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Abrasive belt grinding has unique advantages in avoiding machining defects and
improving surface integrity while grinding hard materials such as superalloys.
However, the random distribution of abrasive particles on the abrasive belt surface is
uncontrollable, and chatter and machining errors accompany the machining process,
leading to unclear mapping relationship between process parameters and surface
roughness, which brings great challenges to the prediction of surface roughness of
superalloy. Traditional empirical equations are highly dependent on empirical knowledge
and the development of scientific theories and can only solve problems with relatively
simple and clear mechanisms, but cannot effectively solve complex and mutually
coupled problems. The method based on data-driven patterns has a better idea for
mining the implicit mapping relationship and eliminating the uncertainty of complex
problems. This study presents a data-driven roughness prediction method for GH4169
superalloy. First, a superalloy grinding platform is built. According to the grinding
empirical equation, the mapping relationship between process parameters and
surface roughness is analyzed, and a prediction model is established based on the
error back propagation (BP) algorithm. Second, genetic algorithm (GA) and particle
swarm optimization (PSO) algorithm are used to optimize the weights and thresholds of
the neural network, and the global optimal solution is obtained. Finally, the prediction
performance of different algorithms is compared. The results show that the non-uniform
absolute errors of the BP algorithm, GA-BP algorithm, and PSO-BP algorithm are 0.12,
0.085, and 0.078, respectively. The results show that the roughness prediction algorithm
based on PSO-BP is more suitable for GH4169 superalloy.
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INTRODUCTION

High-temperature alloys have been widely used in the aerospace field due to their high strength
and good oxidation resistance. At present, the high-temperature alloy materials are mainly
processed by die forging and precision milling, while this processing method inevitably has
defects such as thermal stress concentration and large plastic deformation, which also leads to
tool adhesion and chatter. In turn, it is easy for the large force to cause some surface defects such
as burns, micro-cracks, and tensile stress on the surface of the workpiece, which makes it difficult
to ensure the surface integrity of the parts (Zhu et al., 2020). Abrasive belt grinding can
effectively improve the surface quality of superalloy materials with the advantages of low
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temperature and strong vibration absorption performance, so
it has been widely applied in aeronautic and astronautic fields
(Huang et al., 2016; Xiao et al., 2021; Xiao et al., 2022; Zhou
et al., 2022).

Since the surface integrity of components has an important
impact on their fatigue life, it can improve the surface integrity
and performance of the workpiece (Li et al., 2022; Gao et al.,
2021). The surface topography after grinding has an important
influence on the service performance (Cui et al., 2021). Among
them, the surface roughness has an important influence on the
surface properties of the workpiece after processing (Zhang
et al., 2020). Obtaining surface roughness is the main
unfavorable factor affecting the fatigue life of the workpiece.
By analyzing the surface roughness, topography
characteristics, and residual stress distribution of the
workpiece, the influence of surface integrity characteristics
on fatigue life is studied. At the same time, a method to
improve fatigue life by optimizing process parameters is
proposed (Wang et al., 2020). Considering the stress
concentration on the surface of the external load and the
residual stress of shot peening, the position of the
dangerous section after processing was calculated, and
experimental verification is also conducted. In the above
research, it is found that better surface quality can improve
the service life of the workpiece. The prediction of the surface
integrity characteristics can ensure that the workpiece can be
replaced in time, minimize the loss of resources, and achieve
sustainability development.

However, due to the uneven distribution of abrasives, there is
inherently weak rigidity, as well as the high degree of nonlinearity
and coupling in the grinding process parameters and surface
roughness, resulting in unstable surface characteristics after
grinding. At present, there are two kinds of main predictions
for the roughness of the ground surface.

