to prevent chemical and
enzyme degradation (Islam and Yasin, 2012; Iglesias et al.,
2020; Shirazi et al. 2021). Polymeric chains crosslink to develop
microporous three-dimensional semi-interpenetrating networks
(semi-IPNs) called hydrogel by penetrating at least one suitable
linear or branched polymer (Liu et al., 2003; Mishra et al., 2008;
Sivagangi Reddy et al., 2016; Rinoldi et al., 2021). Polysaccharides
and their derivatives are among the ideal candidates for smart
hydrogel formation due to stimuli-responsive behavior, reducing
dose frequency, nontoxicity, stability, biocompatibility,
biodegradability, easy availability, and cost-effectiveness (Roy
et al., 2010; Sharma and Ahuja, 2011).

Pectin is an anionic, acidic, water-soluble, pH-sensitive, and
fruit extracted polysaccharide (Mishra et al., 2008; Sriamornsak

et al., 2008; Pierce et al., 2020). Its ability to naturally turn into
gel, stabilize and thicken makes it a promising candidate for
drug delivery application (Sharma and Ahuja, 2011; Veronovski
et al., 2014). Pectin polysaccharide-based drug carriers direct the
controlled release of therapeutic agents to achieve efficient
treatment (Li et al., 2020; Li et al., 2021). However, pectin is
a great choice for hydrogel formation however they show instant
release of the drug, low thermal stability, and poor mechanical
properties (Mishra et al., 2008; Li et al., 2020). Blending pectin
with polymer like polyvinylpyrrolidone (PVP) offers the
solution to these obstacles (Ghasemiyeh and Mohammadi-
Samani, 2021). It is a hydrophilic synthetic polymer with
tremendous solubility, low toxicity, biological compatibility
(Eid et al., 2012; Singh and Singh, 2020), and excellent
hydrogel film-forming properties. It has been reported to
improve the mechanical characteristics of the hydrogel for
various biomedical applications (Sizílio et al., 2018; Saeedi
Garakani et al., 2020; Kumar et al., 2020).

Mishra et al. (2008) developed and examined the efficiency of
pectin-based hydrogels prepared with different PVP ratios via
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solution casting method for salicylic acid drug release (Mishra
et al., 2008). Hussain et al. (2018) reported pH-dependent pectin-
based nano-carriers functionalized with nano-graphene oxide for
delivery of paclitaxel with better stability, higher drug loading
efficiency, and non-toxicity (Hussien et al., 2018).

To improve hydrogel properties we used sepiolite (SP); a
porous, lightweight reactive mineral clay (Nieto-Suárez et al.,
2009) that has been reported as a reinforcing filler. It has been
used as a pharmaceutical and medicinal ingredient for
therapeutic purposes (Hun Kim et al., 2016; Darder et al.,
2017; Dutta and Devi, 2021). It has also been used for tissue
engineering, bio-medicines, and drug delivery applications (Ruiz-
Hitzky et al., 2010; Gülmen, Güvel, and Kızılcan 2015; Tanc and
Orakdogen 2019). Pectin and PVP have enormous potential for
chemical/physical modifications using crosslinking agents like
silane-based cross-linkers (Marandi et al., 2008; Yasin et al., 2008;
Mirzaei B et al., 2013). In this study we choose 3-aminopropyl
(diethoxy)methylsilane crosslinker (Khramov et al., 2003). Its
bifunctional property makes it appropriate for crosslinking the
polymers (Sanaeepur et al., 2019; Zu et al., 2019). In the current
report, ceftriaxone sodium (CTX-S) has been used as a model
drug. It is a third-generation cephalosporin (Bali et al., 2018)
antibiotic used to treat various bacterial infections including
tuberculosis, cholera, pneumonia, urinary tract, and pelvic
inflammatory infections.

Various methods have been reported for hydrogel formation
including freeze thawing, complex coacervation, radiation
grating, and solution casting (Gulrez et al., 2011). Solution
casting method is easy, cost effective, and requires shorter
time of preparation. It is convenient to control reaction
conditions in this technique (Rahman et al., 2018). Pectin-
PVP based hydrogels have been used for delivery of various
drugs other than ceftriaxone sodium (Mishra et al., 2008).

In this work, the functionalization of sepiolite clay with
bifunctional 3-amino (diethoxy) methyl silane (3-APDEMS)
was performed to produce novel functionalized sepiolite clay
(FSP) using crosslinker and its use to produce novel pectin/PVP/
functionalized clay based hydrogel blends for the delivery of
ceftriaxone sodium. According to the best of our knowledge, the
modification of sepiolite with 3-APDEMS, development of
pectin/PVP/modified clay based hydrogels and their use
particularly for the delivery and controlled release of
ceftriaxone sodium (CTX-S) has not been reported yet. The
physical blending and solution casting technique was adapted
to develop novel pH-responsive hydrogels composed of pectin/
PVP/3-APDEMS-sepiolite. The effects of variant concentrations
of functionalized clay (FSP) on the characteristics of fabricated
hydrogel were analyzed through FTIR and SEM. The swelling
response of all the hydrogels was examined in water, ionic
solutions (NaCl, CaCl2), and buffers of varying pH.
Biodegradation was observed in PBS for 21 days along with the
antimicrobial activity. In-vitro toxicology for all hydrogels was
assessed through XTT assay against 3T3 mouse fibroblast cell line.
The chemical activity was performed to check the drug stability as
well. The drug release pattern of CTX-S was investigated in
phosphate buffer saline (PBS), simulated gastric fluid (SGF),
and simulated intestinal fluid (SIF) via UV-vis spectroscopy.

