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Stereo-complexed polylactide (sc-PLA) fibers with excellent heat resistance and
antibacterial properties were prepared by electrospinning. Due to poor heat resistance,
common poly(L-lactide) (PLLA) fibers have poor dimensional stability at high temperatures
and cannot be sterilized and recycled as a medical filter material. In this research, PLLA/
poly(D-lactide) (PDLA) blends doped with silver nanoparticles (AgNPs) were electrospun to
obtain the sc-PLA fibers. The effect of thermal induction temperature on the crystalline
structure and thermal properties of sc-PLA fibers was investigated. Moreover, the
influence of the addition amount of AgNPs on the crystal structure of sc-PLA fibers
was studied, and the antibacterial properties of the sc-PLA fibers with different addition
amounts of AgNPs were analyzed. The thermal induction is beneficial to the formation of
stereo-complexed crystals of sc-PLA fibers, and finally completely stereo-complexed PLA
fibers were obtained. The melting temperature of the completely stereo-complexed PLA
fibers was 50°C higher than that of the PLLA fibers; therefore, the sc-PLA fibers have better
heat resistance. The addition of AgNPs was conducive to the formation of stereo-
complexed crystals of sc-PLA fibers. In addition, the antibacterial rate of sc-PLA fibers
against E. coli and S. aureus was 99.99 ± 0.01% when the addition amount of AgNPs was
only 0.15 wt%. The fiber membrane obtained in this experiment can be used as a reusable
filter material, and the sc-PLA fiber membrane has broad application prospects in the
biomedical field.
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INTRODUCTION

Polylactide (PLA) is a kind of thermoplastic aliphatic polyester with high strength and high modulus
(Amani et al., 2019; Kang et al., 2019; Hamad et al., 2020; Sanusi et al., 2020). Because of its origin
from renewable resources (such as corn, starch) and biodegradability, it has attracted more attention
(Zhang et al., 2015; Boonluksiri et al., 2020). In recent years, research interest in developing durable
PLA materials used in automobiles, electronics, and other fields has increased (Pan et al., 2017). In
addition, PLA has become one of the most popular polymers for the new generation of biomedical
products due to its biocompatibility. PLA is widely used in the biomedical field and food packaging
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and medical materials, which require antibacterial properties to
ensure safety for PLA products (Lv et al., 2018). However, the
thermal and mechanical properties of PLA are not excellent
(Yang et al., 2020), and the production and consumption of
PLA used for plastic bags, straws, textiles, and other products are
still negligible, comparing to petroleum-derived counterparts.

Stereo-complexation between poly(L-lactide) (PLLA) and
poly(D-lactide) (PDLA) can improve the thermal and
mechanical properties of PLA. PLA with stereo-complexation
is named as stereo-complexed polylactide (sc-PLA). The thermal
and mechanical properties of sc-PLA are superior to those of
PLLA and PDLA (Arias et al., 2015; Phattarateera and
Pattamaprom, 2020; Su et al., 2020), so sc-PLA is more stable
than PLLA and PDLA (Narita et al., 2013; Zhao et al., 2019). Until
now, sc-PLA fiber is usually prepared by melt spinning (Baimark
et al., 2019) or solution spinning (Srisuwan and Baimark, 2018),
but these spinning methods require high temperature
(Boonluksiri et al., 2020) or high-stretching to obtain
consistent stereo-complexed crystallites (sc-crystallites).

Electrospinning is a special fiber manufacturing process. The
polymer solution or melt is spun in a strong electric field.
Electrospinning could produce fibers with a very high specific
surface area and porous structure (Chaudhary et al., 2019; Mishra
et al., 2019; Septiyanti et al., 2020; Septiyanti et al., 2020). The
effect of the applied electric field and the rapid solidification of
polymers leads to the extension of macromolecular chains,
thereby promoting the formation of sc-crystallites (Monticelli
et al., 2014; Brzezinski and Biela, 2015; Spinella et al., 2015).
Similar to previous research studies on mechanical stretching of
PLLA/PDLA blend fibers during spinning or heat treatment, the
extension of the macromolecular chains resulting from
electrostatic force will increase interaction between the PLLA
and PDLA segments, which will lead to formation and growth of
sc-crystallites.

