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Zn–Ni electrophosphate coating is one of the most commonly used materials in industrial
applications. The corrosion resistance of this coating is very important in order to achieve
the minimum corrosion current of the Zn–Ni electrophosphate coating. This study
described a new reliability simulation framework to determine the corrosion behavior of
coating using a gene artificial neural network (ANN) to estimate the corrosion current of the
coating. The input parameters of the model are temperature, pH of electroplating bath,
current density, and Ni2+ concentration, and corrosion current defined as output. The
effectiveness and accuracy of the model were checked by utilizing the absolute fraction of
variance (R2 = 0.9999), mean absolute percentage error (MAPE = 0.0171), and root mean
square error (RMSE= 0.0002). This is determined using the genetic algorithm (GA) and the
optimum practice condition.

Keywords: artificial neural network, Zn–Ni electrophosphate coating, corrosion current, modeling, genetic
algorithm, gene expression programming

INTRODUCTION

Hot-dip galvanization is an efficient safety measure of steel against the corrosion of atmospheric
corrosion, but it cannot offer adequate protection of the steel substrates against the corrosion
substance produced in the atmosphere (Lin et al., 2008; Tsai et al., 2010; Su and Lin, 2014). In general,
the surface modification treatment is applied to galvanized steel for greater protection of zinc-coated
steel from corrosion. Phosphating, which has been used extensively in a wide variety of industries, is
one of the major processes of chemical conversion for applications such as corrosion prevention,
paint primers, wear prevention, metal forming lubricants, electrical insulation, and even decoration
(Xu and Lin, 2007; Li et al., 2020). The highest operating temperatures of the most traditional
phosphating baths mentioned in the literature are 90–98°C. A high level of energy consumption is the
biggest problem for the use of a high temperature bath, which is a huge crisis nowadays. In addition,
due to the development of a scale that contributes to excessive heating of the bath solution, the
application and retaining of the heating coils is difficult, and thus a repeated replacement is needed
(Darband et al., 2016a). The overheating of bath solution, allowing an early conversion of primary
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phosphate into tertiary phosphate before the metal is treated, is
another issue in this case. These reasons increase the free acidity
of the bath and thus delay the precipitation of the coating of
phosphates. The low-temperature phosphating processes have
become more promising and successful due to the high cost of
energy in the high-temperature bath. However, the phosphating
bath at low temperatures is slow, and certain techniques must be
used to accelerate. In order to facilitate the phosphating process,
chemical, electrochemical, andmechanical methods are used. The
chemical methods are most widely used in many industries.
However, the chemical accelerators such as nitrite are
poisonous and have a detrimental effect on the environment
and human health, and it is desirable to be eliminated from the
bath composition and replaced with some replacements such as
electrochemical accelerator (Huang et al., 2021; Zhang et al.,
2021).

In many industries, the chemical processes are most
commonly used. However, chemical accelerators such as
nitrite are toxic and have a harmful effect on the environment.
So, it is required to restrict the use of these hazardous chemicals
by replacing the electrochemical accelerator (Datta and
Chattopadhyay, 2013; Ashtiani and Shahsavari, 2016; Coşkun
and Karahan, 2018; Huang et al., 2021; Zhu et al., 2021). The
electrochemical methods using cathodic and anodic treatments
for accelerating phosphating processes become popular these
days for their low operating temperature, high speed of
coating, and improved coating properties. So, experimental
parameters will affect the structural and chemical properties as
well as electroplating efficiency during electrodeposition of an
electrophosphating coating. Typical methods and measurements
make it very difficult to analyze the results of these deposition
parameters and to consider the relations between the
performance characteristics.

The use of the artificial neural network (ANN) and the genetic
algorithm is an engineering technique to improve process
variables. The ANN is one of the important non-linear
strategies to simulate the complicated behavior of materials
(Datta and Chattopadhyay, 2013; Zhu et al., 2021). This
method can learn and simulate the experiential information
through weight and bias in the neuron, but cannot determine
the optimal condition and may be hindered at the local
minimum.

