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Single crystalline microcantilevers are fabricated from the base metal and heat-affected
zone (HAZ) of a laser welded, neutron irradiated austenitic stainless steel, for scanning
electronmicroscope (SEM) in-situ bending. In the HAZ, cantilevers exhibit higher yield point
and lower crack tip blunting displacement than in the base metal and unirradiated archive
specimen. These results suggest that radiation-induced defects harden the base metal,
whereas the HAZ exhibits annealing of defects leading tomechanical softening. Dislocation
nucleation ahead of the crack tip is responsible for ductile blunting behavior and provides a
pathway to mitigating helium-induced cracking during weld repairs of irradiated materials.
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INTRODUCTION

Life extensions of commercial light water nuclear reactors (LWRs) require damage-free crack repairs
in both in-core and near-core structural components. These weld repairs face challenges from the
high helium (He) content, which can cause bubbles and cracks in structural materials following
intense neutron irradiation (Morishima et al., 2004; Yamada et al., 2006). If conventional welding
methods are used, the high temperature in the welding pool and the tensile stress developed upon
cooling facilitate He bubble growth and exacerbates the intergranular He-induced cracking (HeIC) at
the weld pool boundaries in the heat affected zone (HAZ) (Nishimura et al., 1998; Asano et al., 1999;
Kanne et al., 1999). Low heat input welding technologies such as laser welding have been proposed to
limit HeIC in previously irradiated materials, but the crack growth and arrest mechanisms are not
well understood, especially given that the irradiated materials exhibit highly localized deformation.
Previous studies have shown the effects of hydrogenation on fracture toughness and damage
mechanisms in reactor steels, where microplastic deformation initiates the brittle failure dependent
on the hydrogen, temperature and stress conditions (Yasniy et al., 2011; Yasniy et al., 2013).

Additionally, probing the interface between the base metal and weld HAZ can be difficult with
traditional mechanical testing methods. Recent advancements in micromechanical testing enable
in-situ observation of real-time mechanical response to environmental stimuli (Ding et al., 2014;
Gong et al., 2015; Ast et al., 2017; Hosemann, 2018; Barnoush et al., 2019; Mao et al., 2020a).
Specifically, microcantilever bending has been used to determine hydrogen embrittlement with
respect to hydrogen-induced cracking (Deng et al., 2017; Deng and Barnoush, 2018); quantify the
fracture toughness and dislocation structures of brittle materials through site-specific investigation
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in thin films, single crystals, and grain boundaries (Iqbal et al.,
2012; Zou et al., 2017; Alfreider et al., 2018; Ast et al., 2018; Ast
et al., 2019); and probe the mechanical impact on ion-irradiated
damage layers (Armstrong et al., 2015; Leide et al., 2020; Yano
et al., 2020). HeIC initiation and propagation can also be
investigated using site-specific micromechanical tests, where
small-scale heterogeneity of structures and properties are
prevalent, analogous to the irradiated materials (Diaz De La
Rubla et al., 2000; Byun et al., 2006; Cui et al., 2018a),
representing a manifestation of the localized mechanical
degradation with an underlying irradiation-induced
microstructure that is present at even finer scale such as
clusters and channels (Patra and McDowell, 2013; Cui et al.,
2018b; Cui et al., 2018c; Wharry et al., 2019).

In this study, we use a state-of-the-art scanning electron
microscope (SEM) in-situ testing of microcantilevers fabricated
from the base metal and HAZ in laser welds of irradiated 304L
austenitic stainless steel. The cantilever bending experiments aim
to probe the crack growth and propagation behavior of the base
metal compared to the HAZ. Accompanying finite element
analysis (FEA) models plastic strain near the crack tip during
bending. Together, the microcantilevers coupled with FEA
models enable precise determination of deformation
mechanisms as a function of plastic strain and grain
orientation. The initial microstructure without deformation is
also characterized to provide insights on the structure-property

relationships, which can guide improvements to the integrity and
quality of laser welding technologies to extend the life of LWRs.

MATERIALS AND METHODS

The materials used for this work were AISI 304L SS with ~5–10%
cold work. Samples were neutron irradiated in Experimental
Breeder Reactor II at ~415°C to a total dose level of ~1
displacement per atom (dpa), and He concentration of 0.2
atomic parts per million (appm), representing 0.2% swelling.
The history of these specimens can be found in previous studies
(Wiezorek et al., 2014; Huang et al., 2015; Freyer et al., 2019).
Irradiated samples were polished to metallographic standards
inside theWestinghouseMaterials Centers of Excellence hot cells.
Then, single-pass pulsed laser welds were made along the length
of the surfaces of the specimens. The Trumpf BEO D70 laser
welding head was equipped with a TruPulse 556 pulsed Nd:YAG
laser and an Alabama laser wire feeder with 6.35 mm diameter
ER308L SS weld filler material. The laser welding parameters were
consistent with those reported in previous studies (Mao et al.,
2020b; Mao et al., 2020c; Mao et al., 2021), where the laser power
was 1.4 kW, travel speed was 64 mm/min, wire feed speed was
432 mm/min, and lens-to-work distance was 200 mm. Laser
welding was performed on the irradiated specimens to alter
the irradiated microstructure in the HAZ, including the