The electrospun fiber could adjust fiber diameter, crystallinity,
and molecular chain orientation (Maleki et al., 2015; Maleki et al.,
2017), which is very suitable for biomedical applications. The
antibacterial properties of materials are very important for
biomedical applications (Boonluksiri et al., 2020). Adding
antibacterial substances is an effective way to enhance the
antibacterial properties of PLA materials. Inorganic
antibacterial agents have good safety, thermal stability, and
durability. Among inorganic antibacterial agents, silver ion is
the most widely used antibacterial agent. Compared with
cadmium, copper, lead, and other metal ions, silver ion has
strong antibacterial activity and low toxicity.

Silver nanoparticles (AgNPs) can be used as broad-spectrum
antimicrobial agents for Gram-positive and Gram-negative
bacteria in biomedical and food packaging applications
(Potbhare et al., 2020a; Potbhare et al., 2020b; Saravanakumar
et al., 2021). Because of high reactivity resulting from the large
surface area to volume ratio, AgNPs can efficiently eliminate
bacteria and yeasts even at relatively low concentrations
(Satoungar et al., 2016). In addition, when the bacteria die,
AgNPs will be released and combined with other bacteria
again to carry out repeated sterilization.

Recent studies have shown that biomedical materials prepared
with PLA/AgNPs have good biocompatibility and antibacterial
properties (Li et al., 2021). Moreover, because of good
biodegradability of PLA, PLA materials containing AgNPs
have a larger application value in textiles and biomedical fields
(Ma and Tang, 2017). sc-PLA has higher thermal stability and
mechanical properties than PLA. If AgNPs can improve the
antibacterial properties of sc-PLA, even at high temperatures,
sc-PLA products such as medical materials and food packaging
will perform well. However, there are still few studies on sc-PLA/
AgNPs.

In this research, sc-PLA fibers and sc-PLA/AgNPs composite
fibers were prepared by electrospinning, and PDLA and PLLA
fibers were also prepared as control. The effect of the thermal
induction and the addition of AgNPs on the crystal structure and
properties were investigated. Therefore, the PLLA/PDLA (1:1)
blend was used as the raw material to prepare electrospun fiber
membranes, and the morphology of the electrospun fiber was
observed using a scanning electron microscope (SEM).
Differential scanning calorimetry (DSC) was used to study
their thermal properties. The Fourier transform infrared
spectroscopy (FTIR) test and X-ray diffractometer (XRD) were
performed on the sample to characterize its crystal structure, and
the antibacterial activity was studied to evaluate sc-PLA fibers and
sc-PLA/AgNPs composite materials used in food packaging and
medical applications.

EXPERIMENTAL SECTION

Materials
The PLLA (6202D, the weight average molecular weight is 1.6 ×
105) used in this study was from NatureWorks in the
United States, and the PDLA (the weight average molecular
weight is 1.8 × 105) was synthesized in the laboratory. The
molecular weight of PLLA and PDLA is measured by gel
permeation chromatography (GPC). Analytically pure
trichloromethane was purchased from Shanghai Lingfeng
Chemical Reagent Co., Ltd., China, and used as a solvent for
preparing polymer solutions. The concentration of nano-silver is
4,000 ppm, and the size of AgNPs is about 20 nm, which is
prepared in the laboratory. E. coli (ATCC25922) and S. aureus
(CMCC(B)26003) were purchased from Shanghai Luwei
Technology Co., Ltd., China, and nutrient broth and
phosphate buffered saline (PBS, 0.03 mol/L, pH 7.2) were
purchased from China Best Biotechnology Co., Ltd., and
nutrition Agar was purchased from Shanghai Bo Microbiology
Technology Co., Ltd., China. The chemicals are used without
further purification.

Preparation of Spinning Solution
The PLLA and PDLA pellets were dissolved in chloroform with a
polymer concentration of 200 g L−1, which were dissolved for
24 h. The PLLA/PDLA spinning solution was the equal mixture
for PLLA spinning solution and PDLA spinning solution. In
order to prepare fibers with antibacterial properties, 0.15wt%,

Frontiers in Materials | www.frontiersin.org March 2022 | Volume 9 | Article 7753332

Zhao et al. Antibacterial Stereo-Complexed Polylactide Nanofibers

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


0.30wt%, 0.45wt%, and 0.60wt% AgNPs were added to the mixed
PLLA/PDLA solution.

Electrospinning
The electrospun fibers were prepared using electrospinning
equipment (HZ-11 Electrospinning Machine, Qingdao
Nuokang Environmental Technology Co., Ltd., China). The
spinning is conducted at the spinning voltage of 15 kV and
the syringe advancing speed of 2 ml/h. The distance between

FIGURE 1 | SEM of electrospun fibers: (A) PDLA, (B) PLLA, (C) sc-PLA, (D) sc-PLA 120°C, (E) sc-PLA 120°C–200°C, and (F) high magnification sc-PLA
120°C–200°C.