Genetic algorithms (GA) are used to find the optimum
solution(s) for a computational problem that maximizes or
minimizes a certain function. Genetic algorithms are also
called as evolutionary computation, which mimic biological
reproductive and selection processes in order to find the
“fittest” lst solutions. Artificial intelligence (AI) techniques
such as ANN and gene expression programming (GEP) are
important in many areas of physical, chemical, and
mathematical science (Coşkun and Karahan, 2018). The ANN
method offers a modern technique for predicting material
deterioration in different conditions. The ANN is a technology
for artificial intelligence to simulate human brain biological
processes (Kim et al., 2009; Ashtiani and Shahsavari, 2016).
The system consists of one-way signal flow channels of
interconnected operators. Samples are obtained with a

distributed code that forms a non-linear, feasible framework.
It is also environmentally self-adapting to react rationally to the
different inputs (Evis and Arcaklioglu, 2011; Zeraati and Khayati,
2018). ANN models have few drawbacks of local minima, and to
prevent local minima, which leads to false convergence of the
ANN model, a derivative-free optimization algorithm should be
added in the ANN algorithm training process (Gandomi and
Roke, 2015). There are a lot of studies about the applications of
GEP in the literature for different engineering problems (Karahan
and Özdemir, 2015). The combination of regression strategies
and systematic design of experiment is an efficient alternative
approach for providing the experimental data in a new popular
model approach such as GEP. ANN and GEP can capture
complex interactions among input/output variables in a system
without using prior knowledge about the nature of these
interactions. Isleem et al. reported a database based on the
ANN for predicting the hardening and softening behavior of
glass fiber-reinforced polymers (Isleem et al., 2021). Finke et al.
have developed anticorrosion behavior of coating based on the
ANN (Finke et al., 2021). Hu et al. reported on the corrosion
behavior of Mo–V–Cr–Ni steel using an ANN model to predict
polarization curves in deep-sea environments without the need
for experiments (Hu et al., 2019).

To the best of our knowledge, very few studies are reported
about ANN and GEP together to compare the expected results
and explain the research protocol (Karahan et al., 2013; Gandomi
and Roke, 2015; Golafshani et al., 2015; Karahan and Özdemir,
2015; Xu et al., 2015). The purpose of this study was to assess the
oxidation behavior of Ni base alloys using particle swarm
optimization (PSO)-ANN and GEP models.

Due to their flexibility in general regression processes, the
present study was conducted using combined GA–ANN to
determine an appropriate process for zinc–nickel
electrophosophate coating on galvanized steel conditions.

MATERIALS PRODUCTION AND
PROCESSING

The thickening of zinc covering on a steel layer of galvanized stain
was 10 μm, and the dimension of hot-dip galvanized steel with a
dimension (50 × 20 × 2 mm) was used in this experiment. It was
ultrasonically degassed for 12 min in acetone, and then washed
with deionized water for 20 s in 4% sulfuric acid. A dip into a
titanium phosphate solution (1 g/L) for 1 min was used to enable

TABLE 1 | Experimental conditions.

Parameters Amount

Bath composition Zinc oxide (g/L) 2.04
Orthophosphoric acid (ml/L) 11
Sodium fluoride (g/L) 0.3
Nickel nitrate 1

Operating conditions pH 1.6–2.2
Temperature (°C) 25–35
Ni2+ (g/L) 0–0.5
Current density (mA/Cm2) 5–30
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the samples. Finally, prepared specimens were immersed in a cell-
contained phosphating solution under different coating
conditions.

Constant direct current was used for electrophosphating cells
using a galvanostat. Table 1 indicates the chemical composition
and operating conditions of the bath (Darband et al., 2016a;
Darband et al., 2016b).

In this analysis, anodes of stainless steel were used. Two sets of
galvanized steel substrates have been mounted on both ends. The
area under the review was one square centimeter, and the
remainder was sealed. The cell for corrosion measurement
comprises three electrodes, namely, the operating electrode,
stainless steel plate, and reference saturated calomel electrode
(SCE). The potentiodynamic polarization experiments were
performed with a scanning speed of 1 mV/S ranging from -
300 mV (relating to the open circuit potential) to +300 mV.
The corrosion current density (icorr) was evaluated using the
linear polarization method.