2 EXPERIMENTAL WORK

2.1 Materials
Pectin (M. W � 1,61, 254, 94 g/mol) (low methoxy content), PVP
(M. W � 40,000–70,000 g/mol), 3-aminopropyl (diethoxy)
methylsilane (97%; MW � 191.34 g/mol) and sepiolite were
obtained from Sigma Aldrich. Glycerin and ceftriaxone sodium
were obtained locally. NaCl (sodium chloride), CaCl2 (calcium
chloride), Na2HPO4 (Disodium hydrogen phosphate), KH2PO4
(potassium dihydrogen phosphate), and KCl (potassium chloride)
were also purchased from Sigma-Aldrich. NaOH (sodium
hydroxide) and C3H2NaO2 (sodium acetate) were obtained from
Riedel-de Haen. Ethanol and hydrochloric acid were purchased
from BDH laboratory supplies and J.T. Baker, respectively. XTT
(Cytotoxicity Detection assay kit II) was purchased from Roche,
Germany.B. subtilisMH-4 (G+) strain, E. coli BL-21 (G-) strain, and
LB agar were obtained from and Institute of Biochemistry and
Biotechnology, University of the Punjab Lahore.

2.2 Modification of Sepiolite With
3-APDEMS
The ex-situ modification of clay was done according to the
previously reported method (Shafiq et al., 2012). Sepiolite clay
was purified by the mechanical stirring of the clay suspension
(10 g/700 ml) for 24 h around 760 rpm. The resulting suspension
was filtered and desiccated overnight at 105°C. The purified clay
was grounded and sieved through 40 µm sieves. 5 g of purified raw
sepiolite clay (RSP) was dispersed in 250 ml of isopropanol
followed by mechanical stirring in the glass reactor. 500 µL of
3-APDEMS was solvated in 20ml ethanol and added to RSP/
isopropanol mixture. The suspension was stirred mechanically in a
glass reactor for 2 h at 60°C. The functionalized clay was filtered
followed by washing with ethanol. The ex-situ functionalized
sepiolite clay (FSP) was dried up in a vacuum oven. The
proposed reaction of sepiolite with 3-APDEMS is presented in
scheme 1.

2.3 Fabrication of Hydrogels
Pectin (0.6 g) was solvated in double-distilled water (60 ml) at
60°C by magnetic stirring. PVP (0.4 g) was solvated in double-
distilled water (20 ml) by magnetic stirring using a hot plate at
95°C. PVP solution was blended with the pectin solution with
constant stirring for 2 h at 60°C. 200 µL of glycerin was added to
the pectin-PVP blend upon stirring in order to prevent brittleness
in the hydrogel. For crosslinking, varying amounts of FSP (3-
APDEMS-sepiolite clay) ranging from 0.05–0.15 wt% were
dispersed in 10 ml water and sonicated for 1 hour at an
ambient temperature. Sonicated clay was poured into a pre-
blended mixture drop wise and stirred magnetically for 2 h at
60°C. The fabricated hydrogels were cast in plates and desiccated
using a desiccating oven (LVO-2040, Lab Tech, Korea) at 60°C
under vacuum. Depending upon the concentration of modified
functionalized clay (FSP), the hydrogels were referred to as
control blend PPC (0 wt%), PP1 (0.05 wt%), PP2 (0.10 wt%),
and PP3 (0.15 wt%). The treated hydrogels with sepiolite were:
PP1, PP2, PP3 while the untreated was PPC which was controlled
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sample. The overall fabrication of hydrogels is shown in
scheme 2.

2.4 Swelling Studies
To determine the swelling properties of prepared semi-IPNs, pre-
weighed dried hydrogel samples were submerged in distilled
water, NaCl and CaCl2 salt solutions (0.1, 0.3, 0.5, 0.7, 0.9,
and 1 M) and buffer solutions (pH 2, 4, 7, 7.4, and 8). The pH
of all NaCl and CaCl2 salt solutions was kept neutral. At a pre-set
time interval, the swollen hydrogel was removed; the surplus
solution was blotted gently and hydrogel was weighed using a
sensitive weighing balance. This procedure was repeated in
triplicates for all hydrogel samples in each solution.

The swelling rate was calculated using Equation (1).

Swelling % � (Ws −Wd/Wd)×100 (1)

Where Ws � weight of swollen sample at time t and Wd � weight
of sample in the dried state.

Buffer solutions of pH 2, 4, 7, 7.4, and eight were prepared to
investigate the pH-dependent swelling response of hydrogels. To
prepare buffer solutions of pH 2, 25 ml of 0.2 M KCl was mixed
with 6.5 ml of 0.2 M HCl. For pH 4 solution, 50 ml of 0.1 M kH
phthalate was mixed with 3 ml of 0.1 M NaOH. For pH 7
solution, 50 ml of 0.1 M KH2PO4 was mixed with 29.1 ml of
0.1 M NaOH. For pH 7.4 solution, 50 ml of 0.1 M KH2PO4 was
mixed with 39.1 ml of 0.1 M NaOH. For pH eight solution, 50 ml
of 0.1 M KH2PO4 was mixed with 46.1 ml of 0.1 M NaOH. All
solutions were diluted up to 100 ml using distilled water.