The traditional surface roughness prediction method is to
use online monitoring and surface inspection after grinding to
analyze the grinding mechanism and then build a physical
model of the surface roughness after grinding. A force-based
temperature modeling method is proposed to predict the
surface integrity of nickel-based alloy broaching (Klocke
et al., 2014). Theoretical and experimental research studies
are carried out on the polishing mechanism of complex curved
parts, and the roughness prediction model is obtained
(Slatineanu et al., 2010; Huang et al., 2020; Huang et al.,
2018). A preliminary analysis of the weak stiffness
characteristics of the system is carried out, and the
vibration mechanism of the system is revealed from the
perspective of dynamic analysis. On the basis of the
theoretical model, the stable conditions and factors affecting
the processing stability are put forward by analyzing the
influence of important factors. According to the adjustment
of the grinding parameters, the optimization of the surface
roughness is realized. Using numerical simulation and
advanced measurement methods to study the surface
characteristics and formation process of the method of

micro-stiffener belt polishing (MSBP) titanium alloys has
become a new method (Xiao and Huang, 2019). In addition,
different surface characteristics can be obtained by adjusting
the feed velocity and pressure. The surface contour line is
obtained through the contour map, and the surface roughness
distribution is obtained according to the contour line. The
experimental results show that the surface characteristics,
surface morphology, surface roughness, and residual stress
all meet the given requirements. However, this method still has
some limitations. The prediction accuracy, the generalization
ability, and the transferability of the method are relatively low,
so it is difficult to adapt to the complex grinding conditions.

With the development of artificial intelligence, many
domestic and foreign researchers have applied the
intelligent algorithms to the processing predictions. These
intelligent algorithms have incomparable advantages in
dealing with nonlinear, fuzzy, and unclear pattern features
and high coupling problems. At the same time, these
algorithms can also achieve accurate prediction of
processing results. The input features of the algorithm are
very important for predicting the results, and the selection of
features can currently rely on sensor and machine data to
build a multi-feature hybrid input model. Input features are
selected by analyzing the correlation between input features
and surface roughness, as well as hardware and time costs
(Guo et al., 2021). A sequential deep learning framework long
and short-term memory (LSTM) network was used to predict
surface roughness. The convergence of the GA is relatively
high, and the self-adaptive characteristics of the GA can be
used to predict the surface roughness after processing (Cao
et al., 2020). Experiments proved that this method could
effectively improve grinding efficiency and obtain better
surface roughness. By taking the grinding wheel velocity,
workpiece velocity, cutting depth, and grinding wheel
material as the research objects, production cost,
production rate, and surface roughness are taken as the
optimization goals. In the actual machining process, the
influence of tool wear on the surface roughness is very
important, and it has become the main trend to properly
consider the real-time state of the tool in the algorithm (Xu
et al., 2020). With the breakthrough of deep learning theory,
the prediction method of grinding roughness based on the
deep learning algorithm can effectively improve the
prediction accuracy (Alavijeh and Amirabadi, 2019). In
recent years, error back propagation (BP) has been used to
predict tool life, and the radial basis function (RBF) network
model are excellent in approximation ability, learning rate,
and so on (Ding et al., 2010). At present, surface roughness
prediction based on BP neural network algorithm is the key
direction (Wu, 2007). Many experts at home and abroad have
adopted the RBF network model to solve complex engineering
problems. At the same time, other evolutionary algorithms are
used to optimize the original model, and the model parameter
values are dynamically optimized to improve the performance
of the model (Gu et al., 2021; Zhang et al., 2012). The sensor is
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used to monitor the processing process in real time, process
and analyze the detection signal, and propose the signal
characteristics. The constructed roughness prediction
model can further expand the application prospect
(Pandiyan et al., 2018). Chang et al. used the experimental
data as the training parameters of the SVM model by using
bearings as materials for belt grinding experiments (Chang
et al., 2019). This model could effectively shorten the grinding
process optimization time and obtain the global optimal
solution of the grinding surface integrity. However, the
adjustment range of the radial basis center and other
parameters was small during the correction process, and it
was easy to fall into the local optimal solution, which
restricted the generalization ability of RBF. The research
shows that the improved particle swarm algorithm and the
GA with excellent search performance are used to optimize
the RBF parameters, search the optimal parameters in a wider
range, and improve the prediction performance of the model
(Golbabai and Mohebianfar, 2017).