FIGURE 1 | (A) Fabricated microcantilevers in the archive material. The left cantilever is single crystalline with respect to bending direction <101> and the right
cantilever is oriented towards <112> (IPFZ). (B) Schematic diagram of the dimensions of each microcantilever.
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cavities, dislocations, and precipitates. The as-welded samples
were cross-sectioned, then polished using standard
metallographic methods to minimize surface effects prior to
microcantilever testing and microscopy characterization. The
unirradiated archive material was used as a reference control.

A FEI (now Thermo Fisher Scientific) Quanta 3D FEG dual-
beam SEM/focused ion beam (FIB) was used for fabricating
microcantilevers and subsequently preparing FIB lift-outs for
transmission electron microscopy (TEM) and scanning TEM

(STEM) characterization. This FIB microscope was also
equipped with an electron backscatter diffraction (EBSD)
detector to collect orientation imaging microscopy (OIM)
maps of grains to select single-crystal locations for
microcantilever manufacturing. The OIM map in Figure 1
and Supplementary Figure S1 shows two examples of
selecting grains oriented parallel to the microcantilever
bending direction with respect to the inverse pole figure in Z
(IPFZ corresponds to the upward arrow). The average grain size

FIGURE 2 | Detailed images captured on the notch evolution before (A,D,G) and after (B,C,E,F,H,I) bending tests in the archive material (a–c), irradiated base
metal (D–F), and irradiated HAZ (G–I).

FIGURE 3 | Load versus displacement curves for the microcantilevers in the (A) archive specimen, and (B) base metal and (C) HAZ region of the irradiated
specimen. The legend indicates the bending direction of each cantilever.
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of the archive materials is 52 ± 17.7 µm. After laser welding, the
welded zone has an average grain size of 27.5 ± 11.7 µm, while the
average grain size of the base metal and HAZ is 47.6 ± 2.5 and
49.1 ± 4.2 µm (Supplementary Figure S1). Single grains were
selected for SEM in-situmicrocantilever bending tests in both the
base metal and HAZ. Because the specimen is a dissimilar weld,
we only focus on the HAZ and base, where the base metal is
selected as far as possible away from the HAZ (see the
supplementary materials for more details). Microcantilever
bending experiments were conducted on the base metal, HAZ,
and archive specimen with the notch oriented along the <112>
direction; an archive specimen with notch oriented along <101>

was also tested. Figure 1A illustrates the microcantilever
configuration using the archive specimen as an example. The
cantilever on the left-hand side of the image is made from a single
crystal with respect to the bending direction <101> and the
cantilever on the right-hand side of the image is oriented
towards <112>. Standard FIBing process was employed to mill
two to four microcantilevers of dimensions ~3 × 3 × 15 μm
(length is the measured distance to the notch) per grain
orientation. The notch depth ranged between 1 and 2 μm (see
Figure 1B). The final cleaning step applied a 0.1 nA beam at
30 kV to minimize surface ion damage. Each cantilever was bent
using a flat punch in the Bruker Hysitron PI-88 depth-sensing in-

FIGURE 4 | Microstructure of the irradiated base metal (A–C) and HAZ (D–F). (A,D) BFTEM of cavities in the under-focused condition; (B,E) HAADF of cavities,
showing HAZ has fewer cavities than the base metal; (C,F) dislocation structure using on-zone BFSTEM imaging technique. Blue arrows represent <111> directions,
yellow arrows represent <002> directions and red arrows represent <101> directions. All scale bars represent 200 nm in length.

FIGURE 5 | FEA simulation on the microcantilever bending, showing (A) von Mises stress map and (B) equivalent plastic strain maps near the notch tip.
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situ SEM mechanical testing holder, operating at ambient
temperature. The compression was carried out in
displacement-controlled mode with a speed of 100 nm/s. The
maximum displacement was ~10 μm. Load-displacement curves
were recorded by the PI-88 with real-time video during each
bending test.