2.5 FTIR Analysis
Spectroscopic structural elucidation of hydrogels, raw sepiolite
(RSP), and functionalized sepiolite (FSP) was obtained on
Shimadzu I. R–prestige-21, Kyoto, Kyoto prefecture, Japan
with ATR mode. All films were vacuum dried before analysis
and the scanning range was set as 4,000–650 cm−1. Regular scans
and resolution were maintained as 150 and 2.0 cm−1, respectively.

2.6 Morphological Studies
The morphology of pectin/PVP (PPC) and pectin PVP/modified
clay-based hydrogels (PP1, PP2, and PP3) was analyzed using
model JEOL/EO JSM-6480 SEM Akishima, Tokyo, Japan. The
images were recorded at different magnifications.

2.7 In-vitro Degradation
The biodegradation of all hydrogel samples was investigated in
PBS (pH 7.4). Pre-weighed samples were placed for 21 days in
PBS. All samples were weighed on days one, three, five, seven,
fourteen, and twenty-one, respectively. The experiment was
performed in triplicates. The percentage of degradation was
measured using Equation (2).

Degradation(%) � (Wi −Wf/Wi)×100 (2)

Where Wi � initial weight and Wf � final weight.

2.8 Antimicrobial Analysis
Agar disc diffusion assay (Mathew, 2018) was performed to
investigate the anti-bacterial potential of all hydrogels against
B. subtilis MH-4 and E. coli BL-21. Approximately, 5 mm disc-
shaped sample of each hydrogel was cut. Bacterial culture was
grown over 24 h in the form of suspension. 100 µL of bacterial
suspension was transferred to sterilized LB agar plates.
Aseptically, the hydrogel samples were transported to agar
plates. Air was considered as negative control. The culture
plates were incubated in the static incubator at 37°C for the
next 24 h. The inhibition zones (clear zone) acted as an indicator
for restricted bacterial growth around samples. The diameter of
inhibition zones was recorded and measured.

2.9 Cytotoxicity Studies
The cytocompatibility of all hydrogels was investigated using
Cytotoxicity Detection Kit II (XTT); Roche, Germany (XTT;
sodium 3-[1- (phenylaminocarbonyl)- 3,4- tetrazolium]-bis (4-
methoxy6-nitro) benzene sulfonic acid hydrate) (Jacob et al.,

FIGURE 1 | (A) FTIR spectral analysis of modification of sepiolite clay with 3-APDEMS (B) FTIR spectral analysis of PPC, PP1, PP2, and PP3 semi-IPNs.
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2020). The hydrogels were cut into the size of ∼0.30 cm2 and
sterilized. After soaking the gel in a culture medium for half an
hour, the cells at the density of 8,000 cells per well were seeded on
the hydrogels. The cultured cells without hydrogel were used as
control. XTT and PMS (electron coupling reagent) were mixed in
a 50:1 ratio to form the labeling mixture. The cultured cells were
incubated with 50 ul of labeling mixture and 100 ul of DMEM
(containing 5% FBS) in 96-well plates for 24, 48, and 72 h under
standardized conditions. Absorbance readout was determined at
450 and 630 nm (reference wavelength) using a microplate reader
(Spectramax PLUS, United States) (Aguiar et al., 2017). The cell

viability over time (24, 48, and 72 h) was measured in terms of
percentage. The test was performed in triplicate.

2.10 Ceftriaxone Sodium (CTX-S Antibiotic
Drug) Loading and Release Analysis
To investigate the release of drug from hydrogels the PBS, SGF,
and SIF buffers were prepared. PBS (phosphate buffer saline pH
7.4) was synthesized by solvating NaCl (8 g), KCl (0.2 g),
Na2HPO4 (1.44 g), and KH2PO4 (0.24 g) in 700 ml of distilled
water and the volume was raised to 1 L. The pH was adjusted to

FIGURE 2 | Morphology of hydrogels at different magnifications (A,B). PPC (Functionalized Sepiolite clay � 0 wt%) (C,D). PP1(Functionalized Sepiolite clay �
0.05 wt%) (E,F) PP2 (Functionalized Sepiolite clay � 0.1 wt%) (G,H) PP3 (Functionalized Sepiolite clay � 0.15 wt%).
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7.4. NaCl (1 g) and HCl (3.5 ml) were solvated in 100 ml of
distilled water to prepare SGF (simulated gastric fluid pH 1.2). To
adjust the pH to 1.2, the total volume was raised to 500 ml. To
prepare SIF (simulated intestinal fluid pH 6.8), 0.1 M NaOH and
0.2 MKH2PO4 were mixed by 118 ml: 250 ml ratio. The pH of SIF
was adjusted to 6.8.

CTX-S (50 mg) was liquefied in 5 ml H2O and poured into the
pectin-PVP mixture upon continuous stirring. The mixture was
stirred for 1 h. The pectin-PVP/CTX-S mixture was crosslinked by
the addition of 0.10g/10 ml sonicated suspension of 3-APDEMS-
sepiolite (FSP). The antibiotic-containing solutions were cast and
dried in an oven at 40°C. To examine the discharge pattern of CTX-
S, the dried CTX-S-loaded hydrogels were immersed separately in
100 ml of solutions of PBS (pH 7.4), SGF (pH 1.2), and SIF (pH

6.8) at 37°C. At an equal interval of 10min, 5 ml of release medium
was collected in the glass vial and replaced with 5 ml of stock
solution. Similar process was repeated over 4 h. The release of
CTX-S was investigated at 241 nm (Ayushi andMansi, 2018) using
a V-730 UV-visible spectrophotometer (JASCO).