GRINDING SYSTEM MODEL OF
SUPERALLOY MATERIAL BELT

Belt Grinding System
The abrasive belt is a particular form of a coated belt, which is
intensified by a tensioning mechanism and a driven wheel to
make it move at a high velocity. It can achieve grinding by the
workpiece’s shape, processing requirements, the shape of the
workpiece, and processing requirements. Besides, belt grinding is
widely known as precision machining because of its high material
removal precision (the highest accuracy can reach 0.1 µm),
flexible machining, and other characteristics. It has significant
advantages for the precision machining of some typical difficult-
to-machine materials.

Figure 1 is the material removal model of belt grinding. The
abrasive belt attached to the driving wheel moves with the
rotation of the wheel. Abrasive particles perform micro-
cutting and removal of material on the surface of the
workpiece material. The results show that the grinding

parameters such as belt linear velocity, feed velocity,
grinding pressure, and grinding depth have great influence
on the surface integrity of the workpiece.

Effect of Process Parameters on
Roughness
The scholars in the previous research study have constructed the
mathematical model of process parameters and surface
roughness, as shown in Eq. 1:

Ra � P1v
(m)
s v(n)f F(p)n d(q)s (1)

where Ra is the surface roughness, vs is the linear belt velocity, vf is
the feed velocity, Fn is the grinding pressure, ds is the grinding
depth, P1 is the constant, and m, n, p, and q are relevant indexes.
According to empirical Eq. 1, Ra is related to vs, vf, Fn, and ds, and
the four parameters are highly nonlinear and highly coupled.

BP ALGORITHM AND OPTIMIZATION
METHOD

BP Neural Network Algorithm
Due to the characteristics of abrasive grains and the influence
of processing, there are significant problems in constructing
the mathematical model between process parameters and Ra.
The prediction accuracy has always restricted the
development of roughness prediction. However, the
traditional back propagation (BP) algorithm causes some
iterations to fall into the optimal local solution due to the
influence of the characteristics of the algorithm. The PSO
algorithm and GA are introduced to optimize the BP
algorithm’s initial weight and threshold to avoid the
optimal local solution and obtain the optimal global
solution. Simultaneously, the predicted results error after
grinding is controlled within 5.00% to make the predicted

FIGURE 1 | Belt grinding system.

FIGURE 2 | Propagation process diagram of the neural network.
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value as accurate as possible. According to previous studies,
linear belt velocity, feed velocity, grinding pressure, and
grinding depth are the main factors that affect the surface
roughness of the workpiece. The prediction model will give
the surface roughness values obtained under the same
grinding environment and grinding time for these four
parameters. The grinding process parameters vs, vf, Fn, and
ds are taken as the input of the neural network, and the surface
roughness was taken as the output.

Figure 2 shows the topology of the neural network. According
to the principle of the neural network algorithm, the number of
neurons in the hidden layer p is determined by the following
empirical function:

p � ∣∣∣ �
n

√ ∣∣∣ + a (2)
y � f(wx + b) (3)

where p is the number of neurons in the hidden layer, n
represents the number of input layers, and a represents a
random value. For the convenience of calculation, the value is
10. According to the empirical Eq. 2, we choose 12 neurons in the
hidden layer. x is the input vector, y is the output vector, w is the
connection weight vector, b is the bias of the neural network, and
f(x) is the activation function. f1(x) = tanhx and f2(x) = x are taken
as activation functions of the hidden layer and the output layer,
respectively.