ARTIFICIAL NEURAL NETWORK

The ANN, in particular the structure of the brain, is influenced by
biological neural networks. An ANN model includes elements
such as inputs and works in a manner that creates a relation
between the elements in an approximation to what a brain is
doing in other words, it works by learning the connection
between input and output data (Laugier and Richon, 2003). A
connected neuron formula in terms of weight is reported as Eq. 1:

x � ∑p
i�1
wix + b, (1)

Herein, b represents the bias of neurons, p represents the
number of elements, and wi represents the weight of the input
vector (ai). Each neuron receives sum of the weight inputs with
bias and is used from the activation function to validate its output
signal, as Eq. 2:

f(x) � β⎛⎝∑p
i�1
winx + b⎞⎠, (2)

where β represents the transfer function of the neuron. Some
of the most common transfer functions are log-sigmoid (Logsig),
tan-sigmoid (Tansig), and linear transfer function (Purelin),
followed by Eqs 2–4.

β(x) � 1
1 + exp(−x), (3)

β(x) � 1
1 + exp(−2x) − 1, (4)
β(x) � x, (5)

Figure 1 schematically shows these transfer function. Feed-
forward back-propagation is one of the most common strategies
for training of the ANN. This approach enables us to present
effective solutions for engineering applications, especially in

material science (Rashidi et al., 2012; Varol et al., 2013;
Vettivel et al., 2013).

Detailed explanations of the functions of hidden and output
layers are descripted in the work by Ates (2007); Asadi et al.
(2012); Varol et al. (2013). In the modeling step, we predicted the
minimal root mean square error (RMSE) and mean absolute
percentage error (MAPE) of the training and testing sets. RMSE
and MAPE can be determined using Eqs 6, 7.

RMSE �

�������������
1
N
∑N
1

(yp − ya)2,√√
(6)

MAPE � 1
N
∑N
1

(∣∣∣∣∣ya − yp

∣∣∣∣∣
ya

× 100), (7)

where yp is the real value, ya is the model prediction value, and N
is the number of testing data (Canakci et al., 2015; Wu et al.,
2021).

GA

As Darwin’s theory explains, the GA is a random global method
of search and optimization which mimics natural biological
evolution. Using a population of individuals, the GA examines
all regions of the solution space (Hou et al., 2007; Zaki et al., 2015;
Jamshidi et al., 2016; Dashtian and Zare-Dorabei, 2017).

PSO

PSO is one of the most popular population-based stochastic
optimization algorithms (Yusup et al., 2012). In recent years,
the PSO method has received a great deal of attention as it can
efficiently converge to the optimization value and has excellent
robustness (Kennedy and Eberhart, 1995; Li et al., 2008). The
pseudo-code of standard PSO is shown in Figure 2.

The aim of the current study was to determine the most
appropriate values for the weights and bias of NN (i.e., optimized
NN) based on the PSO algorithm (Nouiri et al., 2018). Then, we
used the optimized NN as a fitness function of PSO to obtain the
best values for our futures.

GEP

According to the literature, the use of AI, for example, the
adaptive neuron fuzzy inference system (ANFIS), and the
ANN in combination with optimization techniques, for
example, the GA, simulated annealing (SA), are powerful
techniques for modification and simulation of engineering
phenomena (Mansouri and Kisi, 2015; Jafari et al., 2017;
Mansouri et al., 2018). One of the most relevant
methodologies for AI is called GEP, that is, an advanced
combination of GA and genetic programming (GP) ideas to
improve their accuracy (Ferreira, 2006; Zhang et al., 2007).
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GEP, similar to GA and GP, employed the fitness values as the
criteria for the selection of individual’s population and using the
genetic variation operator to determine the best relationship
within inputs and output variables. Finally, the GEP is able to
depict the relationship between input and output as an expression
tree (ET) or mathematical function. These functions enable us to
calculate the output at various practical conditions with
acceptable accuracy (Martí et al., 2013; Hoseinian et al., 2017;
Jafari and Mahini, 2017).

