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It is presently difficult to achieve dental pulp vitality maintenance and regeneration in adult
teeth. Dentin destruction results in the exposure of the dental pulp tissue to infectious oral
environments, thereby triggering continuous severe pulp inflammation that impedes the self-
regenerative capacity of the pulp. For these reasons, the regeneration of dentin bridges to
block pulp tissue from the oral environment is an indispensable step. Nevertheless, this goal
is difficult to achieve using present strategies, because the importance of immunoregulation
in the pulp inflammatory microenvironment has been ignored. In our previous study, we
found that the nanomaterial dihydrolipoic acid-functionalized gold nanoclusters (DHLA-
AuNCs) efficiently regulated inflammatory responses in microglia (resident macrophages in
the central nervous system), suggesting that DHLA-AuNCs may induce dentin bridge
regeneration by regulating dental pulp macrophage responses. In the present study, we
found that DHLA-AuNCs inhibited the M1 phenotype while promoting the M2 phenotype in
macrophages in inflammatory conditions in vitro. This regulation of the inflammatory
environment in dental pulp enhanced the differentiation of human dental pulp stromal
cells (hDPC) toward odontoblasts, a beneficial effect on dentin regeneration. DHLA-
AuNCs also had a direct role in the differentiation and mineralization of hDPC. These
findings suggest that DHLA-AuNCs facilitate dentin regeneration through both efficient
immunomodulation and direct induction of stromal cell differentiation/mineralization,
providing a potential therapeutic nanomaterial for dentin bridge regeneration, effects that
would be beneficial for dental pulp regeneration.
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INTRODUCTION

Irreversible pulpitis is one of the most common oral diseases. The long-term harmful effects of dental
caries, periodontal inflammation, and injury result in dental pulp infection, inflammation, and finally,
dentin degeneration that eventually causes pulp necrosis and apical periodontitis (Colombo et al., 2014).
Maintenance of vitality and regeneration in dental pulp are challenging issues for modern dentistry
(Colombo et al., 2014; Xu et al., 2019); for these reasons, the present treatment of irreversible pulpitis is root
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canal treatment (RCT). However, this treatment requires the removal
of the whole dental pulp tissue, which results in permanently
devitalized teeth lacking vascularization and therefore, nutrition
exchange; this eventually leads to a fragile tooth that often
fractures, a common complication of RCT (Colombo et al., 2014).
For these reasons, it is desirable to provide better options for dental
therapy, especially for the treatment of irreversible pulpitis (Colombo
et al., 2014). Recent advances in material science have demonstrated
the potential of using materials for hard tissue regeneration (Wang
et al., 2016; Bottino et al., 2017; Hu et al., 2017), suggesting that novel
biomaterials can be developed for dental applications, especially for
dentin regeneration (Colombo et al., 2014).

Located in the central part, dental pulp tissue constitutes the main
structural component of teeth (Harris and Griffin, 1969; Lowder and
Mueller, 1998; Colombo et al., 2014). The dental pulp consists of
collagen-based extracellular matrixes and cell populations such as
odontoblasts, mesenchymal progenitor cells (dental pulp stem cells
and stromal cells), fibroblasts, immune cells, vascular cells, and
neurons (Miura et al., 2003; Sloan and Smith, 2007; Sloan and
Waddington, 2009; Balic et al., 2010; Casagrande et al., 2011;
Iwasaki et al., 2011; Schmalz and Galler, 2011; Colombo et al.,
2014). The pulp blood vessel network connects pulp tissue with
the circulatory system, thereby providing nutrition and waste
exchange for pulp cells such as odontoblasts, which are columnar-
like cells lining the pulp chamber. Odontoblasts contain long
cytoplasm tubule-like structures named dentinal tubules that run
through the dentin (Harris and Griffin, 1969; Sigal et al., 1984;
Colombo et al., 2014). Odontoblasts are responsible for the
maintenance of dentin mineralization, which also induces the
formation of sclerotic dentin in response to dentinal tubule
infections (Tziafas et al., 2000; Harichane et al., 2011; Colombo
et al., 2014). Nevertheless, more severe infections due to progressive
carious lesions can trigger strong inflammatory responses of the pulp
immune cells, eventually resulting in odontoblast death and dentin
degeneration (Colombo et al., 2014). The degeneration of the dentin
matrix then triggers the recruitment and activation of pulp
progenitor/stromal cells that could potentially differentiate into
odontoblasts for dentin regeneration (Miura et al., 2003; Sloan
and Waddington, 2009; Waddington et al., 2009; Balic et al., 2010;
Lin and Rosenberg, 2011). In addition to odontoblasts, pulp
progenitor cells have shown multipotent differentiation capacities
and can differentiate into osteoblasts, adipocytes, chondrocytes, and
vascular cells (Waddington et al., 2009; d’Aquino et al., 2007; Iohara
et al., 2008). This suggests that dental pulp regeneration is
theoretically feasible (Colombo et al., 2014), evidenced by the
initial regeneration of a dentin bridge (Slutzky-Goldberg et al.,
2009; Kermanshahi et al., 2010; Başaran et al., 2012), an
indispensable part that blocks and secures the pulp tissue from
bacteria in the oral environment. In this manner, dentin
regeneration may be considered a critical approach to dental pulp
viability maintenance and regeneration.