Propagation of Neural Networks
For a given training set D = {(xk, yk): xk = [xk1, xk2,/, xkn ]

T, y =
[yk1, yk2, /, ykm]

T, k = 1, 2, /, N}, and for a training sample (xj,
yj)∈D. Neural network forward propagation method. Input layer:
xj = [xj1, xj2, /, xjn]

T. Hidden layer: input vector x as the input
vector. The neuron in the kth hidden layer has the connection
weight w1k = [w1k1, w1k2, /, w1kp] and the offset b2k. The output
hk is given by Eq. 4:

hjk � f1(w1kxj + b1k) (4)
Use the output value of all neurons hj = [hj1, hj2,/, hjp]

T as the
output vector of the entire network. The first k of output layer

neurons has the right to connect w2k = [w2k1, w2k2, /, w2kp] and
offset b2k, output ŷk given by (5):

ŷ � f2(w2khj + b2k) (5)
For a training case, the prediction accuracy of the training

cases is evaluated as an index of Eq. 6:

Ej � 1
2
∑
m

k�1
(yjk − ŷjk)

2
(6)

Ej represents the loss function, ŷ represents the predicted
value, and y represents the actual value.

For the whole training example, the prediction accuracy is
measured by the mean square error (MSE):

MSE � 1
N
∑
N

k�1
Ek (7)

GA and PSO Optimization Methods
Before the neural network algorithm is trained, all the connection
weights and thresholds are usually generated randomly by using
the normal distribution. This makes the training effect of a simple
BP neural network unstable. In order to improve the training
effect of the algorithm, GA and PSO can be used to optimize the
initial weight and threshold value of the neural network algorithm
to the neural network, so that the iterative process is at a better
starting point and many local optimal solutions can be avoided
before the training iteration (Figure 3). The neural network
iteration converges to a better local optimal solution or
optimal global solution. Therefore, surface roughness can
achieve higher accuracy and prediction accuracy based on the
current data.

PSO algorithm is applied to construct a new vector because of
BP algorithm connection weights and thresholds:

U � (μ1, μ2,/, μd)
T (8)

where µi represents the moving speed of each particle, and U
represents the set of moving speeds of all particles. According to

FIGURE 3 | Flow chart of BP neural network optimization algorithm.
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the principle of the algorithm, the computer randomly generates
the initial position and speed according to the normal
distribution. In particle motion, it is assumed that the ith
particle’s proven optimal solution is pi, and all particles’
proven global optimal solution is G.

During the iteration of the algorithm, the velocity change of
the ith particle is closely related to the particle’s current position.
Using the optimizationmethod of the PSO algorithm, the optimal
global solution of particles is obtained as follows:

U,
i � wUi + c1α1(Pi − Ui) + c2α2(G − Ui) (9)

where w is the weight of the particle, c1 is the individual learning
factor, c2 is the group learning factor, and a1 and a2 are random
numbers. After the particle velocity vector is iteratively updated,
the particle moves immediately. The new position of the particle
is shown in Eq. 10:

X,
i � Xi + U,

i (10)

After several iterations, all particles tend to move toward the
optimal global solution. Simultaneously, the GA can be used for
the optimization of complex systems and has better robustness.
Compared with the traditional optimization method, it can
directly take fitness as the search information, uses the search
information of multiple points, and has implicit parallelism
characteristics.

The GA optimizes the initial weights and thresholds. Using the
characteristics of GA to optimize the initial parameters of BP
algorithm can avoid the problem of local optimum caused by
random parameters.

It comprises five parts: the input layers and the hidden layers,
weight, threshold, and output layer. The difference between the
predicted value and the expected value of the sample is selected as
the error value, the obtained error value is formed into an error
matrix, and the norm of the matrix is used as the objective
function. The fitness function adopts the sorting of the
appropriate allocation function. The selection operator
simulates the “survival of the fittest,” selects highly adaptable

individuals, increases relevant weights, and inherits these
individuals to the next generation.

The basic steps of the GA algorithm are as follows:

1) In this study, the fitness function uses training data to train the
BP neural network, and the prediction error of training data is
regarded as the individual fitness value.