2.11 Chemical Activity
To investigate the effect of hydrogel on the chemical integrity of
CTX-S before loading into the hydrogel and after release from
hydrogel, the chemical activity of CTX-S was performed according
to the previously described method (Bashir et al., 2018). The UV
spectra of pure CTX-S in water, pure CTX-S in PBS, and CTX-S
released in PBS, were obtained using a UV-Vis spectrophotometer
(Model T90, Pg Instrumental) at the wavelength range 200–400 nm.

FIGURE 3 | (A) Time-dependent swelling behavior of PP hydrogel in water (B) pH-sensitive swelling response of PP hydrogels (C) swelling response of PP
hydrogels against NaCl (D) swelling response of PP hydrogels against CaCl2.
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3 RESULTS AND DISCUSSION

Pectin has been used in drug delivery applications due to its
antimicrobial potential, biocompatibility, nontoxicity,
biodegradability, and swelling properties. Pectin produces
physically crosslinked gel by hydrogen bonding, ionic
association, or hydrophobic interactions (Ahrabi et al., 2000;
Andrews et al., 2009). Sepiolite was functionalized with 3-
APDEMS before addition to the pectin-PVP blends. The
diverse effects of variant concentrations of 3-APDEMS-sepiolite
(FSP) on the properties of fabricated semi-IPNs were investigated.

3.1 FTIR Analysis of Functionalized Sepiolite
Clay and Fabricated Hydrogels
Previously reported method has been followed to modify sepiolite
clay with 3-APDEMS (Shafiq et al., 2012). 3-APDEMS was used
as the characteristic bifunctional crosslinker; its silanol groups
reacted with -OH of sepiolite during modification and -NH2

(amino) with polymer matrix during hydrogel fabrication via
condensation. The proposed reaction of sepiolite with 3-
APDEMS is presented in scheme 1. The addition of ethanol to
3-APDEMS activated the molecule by generating silanol sites (Si-
OH) which reacted with sepiolite via condensation process to
produce 3-APEMS functionalized sepiolite clay (FSP).

To investigate the modification of sepiolite the FTIR spectra of
raw sepiolite (RSP) and functionalized sepiolite (FSP) were
obtained. Figure 1A 1) represents the spectra of RSP and
Figure 1A 2) shows spectra of FSP. In FSP, a characteristic
peak appeared at 3,289 cm−1 which could be ascribed to the
-NH stretch of 3-APDEMS confirming the modification of RSP
(Xu et al., 1997). Another characteristic peak in FSP spectra at
1,210–1,150 cm−1 appeared which could be ascribed to the C-N
stretch (Nandiyanto et al., 2019). The Si-O bond stretch can be
seen at 974 cm−1 in RSP which was shifted to lower wavenumber
972 cm−1 in FSP (Shafiq et al., 2012). The increased intensity of
the Si-O peak in FSP can also be observed. This increased
intensity of the Si-O peak could be ascribed to the formation
of new Si-O bonds during modification.

The varied concentration of FSPwas added to polymer blends to
fabricate hydrogels. Scheme 3 presented the proposed crosslinking
of FSP with pectin/PVP polymer matrix. FSP developed hydrogen
bonding with pectin and PVP majorly through–OH and–NH2

groups. The COOH of pectin could form covalent linkage
with–NH2 of FSP through condensation reaction.

To investigate the incorporation of polymers into the hydrogel
polymer matrix, FTIR spectra of all hydrogels were recorded.
Spectral analysis of all functional groups of hydrogels is presented
in Figure 1B. The spectral analysis showed a band at
3,366–3,300 cm−1 indicated vibrations of polymer boneded
-OH groups (Mishra et al., 2008; Naeem et al., 2017). Peaks at
1,420–1,460 cm−1 indicated the C-H bending vibrations. The
peeks at 1,023–1,042 cm−1 showed the starching vibration of
C-N of PVP within the hydrogel networks (Mishra et al.,
2008; Kumar et al., 2010).

The distinctive doublet that appeared around
2,360–2,330 cm−1 might be due to adsorbed CO2. However,

Basha (2010) and Bryaskova et al. (2011) separately reported
this distinctive doublet as characteristic peaks of pure PVP IR
spectrum (Basha, 2010; Bryaskova et al., 2011) which indicated
the incorporation of PVP in all hydrogels. The peaks around
2,970 cm−1 could be ascribed to the -CH2 vibrations of PVP chain
(Song et al., 2014) while the peaks at 1,625–1,660 cm−1 indicated
the presence of C�O stretching vibrations in all hydrogels
(Fares et al., 2010; Sohail et al., 2014). The Si-O stretching
vibrations can be observed in PP1, PP2, and PP3 around
970 cm−1 (Shafiq et al., 2012) which shows the incorporation
of modified sepiolite clay.