FIGURE 2 | DSC curves of electrospun fibers of PLLA, PDLA, sc-PLA,
sc-PLA 120°C, and sc-PLA 120–200°C.

FIGURE 3 | FTIR spectra of electrospun fibers of PLLA, PDLA, sc-PLA,
sc-PLA 120°C, and sc-PLA 120–200°C.

TABLE 1 | Thermal performance characteristics of electrospun fibers of PLLA,
PDLA, sc-PLA, sc-PLA 120°C, and sc-PLA 120–200°C.

Fiber Tg (°C) Tcc (°C) ΔHcc (J/g) Tm (°C) ΔHm. (J/g)

PLLA 61.7 102.4 26.4 167.1 29.1
PDLA 64.4 87.4 37.8 175.1 76.8
sc-PLA 65.2 89.1 21.3 216.9 53.4
sc-PLA 120°C - - - 216.7 52.8
sc-PLA 120–200°C - - - 217.7 52.9
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the needle tip and the fiber collection device is 13 cm, and the
winding speed is 200 r/min (Xu et al., 2019; Cao et al., 2020). The
electrospun fiber of aforementioned spinning solution under
same process conditions was named as PLLA, PDLA, sc-PLA,
sc-PLA + 0.15 wt%AgNPs, sc-PLA + 0.30 wt%AgNPs, sc-PLA +
0.45 wt%AgNPs, and sc-PLA + 0.60 wt%AgNPs electrospun fiber
membranes. The sc-PLA fiber membranes with AgNPs were all
treated in an oven at 120°C for 1 h to obtain sc-PLA 120°C fiber
membranes, and then sc-PLA 120°C fiber membranes were
treated in an oven at 200°C for 30 min to obtain sc-PLA
120°C–200°C fiber membranes.

Characterization
Scanning Electron Microscope
The EM-30 (COXEM Company, South Korea) scanning electron
microscope was used to observe the surface morphology of fibers
at an accelerating voltage of 15 kV. Before SEM observation,
spraying a layer of gold on the surface of the sample was carried
out. All samples before spraying gold were dried in the open air at
room temperature for about 5 days and then were measured and
observed.

Differential Scanning Calorimetry
Thermal analysis of the electrospun fiber membrane was
conducted using an NETZSCH 214 Polyma differential
scanning calorimeter under a nitrogen atmosphere. The fibers
were heated from 30°C to 250°C at a heating rate of 10°C/min.

X-Ray Diffraction Measurement
The crystal structure of fibers was measured using a Rigaku X-ray
diffractometer (Ultima IV, Tokyo) with a Cu-Kα source. The
diffractograms of the fibers were performed at 40 kV and 40 mA
with scanning angles of 5–50 at a scanning rate of 3°min−1. The
X-ray diffraction patterns were analyzed using Jade 5.0 software.

Fourier Transform Infrared Spectroscopy
Fourier transform infrared spectroscopy was carried out on a
Nicolet iS10 spectrometer (Thermo Fisher Nicolet, USA) in the
wavenumber range of 600–4,000 cm−1 using 32 scans. Attenuated
total reflection (ATR) method accessory in transmission mode
was used to record.

Antibacterial Properties
Antibacterial experiments were performed on E. coli (ATCC
25922) and S. aureus (CMCC (B) 26003). In short, 0.0375 g
sample was added into a centrifuge tube containing 3.75 ml of
bacterial suspension, then fixed the centrifuge tube on a shaker at
24°C and 150 rpm for 18 h, and then used 100 μL of the extracted
bacterial suspension with 900 μL of bacterial suspension.
Phosphate buffer saline (PBS) with pH = 7.2–7.4 was serially
diluted ×101, ×102, ×103, and ×104 and then added dropwise to
the agar plate to count the colonies after 24 h of constant
temperature culture. No sample group was considered as a
control and calculated the antibacterial activity according to
the following formula:

Y � Wt−Qt

Wt
× 100%.

In the formula, Y is the bacteriostatic rate of the sample
(%), Wt is the viable concentration of the control sample in the
flask after 18 h of shaking contact (cuf/mL), and Qt is the
viable concentration of the antibacterial sample in the flask
after 18 h of shaking and contact concentration of bacteria
(cuf/mL).