2) The selection operation uses roulette to select individuals with
good fitness from the population to form a new population.

3) In crossover operation, two individuals are selected from the
population and a new individual is obtained by crossing at a
certain intersection.

4) Mutation operation selects an individual randomly from the
population and obtains a new individual according to a certain
probability of mutation.

On the contrary, particles with poor adaptability will be given a
smaller weight and will not be inherited by the next generation
during the training process. In this study, the roulette selection
method is chosen. ΣFi represents the sum of the population’s fitness
function, and fi represents the fitness value of the ith chromosome of
the people. The ratio of fitness to offspring is fi/ΣFi.

EXPERIMENTAL AND RESULT ANALYSIS

Experimental and Simulation
Figure 4 is the test equipment and surface roughness detection
diagram. A seven-axis six-link abrasive belt grinder is used to grind
the workpiece, and a roughness profiler is used to detect the
workpiece. The grinding surface under different process
parameters was detected by using a testing instrument, and the
surface roughness of the workpiece was obtained, which is used as
training data of the algorithm. The experimental material is a
GH4169 superalloy sheet, and its size is 170 × 100 × 2mm. vs,
Fn, vf, and ds are selected as experimental variables and also as the
input of the algorithm simulation. The experimental data obtained in
the experiment is used as the input parameter of the algorithm. The

FIGURE 4 | Experimental equipment and testing equipment. (A) Seven-axis six-linkage CNC belt grinding machine. (B) Abrasive belt grinding process. (C)
Roughness detection of superalloy.
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600 sets of experimental data obtained are used as the data for the
algorithm, 500 sets are used as the algorithm training data, and 100
sets are used as the data for the algorithm test.

In order to select the corresponding parameter range,
exploratory experiments were carried out in the early stage
of the experiment, and the corresponding smaller grinding
parameters and larger grinding parameters were selected for
the experiment. When the grinding parameters are too small,
there are empty grinding and owe grinding on the grinding
surface, as shown in Figure 5A. When the grinding
parameters are too large, there are surface defects and
surface burns on the machined surface, as shown in
Figure 5B. In order to ensure the integrity of the
processing surface and improve the accuracy of the
algorithm application, the parameters of the experiment are
specified. The linear belt velocity is 12–26 m/s, the feed
velocity is distributed in the range of 0.01–0.05 m/min, the
grinding pressure is distributed in the range of 10–30 N, and
the grinding depth is distributed in the range of 0.2–1 mm.

Experimental Results and Analysis
The predicted surface roughness under different models is
obtained by MATLAB simulation. The predicted value
calculated by the algorithm is compared with the parameter

value used in the experiment, and the error of the experiment
is analyzed, as shown in Figure 6.

Comparing the prediction results of surface roughness by the
BP algorithm, PSO-BP algorithm, and GA-BP algorithm, the
results show that the predicted value of the BP algorithm is quite
different from the actual value. The error value of the prediction
effect is large, the precision is relatively low, and the local
prediction value is different. The expected values of the GA-
BP and PSO-BP algorithms are in good agreement with the actual
values (Figure 6). The mean absolute error (MAE) is introduced
to evaluate the algorithm’s stability, and the mean error value of
different algorithms is tested according to the absolute error
theory (Manuela et al., 2021). The MAEs of the BP, GA-BP, and
PSO-BP algorithms are 0.120, 0.085, and 0.079, respectively. It
can be known from the above analysis that the MAE value of the
PSO-BP algorithm is relatively small, and the algorithm has better
prediction results and higher accuracy. By comparing the effects
of different algorithms, the expected value and actual value of the
expected result of the PSO-BP algorithm have a minor error and a
great fit.

GA and PSO are both bionic intelligent algorithms and have
good effects on local optimal solutions. The principle of the bionic
algorithm is to search for high-performance parts in the solution
space and assign better values to greater weights. The

FIGURE 5 | Experimental equipment and testing equipment. (A)Machined surface with small grinding parameters. (B)Machined surface with grinding parameters.