ETs are combined from constants, functions, operators, and
input variables with their nodes and terminals. A mathematical
function is responsible to connect each other ETs as shown in
Figure 3 (Hosseinzadeh et al., 2014).

Figure 4 illustrates the GEP operators, schematically. As
shown, the generation of chromosomes in a random manner
is the first stage of GEP. In the second stage, the validation of each

individual population is investigated by the use of fitness
functions as the criteria. The generation of new output is
performed by the usage of reproduction, crossover, and
mutation operators in GEP.

During the regeneration stages, functions with lower
performance are omitted after the adoption of the algorithm.
Selection and combination of most appropriate data from parents
were carried out using a swamp randomly selected section of two
trees. Mutation is responsible to investigate the non-local
properties during simulation (Okhovat and Mousavi, 2012;
Khalaj et al., 2013; Zadshakoyan and Pourmostaghimi, 2013).

RESULTS AND DISCUSSION

In this study, a feed-forward neural network with a back-
propagation algorithm is used to simulate the process. The
output of each neuron in the feed-forward technique is simply
linked with the next layer. This strategy consists of one or more
hidden layers and has one output layer. To increase the
performance of evolution, all input data were normalized in
the range 0–1. Hidden layers control the network by using a
non-linear transfer function to learn linear or non-linear behavior
between inputs and outputs. Normalizing is performed using Eq.
6 (Asadi et al., 2012):

Xn � X −Xmin

Xmax −Xmin
, (8)

where Xmax and Xmin are the highest and lowest limits,
respectively. In this work, the back-propagation used by a
network that has an input layer with its operating condition
factor neurons (Table 1) and an output layer that has one neuron
(icorr); 47 experimental result patterns used to train the ANN
model are seen in Table 2, and the remainder is used for research.
As shown in Table 3, by consideration of regression as the
criteria, “Logsig” and “Purelin” are the best functions for
hidden and output layers, respectively.

In Figure 7, it can be observed that different ANNmodels with
different neurons in the hidden layer provide higher R2 of 0.9999,
lower RMSE of 0.0002, and MAPE of 0.0171. Hence, this 3-3-1

FIGURE 1 | Schematical representation of transfer functions (Mozaffari et al., 2017).

FIGURE 2 | Pseudo-code of standard PSO.
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topology is used in further analysis in this study, as shown in
Figure 3.

The comparison between experimental and expected data is
shown in Figure 5. The correlation coefficient for the training and
evaluation processes is also 0.9999 and 0.9985, respectively.
Neural network results confirmed high precision in the
experimental data.

The close linear pattern between the ANN predicts the values
for the performance parameters, and the experimental dataset
shows the adjacency of the model (Jiménez-Come et al., 2020). In
order to determine the relative value of each input parameter, the

sensitivity analyses have been performed. The aim of the study
was to reduce the number of input parameters if the output of the
model proves negligible. The elimination of input parameters
would minimize excessive data processing, leading to a reduction
in costs. A step-by-step procedure was performed for the trained
ANN in order to continuously adjust each parameter of the input.
In this study, we have selected different rates (5 and 10). As a
result of changing the input parameter, the percentage of each
input parameter was modified to the output. Eq. 9 has measured
the sensitivity of each input parameter (Liu et al., 2017).

Si � 1
N
∑n
1

(%Change in output
%Change in input

) × 100, (9)

where the level of sensitivity related to input is represented by
Si (%), and N = 47 is the number of datasets.

Changes in the hardness of each input variable are shown in
Figure 6. As shown, the magnitude of operating conditions such
as pH, temperature, Ni2+, and current density has more positive
impact on the corrosion current density (icorr) of products.

The corrosion current of Ni–Zn electrophosphate coating is a
function of temperature. The corrosion current decreased as the
temperature increased.