RESULTS AND DISCUSSION

The Effect of Thermal Induction on PLLA/
PDLA Fibers
Morphology
First, PLLA, PDLA, and sc-PLA were electrospun under the same
process conditions to obtain their respective fiber membranes,
and then the obtained sc-PLA fiber membranes were treated at a
high temperature of 120°C for 1 h. The obtained sc-PLA fiber
membrane after 120°C (named sc-PLA 120°C) was treated at
200°C for 30 min to obtain sc-PLA 120–200°C. The morphology
of the aforementioned samples is shown in Figure 1.

Figure 1 shows that the regularity of fiber fineness is large. As
shown in Figures 1A–C, The diameter of the coarse fiber and the
fine fiber is obviously different, and the number of coarse fiber is
more than the number of fine fiber. This may be due to the high
concentration of PLLA/PDLA solution (Tsuji et al., 2010; Liu
et al., 2011; Liu et al., 2020). The formation of coarse fibers is due
to the increase of solution viscosity at high concentrations and
molecular aggregation during the electrospinning process. The
spinning trickle is difficult to be stretched (Maleki and Barani,
2020). Based on the surface of the fiber (Figure 1F) under high
magnification SEM, it can be found that there are densely small
holes on the surface of the fiber. This is due to the use of
chloroform as the solvent, which evaporated rapidly during

FIGURE 4 | XRD patterns of electrospun fibers of PLLA, PDLA, sc-PLA,
sc-PLA 120°C, and sc-PLA 120–200°C.
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the spinning process. Figure 1 also demonstrates that thermal
induction has slight effect on the morphology of the electrospun
fibers of sc-PLA at 120°C (Figure 1D) and sc-PLA at
120°C–200°C (Figure 1E). Since crystals have already existed
in sc-PLA fibers before thermal induction, the crystals are prone
to maintain the shape of the fibers during thermal induction (Pan
et al., 2018).

Thermal Properties
Figure 2 shows the DSC thermograms of electrospun fibers of
PDLA, PLLA, sc-PLA, sc-PLA 120°C, and sc-PLA 120–200°C.
Table 1 summarizes the thermal properties of electrospun fibers
obtained from DSC analysis. It can be seen from Figure 2 that sc-
PLA only has an endothermic peak in the temperature range of
210–220°C, comparing to PDLA (170–180°C) and PLLA
(160–170°C). This was mainly ascribed to the sc-crystallites. The
melting temperature of the homo-crystallites in PLLA or PDLA is
around 170°C, while themelting of the sc-crystallites in the sc-PLA is
nearly 220°C. It can also be seen that the sc-PLA fiber spun using the
electrospinning process has a high degree of sc-crystallites. Because
the stretching and orientation of the macromolecular chains caused
by high voltage during the electrospinning process can enhance the
orientation of the macromolecular chains and promote the
formation of sc-crystallites. Additionally, a drawing force induced
by the electric field could increase the specific surface area of the
molecular chain and enhance the interaction between the PLLA and
PDLA chains, resulting in rapid crystallization of sc-crystallites
(Yamamoto et al., 2015).

Figure 2 also shows that sc-PLA fibers have glass transition
temperature of 55°C and cold crystallization temperature of 85°C.
However, there are no corresponding endothermic and exothermic
peaks at 55°C and 85°C for sc-PLA 120°C and sc-PLA 120–200°C.
After thermal induction treatment at 120°C and 200°C, the molecular
chain segments in the crystalline region have been perfected, and the
mobility of the molecular chain segments in the amorphous region is
greatly reduced; therefore, the melting endothermic peak of sc-
crystallites appears only in the temperature range of 210–220°C.

FIGURE 5 | SEM of sc-PLA electrospun membranes with AgNPs: (A) sc-PLA + 0.15 wt%AgNPs (B) sc-PLA + 0.30 wt%AgNPs, (C) sc-PLA + 0.45 wt%AgNPs,
and (D) sc-PLA + 0.60 wt%AgNPs.

FIGURE 6 | DSC curves of sc-PLA electrospun membranes with
different AgNP contents.

Frontiers in Materials | www.frontiersin.org March 2022 | Volume 9 | Article 7753335

Zhao et al. Antibacterial Stereo-Complexed Polylactide Nanofibers

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


There is a small endothermic peak at around 200°C for the sc-PLA
120°C–200°C, which is a double peak. This is due to incomplete
crystallization of sc-crystallites (Sawai et al., 2007; Saeidlou et al., 2012).