3.2 Morphological Analysis of Hydrogels
via SEM
The morphological properties of fabricated hydrogels are highly
dependent on the polymers and incorporated clay (Liu et al.,
2020). Raw sepiolite clay (SP) exhibits rod/fiber-like morphology
as evident from reported data (Abrougui et al., 2019). Evident
from the work of Palem et al. (2021), a small concentration of raw
sepiolite (fibrous clay) affects the morphology of composites by
enhancing the interfacial interactions between the polymers
and–OH of sepiolite layers (Palem et al., 2021; Liu et al.,
2020). In this study, the sepiolite was first functionalized with
bifunctional 3-APDEMS moiety then incorporated into the
polymer matrix. The modified sepiolite clay (FSP) has
both–NH2 (from 3-APDEMS) and–OH groups (from 3-
APDEMS and sepiolite) which can enhance the crosslinking
density by a greater degree as compared to raw sepiolite,
hence causing the drastic change in shape and size of the
hydrogel. To investigate the possible effect of the
reinforcement of FSP on the morphology of hydrogels with
respect to the varied concentrations of FSP, SEM analysis was
conducted. Figures 2A–H shows SEM micrographs of pectin/
PVP control hydrogel (PPC with 0 wt%) and pectin/PVP/
modified clay-based hydrogels (PP1, PP2, and PP3). Pure

FIGURE 4 | In-vitro degradation analysis of PP hydrogels in PBS (pH 7).
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pectin shows the elongated granular structure and pure PVP
shows spherical granular shapes as it seems in literature (Kumar
et al., 2010; Mishra et al., 2008). In our study the PPC (0 wt%
FSP) is composed of pectin and PVP only thus spherical
granular structures of PPC can be observed from the
micrographs of PPC. While the SEM images of PP1 (0.05wt
% FSP) and PP2 (0.1wt% FSP) showed capsule-type structures
(10–50 µm) separated from one another. SEM micrographs of
PP3 (0.15wt% FSP) showed a large population of refined,
compact rod-like structures (10 µm). Moving from PPC to
PP1 (Figures 3A–D), a clear change in the shape of particles
from granular to capsule can be observed after the addition of
0.05 wt% FSP. The change in morphology from PP1 (0.05 wt%

FSP) capsule structure to PP2 (0.10 wt% FSP) rod-like structure
with a reduction in size of particle can be seen (Figures 3C–F).
This change in morphology can be attributed to the increased
concentration of FSP and the interfacial interactions between
FSP and polymer networks. From PP2 (0.05 wt% FSP) to PP3
(0.15 wt% SP) (Figures 3E–H), the amount of clay, as well as the
number of interfacial bonds, increased in PP3 caused the rod-
like compact structure and increased shrinkage in particle size.
This change in morphology of hydrogels with an increase in the
concentration of FSP could be attributed to fibrous structure of
FSP and enhanced covalent linkages and hydrogen bonding due
to NH2 and–OH of FSP throughout the hydrogel (Liu et al.,
2020; Palem et al., 2021).

3.3 Swelling Kinetics
To obtain a comprehensive understanding of swelling
characteristics of newly developed hydrogels we tested swelling
kinetics of all hydrogels in different media.

3.3.1 Swelling Response of Hydrogels in Water
The swelling response of PP hydrogel in water to time is
demonstrated in Figure 3A. All the hydrogels presented
different responses against water. The hydrogels exhibited an
increase in swelling over time. The amount of crosslinker affected
the swelling behavior of all films differently. In the controlled
sample, maximum swelling (1,233%) was observed after 100 min
while FSP incorporated samples showed maximum swelling as;
PP1 (1,130%), PP2 (1,056%), PP3 (890%) after 120 min. All films
started to dwell after reaching the respective equilibrium time.

FIGURE 5 | Antimicrobial activity of fabricated hydrogels after 24 h
against (A) Bacillus subtilis MH-4 (G+) (B) Escherichia coli BL-21 (G-).

FIGURE 6 | Viability of 3T3 fibroblasts cells seeded in different groups of hydrogels determined by XTT assay. The control group (doted bar) represents 3T3
fibroblasts cells seeded without any hydrogel. Cells exhibit high viability indicating absence of cytotoxic effect of hydrogels. *p denotes statistical significance: *p < 0.05;
**p < 0.01; ***p < 0.001.

TABLE 1 | Antimicrobial potential of hydrogels in terms of inhibition zones.

Bacterial cultures Diameter (d) of hollow zones formed (mm)
— PPC PP1 PP2 PP3

E.coli BL-21 2 3 18 23
B.subtilis MH-4 5 9 16 0
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Maximum swelling was exhibited by PPC and minimum swelling
was shown by PP3. The decrease in swelling from PPC to PP3
could be attributed to the decreasing number of free pendent
carboxyl and hydroxyl groups upon increasing the amount of
crosslinker. The crosslinker might have caused the shrinkage of
pores by increasing the crosslinking density and high chain inter-
connectivity leaving a fewer number of pores for diffusion of
solvent into hydrogel matrix (Butt et al., 2019). With an increase
in the amount of FSP, a clear decrease in the swelling trend was
noticed.