FIGURE 6 | Comparison of actual roughness and roughness predicted by different algorithms. (A) BP and GA-BP prediction results analysis. (B) BP and PSO-BP
prediction results analysis.
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optimization algorithm can effectively avoid local optimization,
so the prediction effect is better than the BP algorithm. It can be
known that all the particles generated in the PSO algorithm have
better memory and can well inherit the training results. But the
memory in the GA algorithm is not so good, because the related
memory will be destroyed during the training process, and the
genetic performance is relatively poor. Therefore, the theoretical
prediction result of PSO-BP is better than that of GA-BP.

The error values of the BP algorithm, the GA-BP algorithm,
and the PSO-BP algorithm are drawn into an error curve
(Figure 7). The error generated by the BP algorithm is
relatively large. Compared with the BP algorithm, the GA-BP
and PSO-BP algorithms have smaller errors, which also proves
that the bionic algorithm has optimized the BP algorithm to a
certain extent. Error autocorrelation function and partial
correlation function are introduced to measure the quality of
the algorithm.

Figure 8A is the error autocorrelation graph and partial
correlation graph predicted by the BP algorithm. In the
autocorrelation graph, it can be known that the correlation
coefficient value is located on the zero axes for a long time to
have a monotonic trend and a normal distribution. It does not
have a periodic change trend. It is a non-stationary sequence,
indicating that the possibility of autocorrelation is very high. So in
the prediction process, the error generated is random and
uncontrollable. Simultaneously, the partial correlation graph of
samples can know the tailing structure, and some error values
exceed the confidence interval. The standard BP neural network
algorithm is not so useful for the prediction of the multivariate
input model.

Figure 8B is the error autocorrelation graph and partial
correlation graph obtained by the GA-BP algorithm. It can be
seen that the error autocorrelation graph of the optimized
algorithm presents apparent sinusoidal fluctuations, and the
autocorrelation coefficient is evenly distributed between positive
and negative values. There is individual volatility, indicating that
the error fluctuates around a specific value. It can be known that the
error value is within a certain range and is controllable.
Simultaneously, commemorating the partial correlation diagram
of samples can know the tailing structure. All the values do not

exceed the confidence interval, indicating that the roughness
prediction algorithm has a better prediction effect.

Figure 8C is the error autocorrelation and partial correlation
diagram of the PSO-BP algorithm. It can be seen that the
algorithm has apparent sinusoidal fluctuations. The
autocorrelation value is relatively small (less than the value
produced by GA-BP), and there is large volatility, indicating
that the error is around a certain one. The value fluctuates,
showing that the predicted error value fluctuates within a
specific range. The amplitude of the fluctuation is relatively
small. Simultaneously, we can know the tailing structure by
observing the partial correlation diagram of the samples. All
the values do not exceed the confidence interval, indicating that
the PSO-BP prediction algorithm’s prediction effect is better than
the GA-BP prediction algorithm’s.

The algorithm iteration process of the BP algorithm, GA-BP
algorithm, and PSO-BP algorithm is shown (Figure 9). The
green, red, and blue lines represent the iterative process graphs
for the validation set, test set, and training set, respectively.
The BP algorithm meets the requirements of the 32nd
generation iteration and is within the error requirements,
but after the iteration, the error between the three lines is
still relatively large, and the convergence performance is poor.
It can be explained that there is an overfitting phenomenon,
and the prediction model is not stable. The training results of
the GA-BP neural network algorithmmeet the requirements of
the 13th generation. In the subsequent 6 iterations, the gap is
small and the prediction model is very stable, effectively
avoiding the phenomenon of overfitting. The predictions
work well. Iterative flowchart of the PSO-BP algorithm. The
training value can meet the requirements before and after the
31st generation, and the experimental data can also achieve
sufficient training, and the error value is relatively small in the
subsequent 6 iterations. The mean square error is introduced
to measure the stability of different algorithms. After
calculation, the MSE values of BP, GA-BP, and PSO-BP
algorithms are 0.0213, 0.099, and 0.098, respectively.
Therefore, the dataset in the PSO-BP algorithm can be fully
trained to avoid overfitting imagination and have better
prediction results.