Only tiny needlelike crystals shaped on a substrate surface at
room temperature do not cover the entire region. In general, the
development of phosphate coating includes nucleation and
growth phases. As the nucleation stage occurs at low
temperatures, the tiny needles are formed, but the growth
kinetics at this temperature is too low, and thus the growth
process cannot be completed. As can be observed, the kinetic
energy of the growth stage is high enough to complete the growth
process by raising the temperature to 43°C, thereby increasing the
corrosion current (Zhang et al., 2016; Lu et al., 2021).

The corrosion current increases slightly when the pH increases
from 1.8 to 2.2 and increases greatly up to 2.2. Increasing of
corrosion current with increase of pH is related to the porosity of
coating and thus decreasing of resistance of corrosion.

FIGURE 3 | Typical representation of linear string and their GEP model.

FIGURE 4 | Schematical representation of GEP flowchart (Ferreira,
2006).
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As the current density is increased to 22 mA/cm2, further
increase in the current density is directly dependent on
corrosion current. This increase in the current density results
from a high over potential, and this leads to an increased
nucleation rate. The increasing value of the current density
also leads to Ni–Zn electrophosphate coating (Benea et al.,
2009). It displays the effect of Ni2+ concentration on the
corrosion current of Ni–Zn electrophosphate coating. The
corrosion current of coating decreases when the Ni2+

concentration in the bath is increased. However, an increase
in the excess of 1 g/L does not cause further loss of corrosion
current and become constant.

TABLE 2 | Experimental data descriptions for GEP models (Darband et al., 2016a; Darband et al., 2016b).

No Input Output

Temperature (°C) pH Current density (mA/Cm2) Ni2+ (g/L) icorr (mA/Cm2)

1 25 1.60264 30.2635 0 11.0039
2 25.9151 1.60562 30.0475 0.075731 10.3807
3 25.7118 1.61354 30.1443 0.075731 10.3923
4 26.2202 1.62157 29.6782 0.075731 10.195
5 26.6267 1.62708 29.6468 0.074311 9.78467
6 27.1352 1.63259 29.3698 0.106615 9.37438
7 28.0502 1.64337 29.1583 0.138208 8.97185
8 28.2535 1.65404 29.1583 0.159744 8.77836
9 28.5586 1.66471 28.9736 0.18128 8.58486
10 28.9653 1.67825 28.5774 0.223997 7.97719
11 29.5753 1.69179 28.2959 0.244113 7.36953
12 29.7785 1.69718 28.2959 0.243758 7.16826
13 30.1852 1.70785 28.269 0.286475 6.97477
14 30.7953 1.71875 27.7805 0.296888 6.36322
15 32.219 1.72976 27.5779 0.327417 5.54264
16 32.5238 1.74319 27.4587 0.370844 5.144
17 32.5238 1.7511 27.4587 0.370844 5.15565
18 33.0323 1.76177 27.0893 0.370134 4.96215
19 33.4389 1.77256 26.7944 0.379837 4.55963
20 33.9474 1.78598 5.17569 0.401373 4.16099
21 34.2524 1.79677 5.95284 0.433676 3.75846
22 34.2524 1.80732 5.95284 0.433676 3.77399
23 34.8624 1.82327 6.29077 0.477103 3.58826
24 34.8624 1.83118 6.29077 0.477103 3.5999
25 35.2692 1.92124 9.86549 0.497929 3.10482
26 34.8624 1.92904 26.0379 0.497929 3.32549
27 34.8624 1.93696 26.0379 0.497929 3.33713
28 34.2524 1.95256 5.95284 0.433676 3.77848
29 34.2524 1.96048 5.95284 0.433676 3.79012
30 34.2524 1.97631 5.43026 0.433676 3.81342
31 34.2524 1.9895 5.43026 0.433676 3.83283
32 33.9474 1.99994 5.17569 0.401373 4.05738
33 33.9474 2.03688 5.17569 0.401373 4.11173
34 33.4389 2.04996 26.7944 0.379837 4.34017
35 33.0323 2.06028 27.0893 0.370134 4.77375
36 33.0323 2.07875 27.0893 0.370134 4.80092
37 32.3206 2.10755 27.4587 0.33783 5.26168
38 32.219 2.11798 27.4587 0.327417 5.48623
39 31.8121 2.12315 27.5779 0.327417 5.70302
40 31.2018 2.13095 27.5779 0.327417 5.92369
41 30.4901 2.15435 28.1498 0.286475 6.58571
42 29.5753 2.175 28.2959 0.244113 7.45287
43 28.2535 2.18773 28.9736 0.191338 8.30838
44 27.6438 2.18991 29.1807 0.106615 9.14837
45 28.9653 2.1906 28.5774 0.223997 7.89421
46 25.9151 2.20252 30.0475 0.075731 10.2129