3.3.2 Effect of pH on Swelling of Hydrogels
Different stimuli can cause unusual alterations in hydrogel
swelling behavior, structure, and mechanical properties. The
swelling extent of fabricated films is critically affected by the
nature of base polymers, pH, and the type of buffer medium. For
pH-dependent controlled release of the drug, the response of
hydrogel swelling due to change in pH of medium particularly
needs to be studied. The behavior of all hydrogels was checked in
different pH solutions (pH 2, 4, 7, 7.4, and 8). Figure 3B depicts
the pH-dependent swelling trend of all hydrogels. All hydrogels
showed aminimum swelling rate at pH 2.With an increase in pH,
an increase in swelling was observed, while at neutral pH the
swelling was decreased. The swelling was again increased at basic
pH. This was due to the charge imbalance caused by the pH of the
buffer solution. At the pH value (pH 2) lower than the pKa value
(3.55–4.10) of pectin, the pendent -COOH group of pectin did
not lose its proton and remained uncharged resulting in low
swelling. Furthermore, the hydrogen bonds were developed
between the -OH of pectin and -C�O of PVP which instigated
less swelling at said pH (Mishra et al., 2008). At pH (pH 4) equal
to pKa of pectin, a few -COOH in the pectin backbone might be
ionized by losing protons. This ionization caused intra-chain
repulsive forces inducing hydrophilicity and increase in pore size
causing the inward movement of solvent into the hydrogel
through the process of diffusion resulting in an increase in
swelling. (Butt et al., 2019). Maximum swelling of PPC
(1,409%), PP1 (739%), PP2 (1780%), and PP3 (896%) was
noted at the pH value equal to the pKa value of pectin. The
increased extent of swelling in PP2 specifically at pH 4 might be
due to the increased diffusion rate caused by the influence of salt
concentration, type of salts present in the medium, and ionization
of -COOH group at the pH value equal to the pKa value of pectin.
Moving to neutral pH, the swelling of PP2 again decreased and
minimized at pH 7.4 followed by a rise at basic pH. At basic pH 8)
where the pH value of medium was much higher than the pKa
value of pectin, the dissociation of hydrogen bonds and ionization
of–COOH groups of pectin caused an increase in the swelling
rate. The fabricated hydrogel films showed pH-dependent
swelling. These films responded to the slight change in pH of
the medium which can result in a change in hydrogel
characteristics.

3.3.3 Effect of Ionic Concentration on Swelling of
Hydrogels
The swelling response of hydrogels could be affected by the
concentration of ions (Na+ and Ca2+) present in the blood. To

investigate the possible effect of these ions on the swelling
response of hydrogel was studied in vitro against different
concentrations of sodium chloride and calcium chloride salt
solutions under neutral pH conditions. The sodium chloride
and calcium chloride are neutral salts. Upon dissolution in
water both of these salts dissociated into cations (Na+ and
Ca2+) and anions (Cl−). Figures 3C,D depict the swelling
response of all hydrogels in NaCl and CaCl2 respectively. Both
the NaCl and CaCl2 electrolytes contain the same anion (Cl−) but
different cations; monovalent sodium ions and divalent calcium
ions, respectively. Figures 3C,D indicated an observable decrease
in the swelling rate of hydrogels with the rise in the electrolyte
concentration. An increase in concentration increased the

FIGURE 7 | The controlled in vitro release of CTX-S in PBS (pH 7.4) and
SIF (pH 6.8).

FIGURE 8 | The chemical activity of the pure CTX-S and after release
from the hydrogel.
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osmotic pressure within the polymeric network. This osmotic
pressure hindered the movement of solvent into the gel hence
decreasing the swelling extent (Rasool et al., 2010; Rasool et al.,
2019). The second factor affecting the swelling trend of films
observed was the net charge of ions. The ionic charge on cations
influenced the swelling of hydrogels in an inverse manner. As the
ionic charge Ca +2 is higher than the charge on Na+1 thus all the
hydrogels showed less swelling in calcium chloride solution in
comparison with swelling in sodium chloride solutions. The
inter-chain complexes caused the hydrogel to attain a more
compact structure hindering the diffusion of the solvent into
the hydrogel which decreased the swelling rate (Muller et al.,
2003). The swelling of all hydrogels decreased with an increase in
ionic concentration as well as ionic charge.

3.4 In-vitro Degradation
The fabricated hydrogels are mainly composed of pectin. The
monomers of pectin are linked via glycosidic linkages which can be
easily broken by various enzymes resulting in small polysaccharide
chains. These chains are further broken down to incorporate into
biological metabolic pathways. In this analysis, the in-vitro
biodegradation of all semi-IPNs was examined in a PBS
solution of pH 7.4 for 21 days. The outcomes are presented in
Figure 4which depicted the extent of degradation of PP films (PPC
� 98.5%, PP1 � 91.3%, PP2 � 84.3% and PP3 � 84.4%) with respect
to time. The biodegradation of all PP hydrogels depended on the
nature and concentration of pectin, PVP, and FSP crosslinker.
Figure 4 showed that with an increase in the amount of FSP, the
extent of degradation was decreased which can be attributed to the
increased inter and intra-molecular forces of attraction among the
polymers and FSP (Giri et al., 2013). The PPC hydrogel without
FSP exhibited a higher degree of degradation (lower % remaining
weights) as compared to hydrogels crosslinked with FSP (PP1, PP2,
and PP3). The FSP (functionalized sepiolite clay) hindered the
diffusion of solvent through the polymer matrix in PP1, PP2, and
PP3. Thus, an increase in crosslinking density upon an increase of
FSP concentration impeded the degradation of semi-IPNs.

The in vitro degradation results of all hydrogels also depicted
the stabilizing effect of modified clay on the pectin-PVP polymer

matrix. Figure 4 presents the PP3 (0.15 wt% FSP) showed the
highest stability while PPC (0 wt% FSP) showed minimum
stability in PBS over time. The stability of hydrogel increased
with an increase in the concentration of modified clay which
could be referred to the increased inter-chain crosslinking density
of polymer matrix.