FTIR Spectra
Figure 3 shows the FTIR diagrams of different polymers. Compared
with PDLA and PLLA fibers, sc-PLA fibers have strong
intermolecular forces. As shown in Figure 3, the bands
associated with methyl groups in sc-PLA fibers shift from 2,941
to 2,939 cm−1. The frequency shift of the methyl group (CH3-) is
attributed to the hydrogen bonding between the PLLA and PDLA
molecules in the sc-PLA fiber (Pan et al., 2018). It shows that during
heat treatment, the molecular chain segments have been rearranged.

Crystal Structure
The same conclusion can be drawn in the XRD diagram
(Figure 4). The electrospun fiber membrane before thermal
induction shows only a small diffraction peak at 16°,
indicating that the fiber membrane before thermal induction
has low degree of homo-crystallites. As shown in Table 2, the
diffraction pattern of thermally induced fibers shows obvious
diffraction peaks at 11.9°, 20.7°, and 23.9°, which corresponds to
the characteristic diffraction peaks of sc-crystallites. It shows that
more sc-crystallites are formed after thermal induction, as the
molecular chains of sc-PLA are stacked in parallel in a triclinic
unit cell in a 31-helix structure. (Furuhashi et al., 2006).

THE EFFECT OF AGNPS ON PLLA/PDLA
FIBERS

Morphology
It can be seen from Figure 5, the fibers of sc-PLA + 0.15 wt%
AgNPs, sc-PLA + 0.30 wt% AgNPs, sc-PLA + 0.45 wt%
AgNPs, and sc-PLA + 0.60 wt% AgNPs are prepared by
adding AgNPs, and no micron-sized AgNPs were found
on the surface of electrospun fibers. This indicates that
submicron AgNPs can be uniformly dispersed in the sc-

TABLE 2 | Crystal sizes of different polymers.

sc-PLA sc-PLA 120°C sc-PLA 120–200°C

Peak position Crystal size
(nm)

Peak position Crystal size
(nm)

Peak position Crystal size
(nm)

11.9° 12.46 11.9° 16.17 11.9° 19.68
20.7° 11.21 20.7° 13.66 20.7° 16.93
- - 23.9° 15.61 23.9° 21.78

TABLE 3 | Thermal properties of electrospun fibers of sc-PLA, sc-PLA + 0.15 wt%
AgNPs, sc-PLA + 0.30 wt% AgNPs, sc-PLA + 0.45 wt% AgNPs, and sc-PLA
+ 0.60 wt% AgNPs.

Fiber Tg (°C) Tcc (°C) Tm (°C) ΔHm (J/g)

sc-PLA 65.2 89.1 216.9 53.4
sc-PLA + 0.15 wt% AgNPs 65.3 89.6 216.5 40.67
sc-PLA + 0.30 wt% AgNPs 64.8 88.5 215.9 34.92
sc-PLA + 0.45 wt% AgNPs 64.5 88.1 215.8 51.07
sc-PLA + 0.60 wt% AgNPs 64.8 88.7 217.0 65.76

FIGURE 8 | XRD curves of sc-PLA electrospun membranes with
different AgNP contents.

FIGURE 7 | FTIR curves of sc-PLA electrospun membranes with
different AgNP contents.
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PLA matrix, but the addition of AgNPs does not significantly
change the spinnability of the sc-PLA solution.

Thermal Properties
Figure 6 shows the DSC curves of sc-PLA with different AgNP
contents, and the relevant data resulting from the DSC curves are
listed in Table 3. As shown in Figure 6 and Table 3, there is a
relatively insignificant peak around 170°C. In addition, the fusion
enthalpy of sc-PLA fiber was lower than that of sc-PLA + 0.60 wt
% AgNPs fiber but was higher than that of other three fibers. It
indicates that the addition of AgNPs can affect the formation of
sc-crystallites and homo-crystallites to a certain extent. Moreover,
research on the influence of the addition of AgNPs on the
formation of sc-crystallites will be conducted in subsequent
research.

FTIR Spectra
Figure 7 shows the FTIR curves of electrospun sc-PLA fiber
membranes with different AgNP contents. Similar to sc-PLA
electrospun fiber membranes, the bands at 2,992 cm−1 and

1743 cm−1 are related to methyl and carbonyl groups in the
fiber, respectively. The addition of AgNPs has no effect on the
position of each group in the molecular chain of sc-PLA, so the
electrospun fiber membranes containing AgNPs do not change
the chemical structure of sc-PLA.