FIGURE 7 | Error surface diagram of different optimization methods’ error. (A) Standard BP neural network error surface. (B) GA-BP neural network error surface.
(C) PSO-BP neural network error surface.

Frontiers in Materials | www.frontiersin.org May 2022 | Volume 9 | Article 7654017

Zhang et al. Roughness Prediction

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


FIGURE 8 | Autocorrelation and partial correlation of prediction errors of different algorithms. (A) Autocorrelation and partial correlation of standard BP neural
network. (B) Autocorrelation and partial correlation of GA-BP neural network. (C) Autocorrelation and partial correlation of PSO-BP neural network.

FIGURE 9 | Training results of different algorithms. (A) Training result of the BP neural network algorithm. (B) Training result of the GA-BP neural network algorithm.
(C) Training result of the PSO-BP neural network algorithm.
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To further evaluate the algorithm, the relationship between the
training parameters and the number of iterations is plotted
(Figure 10). It can be observed that the BP algorithm reaches
a minimum value at the 26th iteration and does not change for 6
consecutive iterations. The GA-BP algorithm shows that the
optimal solution can be reached when the number of
iterations is 13, but a local optimal solution will appear during
the training process. The PSO-BP algorithm shows that the
optimal solution is obtained after 31 iterations, and there are
also some optimal solutions.

A simple regression analysis was used to evaluate the network
training. The closer the R value was to 1 in the regression analysis,
the better the effect of the algorithm. The regression analysis of the
BP algorithm, the GA-BP algorithm, and the PSO-BP algorithmwas
carried out (Figure 11). During the training process of the standard
BP neural network, the overall fitting value R was 0.946, the overall
fitting degree of the GA-BP algorithm was 0.990, and the GA- The
overall fitting degree of the BP algorithm is 0.994, and the results
show that the PSO-BP algorithm has a good fitting effect.

CONCLUSION

In this study, a data-driven surface roughness prediction
model is proposed. The mapping relationship between

processing parameters and surface roughness is established,
which avoids the shortcomings of traditional models such as
large interference and weak generalization ability and has a
broader application prospect. The main conclusions of the
article are as follows:

First, based on the BP algorithm model, GA and PSO
algorithms are used to optimize the weights and thresholds
of the network topology. A surface roughness prediction
model for the belt grinding of the GH4169 superalloy is
constructed.

Second, the simulation and comparison of BP, GA-BP, and
PSO-BP algorithms are conducted by using experimental data as
input. The expected values of the different algorithms are
compared, which are 0.120, 0.085, and 0.079, respectively. The
analysis shows that the prediction accuracy of the PSO-BP
algorithm is higher, and it is more suitable for surface
roughness prediction in belt grinding of GH4169 superalloy.

Finally, the pros and cons of the proposed algorithm are
further analyzed, the error surface graphs of different
algorithms are established, and the prediction errors are
analyzed. The training process of the algorithm before and
after optimization is also analyzed, and the PSO-BP algorithm
can fully train the experimental parameters. In addition, the
fitting degree of different algorithms is also analyzed in-depth,
and the fitting degree of the PSO-BP algorithm can reach 0.993. It

FIGURE 10 | Relation diagram of training parameters and iteration times. (A) Relation of BP neural network algorithm. (B) Relation of GA-BP neural network
algorithm. (C) Relation of PSO-BP neural network algorithm.

FIGURE 11 | Schematic diagram of fitting of different prediction models. (A) Fitting diagram of BP. (B) Fitting diagram of GA-BP. (C) Fitting diagram of PSO-BP.
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shows that the proposed algorithm is more applicable to the
grinding of GH4169 superalloy.