TABLE 3 | Amount of regressions for different ANN structures.

No Neurons Function R2 RMSE MAPE

1 3-3-1 logsig-purelin 0.9999 0.0002 0.0170
2 3-3–1 tansig-purelin 0.998 0.0011 0.0315
3 3-5–1 logsig-purelin 0.9957 0.0026 0.0614
4 3-5–1 tansig-purelin 0.986 0.0025 0.0564
5 3-7–1 logsig-purelin 0.9808 0.0123 0.0654
6 3-7–1 tansig-purelin 0.9848 0.0019 0.0543
7 3-9–1 logsig-purelin 0.9905 0.021 0.0678
8 3-9–1 tansig-purelin 0.9955 0.0044 0.0682

RMSE: Root mean square error; MAPE: Mean absolute percentage error.
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The presence of nickel ions in the bath decreases the size of
phosphate coatings and improves the corrosion behavior of
phosphate coatings. The improvement of corrosion resistance
of phosphate coating in the presence of Ni2+ is due to the fact that
nickel ions in the phosphatization bath is a place for nucleation of
phosphate crystals which acts and reduces the size of phosphate
coating seeds.

Genetic algorithms have been used for the choosing of a single
point crossover and the roulette wheel. Each individual was
developed using an ANN model to determine the fitness function.
The crossover probability, mutation probability, starting population,
and generation size have been chosen to be 0.8, 0.2, 50, and 100,
respectively. According sensitivity analysis and GA simulation
predicted the combination sintering temperature 8.35°C, pH 9.93,

FIGURE 5 | Result of ANN models: (A) R2, (B) RMSE, and (C) MAPE.

FIGURE 6 | Schematical representation of the ANN model.
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current density 8.64mA/cm2, and Ni2+ 9.09 g/L to give the optimum
corrosion current density (icorr) of 1.61mA/cm2. Experiments in
various setups were performed to test the results, and the results are
described in Table 3. The experimentally obtained optimum fitness
function was determined by number 1 closer to GA’s predicted
conditions. The validity of the simulated results is conclusively
confirmed.

The practical parameters of each GEP model are abbreviated
in Table 4. Themaximum number of genes chosen is equal to 4 to
prevent an increase in complexity. Since 1 gene has a very weak
performance, the number of genes chosen is equal to 3. The head
size is changed continuously from 10 at first to 11. MAPE is more
appropriate than RMSE for fitness function.

Table 5 abbreviates the statistical characteristics of GEP
models. Accordingly, R2 values for the training phase change
between 0.9913–0.9981. As shown in Figure 7 the minimum
value of MAPE and RMSE are 0.0435 and 0.1040, respectively, for
training data.

In Table 6, the best GEP model is GEP-2 with linking function
addition, head size 10, and number of genes about 4. Changing the
linking function to multiplication with the same head size and
number of genes in the GEP-6model shows the best model is GEP-2
with 30 chromosomes. Table 7 shows the differed chromosomes,

TABLE 4 | Proposed optimum condition by GA.

Operating conditions Sample.1 Sample.2

pH 1.99994 2.06028
Temperature (°C) 33.9474 33.0323
Ni2+ (g/L) 0.401373 0.370134
Current density (mA/Cm2) 5.17569 27.0893

TABLE 5 | Different parameters of GEP.

