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This study aims to carry out a high-temperature exposure assessment for graphene oxide
(GO) reinforced cement in terms of weight loss, flexural strength, and compressive
strength. Different additive amounts of GO in cement are experimentally studied to
unfold its effect on enhancing the mechanical performance of prepared GO reinforced
cement. Temperatures are chosen as room temperature, 200, 400, 600, and 800°C,
corresponding to different reaction status of cement. It is found that as the temperature
increases, the water evaporates from the GO reinforced cement. Evaporated quantity of
water relies on the reaction status, and the relation between weight loss and temperature is
provided. Benefiting from the bonding effects of GO, hydrated calcium silicate hydrate
(C–S–H) is chemically produced and, thus, a reticular bridging system, which is greatly
helpful to enhance the flexural strength, is formed. Unlike flexural strength, adding GO into
cement statistically has little effect on the compressive strength, except when the
temperature rises up to 800°C due to the occurrence of decarburization from dehydration.
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INTRODUCTION

Reinforced cements are under rapid development regarding high strength, toughness, durability,
crack resistance, and multifunction by adopting dual or multiple organic and inorganic composite
materials, metal and non-metal materials, and fibrous and granular materials (Li et al., 2020). The
development of nanomaterials provides great opportunities to improve the nanoscale microstructure
of cement composites (Tyson et al., 2011; Parveen et al., 2015; Han et al., 2017). For example, to
improve the durability and ductility of cement composites, graphene oxide (GO) could be added (Lu
Z et al., 2020; Zhao et al., 2020). In addition, GO can increase the flexural and compressive strength of
cement-based materials (Peng et al., 2019; Indukuri et al., 2020).

Fire incidents will result in the exposure of the building structure to high temperature, and the internal
structure of concrete will be changed accordingly, and its compressive and flexural strength will be greatly
reduced (Nadeem et al., 2014). High-temperature–resistant cement-based composites are promising
aspects for practical application in improving the fire resistance of building structures. GO is an
intermediate during the preparation of graphene from graphite oxide, and large amounts of active groups,
such as hydroxyl, carboxyl, and epoxy groups, are residued (Poon et al., 2001a; Poon et al., 2001b). Due to
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hydrophilia, the distance between GO layers may increase, and thus,
it is easy to disperse in the water solution or reaggregate with
monomers to form an intercalation complex. These characteristics
can be utilized to toughen some high polymers and inorganic non-
metal materials (Lu et al., 2019). Scholars have found substantial
enhancement on flexural strength and compressive strength of GO
reinforced cement (GORC) as compared with the control group
(Duan et al., 2018; Khan et al., 2019). Although the mechanism of
how the addition of GO into cement improves the material
properties of cement has been extensively studied, the literatures
were mainly focused on its microstructure, mechanical properties,
and durability, while the high-temperature exposure assessments of
GORC are few and far between. The experiment shows that the
stability of C-S-H structure is weakened under high temperature,
including the stretching of silicon–oxygen bond, the decomposition
of silicate chain, and the weakening of watermolecule hydrolysis, but
imbedding GO can effectively stabilize the C-S-H structure (Lu L
et al., 2020). In addition, experiments show that this structure has
high temperature resistance (Liang, 2014).

In this study, GORC with different additions of GO, 0.05,
0.08, 0.10, and 0.20 wt%, prepared in the laboratory is selected
as samples to conduct the high-temperature exposure
assessment. Pure cement specimens with no GO are also
prepared as a control group. The temperatures are chosen
as room temperature, 200, 400, 600, and 800°C, corresponding
to different working conditions of the cement. The relation
between weight loss as well as mechanical properties and
temperature is explored.

EXPERIMENT

Raw Materials
The cement was PO 42.5 ordinary Portland cement, and GO
produced by improved Hummer freeze-drying was purchased
from Shenzhen Sixth Element Technology Co. Ltd., with physical
parameters shown in Table 1. The water-reducing agent and
dispersant PVP-K90 adopted market products from Shunjie
Plastic Technology Ltd. The water was deionized.