However, the exploration of the algorithm principle in this study
is relatively simple, and the improvement of the accuracy of the
algorithm needs to be further improved. The amount of data in this
study is still relatively small, and the training of themodel needs to be
further improved. For future research, a predictive model for multi-
information fusion of multi-sensor inputs can be constructed.
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APPENDIX TABLE: PARTOF THEORIGINAL
EXPERIMENTAL DATA.

Fn
(N)

vf
(m/
min)

vs
(m/s)

ds

(mm)
Ra (µm) Mean

valuePoint
1

Point
2

Point
3

Point
4

Point
5

Point
6

Point
7

Point
8

Point
9

20 0.05 12 0.6 0.226 0.226 0.227 0.269 0.234 0.229 0.217 0.216 0.227 0.230
20 0.05 12 0.8 0.227 0.216 0.234 0.229 0.217 0.264 0.245 0.226 0.269 0.236
20 0.05 12 1 0.269 0.234 0.229 0.217 0.216 0.209 0.218 0.245 0.234 0.230
20 0.05 14 0.2 0.234 0.236 0.238 0.209 0.218 0.216 0.234 0.229 0.229 0.227
20 0.05 14 0.4 0.229 0.218 0.226 0.226 0.227 0.269 0.234 0.229 0.217 0.231
20 0.05 14 0.6 0.217 0.226 0.227 0.216 0.234 0.229 0.217 0.264 0.216 0.227
20 0.05 14 0.8 0.216 0.245 0.269 0.234 0.229 0.217 0.216 0.209 0.218 0.228
20 0.05 14 1 0.234 0.234 0.229 0.217 0.229 0.217 0.216 0.238 0.226 0.227
20 0.05 16 0.2 0.269 0.234 0.229 0.217 0.216 0.209 0.218 0.245 0.234 0.230
20 0.05 16 0.4 0.234 0.236 0.238 0.209 0.218 0.216 0.234 0.229 0.229 0.227
20 0.05 16 0.6 0.229 0.218 0.226 0.226 0.227 0.269 0.234 0.229 0.217 0.231
20 0.05 16 0.8 0.217 0.226 0.227 0.216 0.234 0.229 0.217 0.264 0.216 0.227
20 0.05 16 1 0.216 0.245 0.269 0.234 0.229 0.217 0.216 0.209 0.218 0.228
20 0.05 18 0.2 0.209 0.226 0.227 0.269 0.234 0.229 0.217 0.224 0.227 0.229
20 0.05 18 0.4 0.218 0.227 0.216 0.234 0.229 0.217 0.264 0.216 0.234 0.228
20 0.05 18 0.6 0.198 0.194 0.201 0.178 0.198 0.186 0.188 0.206 0.247 0.200
20 0.05 18 0.8 0.229 0.218 0.226 0.226 0.227 0.269 0.234 0.229 0.217 0.231
20 0.05 18 1 0.217 0.226 0.227 0.216 0.234 0.229 0.217 0.264 0.216 0.227
20 0.05 20 0.2 0.216 0.245 0.269 0.234 0.229 0.217 0.216 0.209 0.218 0.228
20 0.05 20 0.4 0.209 0.226 0.227 0.269 0.234 0.229 0.217 0.224 0.227 0.229
20 0.05 20 0.6 0.218 0.227 0.216 0.234 0.229 0.217 0.264 0.216 0.234 0.228
20 0.05 20 0.8 0.198 0.194 0.201 0.178 0.198 0.186 0.188 0.206 0.247 0.200
20 0.05 20 1 0.184 0.188 0.186 0.186 0.184 0.184 0.183 0.182 0.185 0.185
25 0.01 12 0.2 0.483 0.512 0.468 0.457 0.448 0.463 0.465 0.457 0.448 0.467
25 0.01 12 0.4 0.468 0.457 0.469 0.458 0.461 0.458 0.461 0.465 0.457 0.462
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