3.5 Antimicrobial Analysis
The antimicrobial activity was examined by measuring the
inhibition zones generated around the hydrogel (Nešić et al.,
2017). The antimicrobial activity of all hydrogels is presented in
Figure 5while inTable 1, the inhibition zone diameters (d inmm)
are described. The antimicrobial activity of all hydrogels was
investigated against B. subtilis MH-4 (G+) and E. coli BL-21
(G-) via the disc diffusion method and air was considered as
the negative control. The PPC (0 wt% FSP) and PP1 (0.05 wt%
FSP) showed less activity (5ays and 9days, respectively) against B.
subtilis and negligible activity (2ays and 3 days respectively) against
E. coli. The PP2 (0.10wt% FSP) showed remarkable antimicrobial
activity against both strains. In contrast, PP3 (0.15wt% FSP)
showed the highest activity (23 days) against E. coli. However,
PP3 did not show any considerable activity against B. subtiliswhich
could be attributed to the thickness of the cell wall of B. subtilis. B.
subtilis exhibited a relatively denser outer membrane in contrast to
E. coli. This possibly is the fact that B. subtilis showed greater
resistance to the antimicrobial activity of hydrogels as compared to
E. coli which exhibited a considerably greater sensitivity towards
pectin-PVP/3-APDEMS sepiolite based hydrogels. The hydrogels
generated pores in the cytoplasmic membrane of bacteria which
caused the leakage of cytoplasmic material leading to cell death
(Carson et al., 2002; Guerra-Rosas et al., 2017). The hydrogels
possibly caused cell surface disintegration and irregular cellular
boundaries. This restricted the growth of microbes around the
hydrogel samples (Figure 5). The carboxylic group (-COOH) of
pectin deprotonated when interacted with the bacterial cells. The
-COOH was converted into carboxylate ion (COO−) and H+ ions.
The H+ ions caused the change in pH of the bacterial cells. This
change in pH disrupted the bacterial cell wall while carboxylate
ions inhibited cellular activities by binding with positive species of

FIGURE 9 | Proposed reaction for modification of sepiolite with 3-APDEMS
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FIGURE 10 | Fabrication of hydrogel films

FIGURE 11 | Proposed crosslinked Pectin-PVP-FSP hydrogel matrix
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bacterial cell (Kundukad et al., 2017). Overall, the films with large
amount of modified clay possessed a higher antimicrobial
potential. This property indicates that these hydrogels would
enhance the anti-microbial potential of anti-biotics and could
be used for wound healing applications.

3.6 Cytotoxicity Studies
To determine the impact of hydrogel on cell survival XTT assay
was performed on 3T3 mouse fibroblast cell line. Hydrogel
cytotoxicity was assessed by cell viability after 12, 48, and
72 hrs. ANOVA paired with Tukey’s test was performed using
SPSS software (version 17.0) for the validation of results. The
results are presented in Figure 6 which showed cell viability in
PPC (75.87 ± 7.0%), PP1 (35.59 ± 3.44%), PP2 (45.64 ± 8.32%),
and PP3 (57.67 ± 2.98%) groups as compared to control group
(3T3 mouse fibroblast cells seeded without hydrogels) which is
presented as doted bar (100 ± 0.0%) after 24 h. However, the
viability of cells in different groups progressively increased with
time (after 48 and 72 h). After 72 h, cell viability was significantly
increased up to (111.08 ± 3.31%) in PPC (77.61 ± 4.46%) in PP1
(82.93 ± 4.59%) in PP2, and (80.85 ± 9.85%) in PP3. Furthermore,
the results indicated that hydrogel supports the proliferation of
cells even after 48 and 72 h as depicted by progressive increase in
the percentage of viable cells in all groups (PPC, PP1, PP2, and
PP3). The cell viability of all hydrogels was above 75% after 72 h
(considered as non-cytotoxic) which indicated that PPC, PP1,
PP2, and PP3 hydrogels are cytocompatible (Mishra et al., 2008).

Hydrogels have been used to efficiently deliver the seeded cells
to the wound bed in a sustained and controlled manner (da Silva
et al., 2019; Zhou et al., 2020). Hydrogel scaffolds allow sufficient
transference of gases, nutrients, and growth factors to promote
adhesion, retention, and survival of cells while reduce the
microenvironmental shock and attack by host immune
response in order to maximize the therapeutic capacity of cells
(Garg et al., 2012; Nezhad-Mokhtari et al., 2019). Hydrogel is
considered biodegradable, cytologically compatible, non-
antigenic, ECM mimic, anti-microbial, and has the ability to
maintain cellular potential (Xu et al., 2018).

The increase in cell proliferation after 72 h indicates that
hydrogels understudy can play a crucial role in tissue
engineering application as well.