Proportion of Mixture
GORC slurry specimens with different additions of GO, namely,
0.05, 0.08, 0.10, and 0.20 wt%, were prepared in the laboratory. A
set of pure cement paste specimens was also prepared as a control
group. A water-binder of 0.28 ratio was used, and the water-
reducing agent was tentatively added to adjust the gelatinization
situation of GORC in order to seek optimum operating condition.
The usage of the dispersant agent increases with a fixed
proportion of 4:1 related to the GO content, and the specific
proportion of the mixture is listed in Table 2.

Experimental Process
First of all, specimens were prepared. Five specimens of each GO
content were made, and a total of 25 specimens were made. The
curing time was 28 days in an atomizing chamber with a
temperature of 20°C and a relative humidity of 70%. The Sx-
12-12 box-type resistance furnace produced by Hunan Coal
Exploration Electric Furnace Factory was used to heat the
specimens in a sealed manner at a specified temperature. The
specimens with the same GO content were divided into five
groups with one specimen in each group and heated at 200, 400,
600, and 800°C, respectively. One group was placed at room
temperature. The heating rate was 5°C/min, and the temperature
was constant for 10 min after reaching the target temperature.
Then, the power was turned off, and the specimen was cooled to
room temperature in the high-temperature furnace. After being
taken out, it was weighed and recorded. Subsequently, the
strength test was carried out. There was one specimen with
the same temperature and GO content. The compressive and
flexural strength tests were conducted according to the Cement
Mortar Strength Test Method (GB/T17617-2007).

RESULTS AND DISCUSSION

Specimen Characterization
The size of GORC specimens is 40 mm × 40 mm × 160 mm.
Figure 1 shows the surface topographies of the five groups of
GORC specimens after 28 days of the curing period under

TABLE 1 | Physical parameters of GO.

Color Thickness Piece diameter Stripping degree Carbon content Ash Tap density Granularity (mesh)

Tan ~1 μm 2–10 μm >95% 42.7Wt.% <1Wt.% 500 g/L <80

TABLE 2 | Proportion of mixture and mechanical properties of GORC.

Specimen Cement (g) Deionized water
(g)

GO (g) Dispersant (g) Flexural strength
(MPa)

Compressive strength
(MPa)

GO-0 100 28 0 0 3.3 74.9
GO-1 100 28 0.05 0.20 4.8 53.6
GO-2 100 28 0.08 0.32 7.5 61.1
GO-3 100 28 0.10 0.40 5.2 64.0
GO-4 100 28 0.20 0.80 4.7 66.2
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different high temperatures. From Figure 1A, it can be found that
the surface crack of the specimen gradually grows as the
temperature increases in terms of quantity and size. A
transversal load is applied on the GORC block until the
fracture occurs, and then the fracture surfaces are presented in
Figure 1B. It is clearly shown that the fracture surface is nearly
flat at room temperature and becomes more and more uneven
under high-temperature working conditions, except the case of
800°C. This is because all the specimens spontaneously break at
800°C. At the working condition of room temperature and 200°C,
all the samples reveal that there is little crack around the fracture
surface, and no difference for the blank specimen GO-0 among
other specimens was observed. Visible cracks can be observed
when the temperature rises up to 400°C. Different from the sparse
and dispersive cracks in the experimental groups, many cross-
linked cracks grow in the surface of the GO-0 control group. As
the temperature rises, more and more cracks grow, of which the
width becomes larger and larger.

Due to the addition of GO, the cracks of experimental group
GORC specimens are much fewer. One reason is that GO
possesses good bonding effect, and hydrated calcium silicate
hydrate (C-S-H) is chemically produced so that GORC can
alleviate the crack growth when there is thermal stress inside.
Another possible reason is that GO could timely transfer the heat
from the inside to the surface of the specimen, thus reducing the

thermal stress gradient. The color also changes as the temperature
increases. At room temperature, the color of the samples is cyan
and as the temperature rises up to 200°C, the color is almost
unchanged. As it continues to rise to higher than 400°C, due to
decomposition of Ca(OH)2, the color changes slightly lighter.
When the temperature reaches 800°C, the color of specimens
turns gray–white due to the decomposition of CaCO3.