A Tecnai TF30-FEG STWIN S/TEM was used to characterize
the pre-deformation microstructures. TEM lamellae were
prepared by FIB milling to dimensions of approximately
10 μm × 10 μm × 100 nm. A final 5 kV cleaning step was
conducted to remove the residual FIB damage. Irradiation-
induced cavities were imaged using both the bright-field TEM
(BFTEM) and STEM modes with a high-angle annular dark-field
(HAADF) detector. Dislocation structure was captured by a
bright-field STEM (BFSTEM) method with small collection
and convergence angles (Parish et al., 2015). The irradiation-
induced precipitates were not distinguished from the loops in
both the base metal and HAZ, and their number density is low
enough to be excluded. The thickness of the TEM specimens was
measured by electron energy loss spectroscopy (EELS). The
calculated EELS mean-free-path was 90 nm. The average

number densities of cavities and dislocation loops were
calculated by counting the area density of the defects in each
micrograph (~7–10 images include a total of ~900–1,500
features), and then divided by the measured thickness of the
specimen.

The microcantilever bending test was also modeled using 3-D
finite element mesh built in ABAQUS/CAE 6.14–2
(Supplementary Figure S2). The dimensions of the simulated
microcantilever were identical to those created experimentally
and described in Figure 1B. The indenter was modeled as a 3-D
analytical rigid object with the cone angle θ = 60°. The contact
between the indenter and the microcantilever is modeled as hard
contact without penetration and friction, with a contact length of
3 µm as measured from Figure 1. Hexahedron elements (C3D8)
were used for the microcantilever with a size of 0.5 µm. Wedge
elements (C3D6) with a size of 0.05 µm were used around the
notch tip. The elastoplastic material properties of AISI 304L SS
from literature (Mao et al., 2020c; Kweon et al., 2021) were used
in the model. Displacement controlled loading was applied on the
simulated indenter equivalent to that used in the
experiment (~10 µm).

RESULTS AND DISCUSSION

Representative images of the notch evolution captured during the
bending tests are given in Figures 2A–I for the archive, base
metal, and HAZ specimens, respectively. The highest
magnification images of the post-bend tested notch (Figures
2C,F,I) indicate no crack tip growth or extension in either the
archive, base metal, or HAZ specimens, respectively. The in-situ
microcantilever bending videos further verify that no crack tip
propagation or opening has occurred during the bending tests,
which is consistent with the post-mortem images of the crack tip.

The representative load versus displacement curves for the
microcantilevers is presented in Figure 3. No statistically
significant variation in yield point is observed across all
specimens, with average yield points being highest in the
archive specimen at 473 ± 40 (Figure 3A), lowest in the
irradiated base metal at 407 ± 31 (Figure 3B), and 445 ± 56
for the irradiated HAZ (Figure 3C). The displacement at yield is
also consistent across all specimens. Finally, there do not appear
to be significant differences in yield point between the <101> and
<112> directions of the archive specimen.

The differences in the yield load across all three regions
indicate the initial (pre-deformation) microstructure plays a
role in affecting the mechanical response, especially in the
irradiated specimen. Figure 4 shows the microstructure of the
base metal (Figures 4A–C) and HAZ (Figures 4D–F). BFTEM
images are taken on cavities in under-focused conditions (Figures
4A,D and Supplementary Figure S3). HAADF-STEM images
were also given as a complementary approach to capture the
irradiation-induced cavities (Figures 4B,E). Dislocation structure
using on-zone BFSTEM imaging technique is shown in Figures
4C,F. Blue arrows represent <111> directions, yellow arrows
represent <002> directions and red arrows represent <101>
directions. In general, the HAZ has a lower density of cavities

FIGURE 6 | Microstructure-mechanical property relationships across
the irradiated base metal and HAZ with respect to the archive control
specimen (Mao, 2019; Mao et al., 2019; Mao et al., 2020b). (A) Yield stress
measured by nanoindentation and micropillar compression
experiments. (B) Comparison of size and number density of dislocation loops
and cavities in the base metal and HAZ. (C) Comparison of experimentally
measured and FEA predicted crack tip blunting displacement.
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and similar density of dislocation loops compared to the base
metal, which is consistent to our previous studies (Mao et al.,
2020b; Mao et al., 2021).

FEA simulated von Mises stress and equivalent plastic strain
maps are shown in Figures 5A,B. During loading, high tensile
stress is induced around the notch tip, leading to a large plastic
deformation zone. At the same time, the bottom surface of the
microcantilever deforms under compressive stress. The
maximum von Mises stress appears in front of the notch tip,
which also shows the highest stress triaxiality. Due to the high
ductility of the material, instead of forming and propagating
cracks, the notch tip opens and blunts.