Crystal Structure
From the XRD curves of fibers with different AgNP contents in
Figure 8, it can be seen that there are some slight sc-crystallites
diffraction peaks for sc-PLA fiber membranes, but there is no
obvious crystal diffraction peak for fiber membranes with AgNPs.
This is ascribed to poor crystallinity of electrospun fibers. The
reason is that in the electrospinning process, even though the
crystallization ability of sc-crystallites is stronger than that of the
homo-crystallites and the jet is highly stretched and the solvent
volatilizes quickly, the molecular chain still does not have enough
time to adjust the conformation to form a regular stacking of
crystals. It can be seen that before thermal induction, even with
the addition of AgNPs, it does not significantly improve the
crystallization ability of the sc-PLA fiber membranes. The

FIGURE 9 | Antibacterial activity of sc-PLA electrospun membranes containing AgNPs against E. coli and S. aureus.
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synergistic effect of the addition of AgNPs and the thermal
induction process on crystallization need be investigated further.

Antibacterial Properties Analysis
PLA is the degradable material with antibacterial and antifungal
properties because PLA materials will form an acidic
environment during use, which is not conducive to bacterial
growth. Compared with the blank control group, the untreated
sc-PLA fiber membranes have antibacterial properties against S.
aureus and E. coli. As shown in Figure 9, the antibacterial effect of
the sc-PLA fiber membranes against S. aureus is better than
against E. coli. The inhibition rate for E. coli is 68.75 ± 2.54%,
while the inhibition rate for S. aureus reaches 99.99 ± 0.01%,
which may be due to the different cell wall composition and
structure of the bacterial strains (Jing et al., 2019). AgNPs impart
stronger antibacterial effect on the sc-PLA fiber. When the
addition amount of AgNPs is 0.15 wt%, the antibacterial rate
against E. coli and S. aureus both reaches 99.99 ± 0.01%.

This is because the cell membrane of bacteria is generally
negatively charged; once it comes into contact with positively
charged metal ions, it will be tightly adsorbed under the action of
Coulomb force, and at the same time, silver ions can enter the cell
and react with the sulfhydryl group (-SH) on the protein, which
makes the protein denatured and inactivated, and the cell loses
the ability of reproduction and metabolism. At the same time, the
antibacterial rate also depends on the resistance of the bacteria’s
structure to the reactive oxygen species (ROS) generated on the
surface of nanomaterials. The nature of active oxygen is due to the
large surface area and small particle size of nanoparticles that
increase oxygen vacancies. As the oxygen vacancies increase,
more types of reactive oxygen species will eventually lead to
cell death. Silver ions can activate oxygen in the air or water to
produce hydroxyl free radicals (OH−) and reactive oxygen ions.
Finally, these free radicals collide with electrons to inhibit or kill
bacteria (Potbhare et al., 2019). Similarly, when the addition
amount of AgNPs increased to 0.30 wt%, 0.45 wt%, and 0.60 wt%,
the inhibitory rates against E. coli and S. aureus are all
99.99 ± 0.01%.

CONCLUSION

In this research, electrospinning was used to prepare sc-PLA
fibers from a mixing solution of PLLA and PDLA at a ratio of 1:
1. The structure and properties of the fibers before and after
thermal induction treatment and adding AgNPs were
characterized. The SEM image clearly showed that the
electrospun fiber was relatively coarse, and the thermal
induction had no obvious influence on the fiber diameter. It
was obvious that the AgNPs existed in the electrospun fiber in

the form of submicron. In addition, the melting temperature of
sc-PLA fiber increased by 40–50°C, compared to that of PLLA or
PDLA. After thermal induction, the molecular chain segments
of the fiber could be rearranged to some extent, and the thermal
induction is more conducive to the formation of sc-crystallites,
so the degree of sc-crystallites of sc-PLA fiber increased. The
addition of AgNPs had a slight effect on the formation of sc-
crystallites of sc-PLA without thermal induction but had
significant effect on the antibacterial properties. In addition,
the electrospun sc-PLA fiber had excellent antibacterial effect
against Staphylococcus aureus. After adding AgNPs, the
antibacterial rate against both Escherichia coli and
Staphylococcus aureus reached 99.99 ± 0.01%. Moreover, the
synergetic effect of addition amount of AgNPs and thermal
induction on the structure and properties of sc-PLA fiber will be
investigated subsequently.
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