The onset of burst is observed at 400°C. The main reason is
that much water is chemically generated in the samples only
when the temperature reaches up 400°C and then evaporates out.
The high vapor pressure breaks through the barrier and forms
many channels and finally yields a burst of the samples. This is
consistent with the relatively larger weight loss as discussed in
detail in the following section. When the temperature continues
to increase, only a small fraction of water vapor is generated.
Besides, the aforementioned formed channels timely release the
vapor pressure. This double effect prevents the burst from
occurring again even though the temperature continues to
heat up (Qin et al., 2013).

Weight Loss
Figure 2 plots the weight loss–temperature curves for GORC
specimens. The control group is set as the reference coordinate, of
which weight loss is returned to zero. The weight loss is obtained
by subtracting the specimen’s weight at room temperature from

FIGURE 1 | Surface topographies of GORC after 28-day curing period exposure to different high temperatures (A) and their fractured counterparts (B). Note: the
specimens are observed to spontaneously break at 800°C.
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its counterpart weight at high temperature and then divided by
the weight at room temperature. During the first temperature-rise
period, there is only 2.85–5.12% weight loss, in which the weight
loss significantly decreases as the addition of GO increases. The
second temperature-rise period is most critical, during which
12.19–14.63% weight loss with low fluctuation is reached, that is,
more than half of the total weight loss, which is a reasonable
explanation of the onset of burst phenomenon as described
above. At this stage, the addition has a much smaller effect on
the weight loss as than that of the first temperature-rise period.
The high temperature provides sufficient energy to prompt a large
amount of evaporation of free water, capillary water, gel water,
and crystal water escape from the inside of the specimen (Zhang
et al., 2016).

As the temperature continues to increase, the change of weight
loss becomes small. At the third temperature-rise period, the
maximum weight loss is only 3.15%; this corresponds to the
decomposition of Ca(OH)2 and the continuous loss of crystal
water and bound water, of which the active energy is much higher
(Guo et al., 2017). At the last stage, the maximum loss is 6.25%. At
this stage, the weight loss is mainly caused by the decomposition
of calcium silicate hydrate (C-S-H) and CaCO3 (Ji-Shu, 2017). It
is noteworthy that there is a significant difference among the
samples with different GO content in the weight loss at 600°C.
Among all the results, the maximum weight loss always occurs at
the GO-0 samples, and thus we can draw that the addition of GO

can alleviate weight loss. A reasonable explanation is that GO can
regulate hydration products and improve structures and defects
(Lv et al., 2014), and thus reduce evaporation of water.

The Flexural Strength
Figure 3 demonstrates the residual flexural strength of GORC
specimens exposed to different temperatures. Observed from the
change of flexural strength of kinds of GORC specimens at room
temperature, a significantly enhancing effect of GO on the cement
can be drawn. The flexural strength of the specimens reinforced
by GO has different degrees of improvement, among which the
flexural strength seems to increase at the early stage and then
decrease. The maximum flexural strength increment occurs at the
GO-2 specimen involving 0.08 wt% GO, with an amplitude of
~126% as compared with the control specimen. The enhancing
reason is that GO possesses a large amount of oxygen functional
groups, of which strong electrostatic attraction can closely bind
together to chemically form cement hydration products (C-S-H)
(Xu et al., 2017). Uniformly dispersive GO solution in cement
spontaneously formed spatially crosslinked bridge structure to
take full advantage of the ultrahigh toughness of GO (Tombros
et al., 2011; Peng et al., 2018). Nevertheless, as the GO content
increases, such as GO-3 and GO-4, the amount of the PVP
dispersant agent concomitantly increases, yielding too much gas
during the dispersion process and thus too many voids which

FIGURE 2 | Weight loss of GORC after thermal treatment.
FIGURE 3 | Residual flexural strength of GORC specimens exposed to
different temperatures.
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decreases the flexural strength. That is to say, the improvement in
the flexural strength of cement depends on the balance of the
addition of GO and concomitantly required a PVP
dispersant agent.