Figure 6 compares the microstructure-mechanical property
relationships of the base metal, HAZ, and archive control
specimen, across multiple micromechanical testing configurations
presented herein and from previous studies (Mao, 2019; Mao et al.,
2019; Mao et al., 2020b). Figure 6A shows that the yield stress
measured by both nanoindentation (yellow) and micropillar
compression (dark green) experiments are reversely correlated to
the yield loadmeasured bymicrocantilevers (purple). As is shown in
Figure 3, the base metal has the highest yield stress, whereas the
HAZ has the lowest yield load. This could be explained by the
localized structure in the HAZ induced by laser welding, consistent
with the reported post-irradiation annealing on irradiation-induced
cavities in othermetal and alloy systems (Byun et al., 2014; Gao et al.,
2018;Mao et al., 2020c). Figure 6B provides evidence on the damage
recovery using a bubble plot (legend shows the average diameter of
the dislocation loop/cavity) on the defect density of dislocation loops
and cavities in the base metal and HAZ. It is evident that the HAZ
has a lower number density of cavities than the base metal.
Moreover, laser-weld induced finer microstructure such as
stacking faults (Supplementary Figure S4) could also contribute
to the yield point increase in the HAZ, analogous to the enhanced
mechanical strength and fracture toughness associated with
thermally annealed nanotwins (Qin et al., 2009; Xiong et al.,

2016; Xiong et al., 2018) (note that the blue curve from the HAZ
in Figure 3C has the highest yield point among all the cantilever
bending tests). Crack tip blunting (CTB) displacement is determined
from the in-situ microcantilever bending tests by measuring the
difference between the pre- and post-bending notch tip (Figure 6C).
The notch tip opening width is 330 nm in the FEA simulation, which
is close to experimental observations (Archive: 301 ± 29 nm, Base
metal: 295 ± 84 nm, HAZ: 146 ± 76 nm). Despite the differences of
the CTB between the base metal and HAZ, the ductile facture mode
during the plastic deformation along with no microcracks in the
HAZ (Mao et al., 2021) suggests the factual brittle transition
temperature (DBTT) of the weldment is less than the maximum
allowable component-specific DBTT (Katona, 2013).

The crack blunting behavior is illustrated schematically in
Figure 7, which shows ductile behavior in the plastic zone under
the crack tip with a localized region of stress concentration
immediately ahead of the crack. Dislocations likely nucleate or
glide towards the crack tip-cross-slip driven or dislocation
multiplication mechanism (Bitzek and Gumbsch, 2013; Daly
et al., 2017; Ast et al., 2019) as well as active sources such as
heterogeneities generated by extreme conditions (Lucas, 1993;
Sun et al., 2021). In the base metal (Figure 7A), the existence of
radiation-induced cavities could activate the martensitic
transformation near cavities through shear deformation (Yang
et al., 2022). However, in the HAZ or the archive materials
(Figure 7B), dislocations are active sources for slip and work
hardening. This difference in the fracture toughness through
martensitic transformation has both been demonstrated by
atomistic simulation (Grujicic et al., 1997) and ASTM
standard tests (Haghgouyan et al., 2019), where the phase
transformation could decrease the fracture toughness. Even
though no fracture toughness could be directly measured in
our microcantilever bending experiments, the presence of
martensite near cavities in the base metal could facilitate the
crack blunting, leading to a higher displacement of CTB shown in

FIGURE 7 | Schematic representation of the crack tip bluntingmechanisms plastic zone ahead of the crack tip. (A)Basemetal has a higher density of cavities which
could activate martensitic transformation. (B) Since only crack blunting occurs during bending, the plastic zone under the crack tip is represented by the yellow region as
ductile behavior with an orange-highlighted stress concentration area immediately ahead of the crack and dislocations nucleates from the crack tip as well as active
sources.
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Figure 6C. Moreover, the post-mortem fractograms in Figure 2
indicate the beginning of the quasistatic separation at the crack
tip notch, which has been observed in electrolytic hydrogen-
treated steels in WWER-440 reactor as “ductile separation
mechanism” (dimple-shaped surface) (Yasniy et al., 2013). In
summary, the microstructure-property relationship suggests that
HeIC can be alleviated through the laser welding process, which
creates an annealed HAZ microstructure that behaves in a more
ductile manner than the irradiated base metal.

CONCLUSION

In this work, we present the crack tip blunting behavior of notched
microcantilevers fabricated from the basemetal versus HAZ in a laser
welded, neutron irradiated 304 austenitic stainless steel. Both
experimental and simulation results indicate that the thermal
annealing induced by laser welding limits crack tip extension at
low He concentrations, which mitigates HeIC. The reduction of the
CTB of the HAZ compared to the base metal by ~50% suggests a
ductile plastic deformation with a damage recovery mechanism. This
study highlights the unique role of micromechanical experiments for
more accurate prediction of the properties and damage mechanisms
of nuclear structural materials under extreme irradiation and weld
conditions.
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