Parameters Values

No. of chromosomes 30
Head size 10–11
No. of genes 3–4
Linking function Addition, multiplication
Fitness function error type MAPE
Constant per gene 1
Rate of mutation 0.0044
Rate of inversion 0.0015
Recombination rate (RR) for one or two points 0.0277
Rate of gene recombination 0.0155
Rate of gene transposition 0.0155

RMSE: Root mean square error; MAPE: Mean absolute percentage error.

FIGURE 7 | (A) Training data and (B) testing data using regression analysis of predicted and experimental hardness.
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head size, and genes number for GEP-2 models. The R2, RMSE, and
MAPE of different models of GEP-2 are shown in Figure 8.

The best GEPmodel is Model 1 as shown inTable 7, according
to R2 values. In Figure 9, this model expression tree is provided
for the four subgenes of the proposed model.

As shown in Figure 10, the expression tree of the GEP-2 and
formulation of this shows

y � cos
((d3 × 9.55)2/(d2 − log(d2)))

cos(d3) + cos(d2 + 242.792)
+ ( d3 − 4.03(6.34/d0 + d0 +

����
5.15

√ ))2

,

d0 � pH, d2 � Current density d3 � Ni2+ .

CONCLUSION

The ANN model with one hidden layer with three neurons in the
hidden layer is a useful method for the prediction of operating
conditions to the corrosion current density (icorr). The combined
GA–ANN algorithm was an effective model for optimizing icorr
parameters to the minimum of operating conditions. Sensitivity

TABLE 6 | Statistics of GEP models.

Model Linking function Head size Number of genes Type of function R2 RMSE MAPE

GEP-1 Addition 10 3 +, −, ×,/ 0.9970 0.1304 0.0545
GEP-2 Addition 10 4 +, −, ×,√,/,ln,, cosx2 0.9981 0.1040 0.0435
GEP-3 Addition 11 3 log, x2, ×,√ , tan, arcsin1/x, exp 0.9966 0.1448 0.0606
GEP-4 Addition 11 3 exp , log, x2, −, ×, cos, sin 0.9931 0.1977 0.0827
GEP-5 Multiplication 10 3 +, −, ×,/ 0.9851 0.2919 0.1222
GEP-6 Multiplication 10 4 +, −, ×,√,/, ln, cosx2 0.9930 0.1993 0.0834
GEP-7 Multiplication 11 3 log, x2, ×,√ , tan, arcsin1/x, exp 0.9937 0.1893 0.0792

GEP-8 Multiplication 11 3 exp , log, x2, −, ×, cos, sin 0.9913 0.2245 0.0939

TABLE 7 | Statistical data and parameters for selected GEP model.

Parameter Value

Training sample 35
Testing sample 11
R2 training 0.9981
RMSE training 0.1040
MAPE training 0.0435
R2 testing 0.9876
RMSE testing 0.3721
MAPE testing 0.1658

FIGURE 8 | Significances of input variables in mechanical properties.

FIGURE 9 | Result of GEP models: (A) R2, (B) RMSE, and (C) MAPE.

Frontiers in Materials | www.frontiersin.org March 2022 | Volume 9 | Article 8231559

Zeraati et al. Artificial Neural Networks for Corrosion

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


analysis showed that Ni2+ concentration and temperature are the
most significant parameter, and Ni2+ concentration is the most
important parameter.

This study proposed the most appropriate models by the
employment of GEP for the estimation of operating conditions
to the minimum corrosion current density (icorr). One type of
function, that is, monotonic and non-monotonic, has been used
within GEP. Then, by consideration of the lowest value of MAPE
as the criteria, the best models were selected. The combination of
sintering temperature 8.35°C, pH 9.93, current density 8.64 mA/
cm2, and Ni2+ 9.09 g/L predicted by GA simulation and sensitivity
analysis would result in an optimal corrosion current density
(icorr) of 1.61 mA/cm2. In summary, the GEP models had a
relatively high accuracy for the prediction of friction factor of
multi-stage counter-current fluidized bed reactor, by
consideration of the process parameters, operating conditions
to the minimum corrosion current density (icorr).
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