As the temperature increases, the residual flexural strength
generally decreases. This is because the cement-based material
has undergone a process from dehydration to decarburization
during the heating process. A significantly large decrease in the
residual flexural strength of GORC specimens occurs at the
second temperature-rise period, rather than the first period.
This conclusion coincides with the abovementioned discussion
of weight loss. In the first temperature-rise period, only free water
evaporates from the inside of the GORC, and a decrease of 7%
flexural strength is found. In the second temperature-rise period,
high temperature produces high atmospheric pressure and
removes the barrier that prevents them, mainly free water,
capillary water, gel water, and crystal water, from escaping
from the inside of specimens. Different from the other
periods, a larger increase of flexural strength is observed in the
third temperature-rise period. CaO and CaCO3 are produced
from dehydrated Ca(OH)2 at a temperature of 580°C, which can
repair the crack of the specimens, and thus enhances the flexural
strength of GORC.

The Compressive Strength
The variation of residual compressive strength of GORC
specimens as the temperature increases is demonstrated in

Figure 4. As compared with the flexural strength of GORC
specimens, the compressive strength is an order of magnitude
larger, 10–20 times. According to the standard value, the GORC
specimens have found to be well-cured. As observed from
Figure 4, there is no clear rule for the compressive strength of
GORC to follow when adding GO in the cement, which is quite
different from the flexural strength. The data demonstrated in the
figure exhibit a large discreteness when different additive
amounts of GO are used. The addition of GO into cement
statistically has little effect on the compressive strength. Also
the compressive strength is also insensitive to the temperature
except when it rises up to 800°C. Several possible reasons may
explain this phenomenon.

First, although GO possesses superior compressive and tensile
properties, its flake-like structure is bound to only enhance the
flexural strength of GORC, but not compressive strength, because
of its compressive instability. Second, cement has high
compressive strength but low tensile strength as demonstrated
by the experimental data; thus, when introducing GO, a
significantly increasing flexural strength of GORC can be
found, but not the compressive strength. Therefore, we should
avoid the adverse condition of cement in tension and GO in
compression. Besides, the randomly distributed pore and water
have considerable influence on the GORC specimens, causing
discrete results. When the temperature is lower than 600°C, water
evaporates and some new pores generate, which is also a reason to
cause the major fluctuations of compressive strength.
Nevertheless, when the temperature rises from 600 to 800°C,
GORC specimens undergo a process from dehydration to
decarburization. A thermal decomposition of calcium silicate
hydrate (C-S-H) and CaCO3 occurs and thus reduces the
compressive strength.

CONCLUSION

In summary, the flexural and compressive strength of GORC
with different additive amounts are experimentally investigated
under different temperatures. At room temperature, the
involved GO has a decreasing effect on weight loss. The
maximum weight loss occurs at the second temperature-rise
period, during which more than half of the total weight loss is
found with low fluctuation, implying that GO has a slight effect
on water retention as the temperature increases. This conclusion
is consistent with the onset of burst phenomenon. For flexural
strength, the addition of GO has a significantly enhancing effect
on the cement at room temperature, nearly an amplitude of
~126%. This is due to the oxygen functional groups having
strong electrostatic attraction that can be closely combined to
promote the production of C-S-H, thus spontaneously forming
spatially crosslinked bridge structure. Nevertheless, the amount
of the PVP dispersant agent concomitantly increases when
increasing the GO content and yields too many voids.
Finally, the flexural strength decreases. Therefore, we should
seek the balance of the addition of GO and concomitantly
require a PVP dispersant agent to pursue the optimum
properties of GORC. As the temperature increases, the

FIGURE 4 | Residual compressive strength of GORC specimens
exposed to different temperatures.
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residual flexural strength generally decreases. This is because the
cement-based material has undergone a process from
dehydration to decarburization during the heating process.
Differently, a larger increase of flexural strength is observed
in the third temperature-rise period because CaO produced
from dehydrated Ca(OH)2 can repair the crack of the
specimens. The compressive strength is an order of
magnitude larger than flexural strength. However, there is no
clear rule for the compressive strength of GORC to follow. A
large discreteness is observed. The addition of GO into cement
has only statistically little effect on the compressive strength,
which is also insensitive to the temperature, except when it rises
up to 800°C since GORC specimens undergo a process from
dehydration to decarburization. A thermal decomposition of
calcium silicate hydrate (C-S-H) and CaCO3 occurs and, thus,
reduces the compressive strength.
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