3.7 Release Analysis of CTX-S
The pH-dependent release of drug was studied by immersing the
CTX-S loaded hydrogel in PBS (pH 7.4), SIF (pH 6.8), and SGF
(pH 1.2) to investigate the use of hydrogel for injectable drug
delivery and controlled release application. PP2 was chosen as the
host drug carrier over other hydrogels due to good swelling
behavior in the buffer, good antimicrobial potential, and
optimum biodegradability. The host drug carrier PP2 (0.10wt
% FSP) was loaded with CTX-S and its release profile was
examined in PBS (pH 7.4), SGF (pH 1.2), and SIF (pH 6.8)
with time at 37°C according to the method described by Butt, et al.
(2019) (Islam and Yasin, 2012; Butt et al., 2019). Figure 7
demonstrated the drug release results showing a linear release
of CTX-S in PBS. The drug release was remained steady as 91.82%
drug was released in 2 h and 20 min. Figure 7 demonstrates that

release of drug was dependent on pH of buffer media, as the
release of CTX-S was found consistent in PBS (pH 7.4) as
compared to SIF (pH 6.8) and SGF (pH 1.2) which was in
agreement with the pH-dependent swelling data (section
3.3.2). The results indicated that swelling has a dominating
role in the release of drug via diffusion. In accordance with
pH swelling results (section 3.3.2), the hydrogel showed higher
swelling in SIF (pH 6.8) resulted in the creation of larger pore size
and osmotic pressure inside of hydrogel matrix hence, facilitating
faster diffusion rate of drug from hydrogel to medium (Bukhari
et al., 2015; Mahdavinia et al., 2017; Sabzi et al., 2020). In SIF,
more than 90% drug was released in first 30 min. The hydrogel
showed lower swelling (section 3.3.2) at pH 7.4 (PBS) than that of
swelling at pH 6.8. The decreased swelling at pH 7.4 resulted in
the slower and consistent diffusion rate of drug from hydrogel to
medium with respect to time. Figure 7 indicated the sustained
release of drug in PBS at pH 7.4 (blood pH).

Three different drug release mechanisms have been reported
in literature i.e. swelling, erosion, and diffusion. The swelling, and
diffusion work in conjugation when the polymer matrix was
placed in a solution with a huge concentration difference (Benita,
2005). In this study, the drug release followed the process of
diffusion in a controlled manner. In SGF, 28.4% drug was released
in the first 10 min which was not in conformity with the US
pharmacopeia standard as reported that the release of the drug in
SGF must not be >10% in the first 30 min. In SIF 97.4%, the drug
was released in 30 min. The CTX-S release in PBS and SIF was
accordant with US pharmacopeia standard which confirmed the
release in PBS and SIF must be >80%.

The results show that by controlling the type of polymer used
for hydrogel preparation and its response to the change in pH, the
release of drug can be controlled. The present hydrogel is suitable
for injectable delivery and controlled release of drug.

3.8 Chemical Activity
To investigate the effect of hydrogel on the chemical integrity of
loaded drug, the chemical activity of pure CTX-S (in PBS as well
as water) and after release from hydrogel (in PBS) was observed
using a double beam UV-vis spectrophotometer (Bashir et al.,
2018). Figure 8 shows recorded UV-vis scan spectra of pure
ceftriaxone sodium antibiotic drug (CTX-S) before and after
release from the hydrogel. The maximum absorbance for all
three samples was observed at wavelength 270 nm which was
characteristic (lambda maximum) of CTX-S. A similar pattern of
all spectral lines indicated that the respective model drug did not
show any chemical bonding with the hydrogel matrix and has
retained its chemical configuration after being released from the
host carrier. Thus, the fabricated hydrogel proved to be an
effective carrier for antibiotics and hydrophilic drugs.

4 CONCLUSION

The macro-porous structure composed of different entities
offers a novel multifunctional system with desired properties
capable to develop suitable drug delivery carriers. The pectin-
PVP-FSP based novel biodegradable semi-IPN drug carriers
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with varying amounts of FSP (3-APDEMS functionalized
sepiolite clay) was successfully developed by the solution
casting method. FTIR study demonstrated the modification
of clay with 3-APDEMS and SEM revealed rod-like
morphology of hydrogels with size ranging 10–50 µm. With
an increase in the amount of crosslinker, the degree of water
swelling decreased. PP2 and PP3 showed the least swelling rate
in water and electrolytes (NaCl and CaCl2). The formulations
PP2 and PP3 with an increased amount of crosslinker showed
less degree of biodegradation. Both PP2 and PP3 showed
remarkable antimicrobial activity against E. coli with hollow
zone diameter 23 and 18 mm respectively. While for B. subtilis
PP2 showed the best antimicrobial activity with a hollow zone
diameter of 16 mm. This depicted that PP2 was effective against
G+ and G-bacteria. All the hydrogels proved to be
cytocompatible. In buffer solutions, all hydrogels less swelling
at pH 2 which comparatively increased with increase in pH of
medium. The in vitro drug release study of CTX-S loaded in
phosphate buffer saline (pH 7.4) indicated 91.82% release in 2 h
and 20 min in a controlled manner. Both pure CTX-S and
released CTX-S drug showed maximum absorbance at
270 nm illustrating no chemical interaction between carrier
and loaded drug. These hydrogels provide a better profile for
pH-dependent injectable delivery and controlled release of
ceftriaxone sodium. The fabricated hydrogels exhibited pH
sensitivity for controlled drug release behavior,
biodegradability, low-cost fabrication route, and
antimicrobial potential. These characteristics make these
hydrogels an ideal applicant for the slow release of drugs in a
controlled manner, injectable drug delivery, and wound healing
and wound dressing applications. With slight modification,

these could be considered as promising materials for delivery
of polar compounds, scaffolding, tissue engineering, and cancer
therapeutics in the future.
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