Previous studies identified the critical role of immunomodulation
in tissue regeneration (Chen et al., 2016), especially in the healing of
hard tissue (such as bone). The biomaterial-induced regulation of
macrophage inflammatory responses has been found to facilitate
bone regeneration (Chen et al., 2016). The polarization of
macrophages (among the major cell types in the innate immune

system) plays a key role in dental pulp infection and inflammation
(Izumi et al., 1995; Iwasaki et al., 2011; Colombo et al., 2014). In our
recent study (Xiao et al., 2020), we found that dihydrolipoic acid-
functionalized gold nanoclusters (DHLA-AuNCs) (Zhang et al.,
2013; Li et al., 2014; Zhang and Wang, 2014; Shahsavari and
Behroozi, 2016; Zhao et al., 2016; Zheng et al., 2017) efficiently
regulated inflammatory responses. DHLA-AuNCs (referred to as
AuNCs herein) directed the phenotype switch fromM1 toward M2,
creating an immune microenvironment beneficial for tissue
regeneration. We speculated that AuNCs might exhibit regulatory
effects on macrophages to facilitate dentin regeneration. Therefore,
in the present study, we tested the regulatory role of AuNCs on
macrophage inflammatory responses and investigated the effect of
AuNCs on odontoblast differentiation and mineralization, thereby
evaluating the potential effect of AuNCs on dentin regeneration.

MATERIALS AND METHODS

Cell Culture
To study the effects of AuNCs on the macrophage inflammatory
response, we used the murine macrophage cell line RAW 264.7
(RAW). RAW cells were grown in Dulbecco’s Modified Eagle’s
Medium (DMEM; Gibco TM, Thermo Fisher Scientific, Waltham,
MA,United States) containing 5% (v/v) fetal bovine serum (FBS, heat-
inactivated at 60°C for more than 30min, Lonza, Basel, Switzerland)
and 1% (v/v) penicillin/streptomycin (P/S, Gibco TM, Thermo Fisher
Scientific). The culture medium was changed every 2 days. After
reaching 80% confluence, the cells were passaged by treating them
with 0.25% trypsin (containing 1mM EDTA) for 2min.

Human dental pulp stromal cells (hDPC) were isolated from
six healthy adult teeth harvested from six patients (18–30 years
old) who were undergoing standard third molar extractions or
premolar extractions for orthodontic purposes. All experimental
procedures conformed to the Guiding Principles of the Ethics
Committee of the Queensland University of Technology,
Australia (ethics approval number: 1900000941). All patients
provided informed written consent.

Dental pulp tissue was harvested under sterile conditions. Briefly,
the extracted teeth were washed with phosphate-buffered saline
(PBS) containing 1% P/S, then dental fissure burrs were used to cut
the teeth open at the cementum–enamel junction to expose the pulp
chamber (Cao et al., 2015). The pulp tissue was gently separated
from the crown and root and then cut into small pieces. The pulp
tissue fragments were resuspended in DMEM containing 10% FBS
and 1% P/S, then transferred into a culture flask and cultured in
incubators with 5% CO2 at 37°C. At 3 days, the non-attached cells/
tissue were washed away using PBS, and the attached cells were
cultured with DMEM containing 10% FBS and 1% P/S. The culture
medium was changed every 2–3 days. The cells (80% confluence)
were passaged by treating with 0.25% trypsin (containing 1mM
EDTA, Gibco TM, Thermo Fisher Scientific) for 2 min. The cells
were used for experiments within five passages.

MTT Assay
MTT assays were performed to evaluate the effects of AuNCs on
the proliferation of hDPC and RAW cells as previously described
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(Wu and Chang, 2012). Briefly, hDPC were seeded into 96-well
plates (2,000 cells/well, 4 wells/group) and treated with AuNCs
at graded concentrations: 0 (vehicle control), 0.5, 1, 5, 10, or
50 μg/ml, which were supplemented in DMEM with 10% FBS
and 1% P/S. After 1, 2, 3, or 5 days, the culture medium was
removed and the cells were washed with PBS. Similarly, the
RAW cells were seeded into 96-well plates at 2,000 cells/well (4
wells/group) and treated with AuNCs at graded concentrations:
0 (vehicle control), 0.1, 1, 5, 10, or 30 μg/ml supplemented in
DMEMwith 10% FBS and 1% P/S for 24 h and then washed with
PBS. Then, 100 µL fresh culture medium (DMEM with 10%
FBS) containing MTT solution (0.5 mg/ml, Sigma-Aldrich Pty.,
Ltd., Sydney, Australia) was added to each well and the plates
were incubated at 37°C for 4 h. After the medium removal, the
deposits were dissolved in 100 µL dimethyl sulfoxide in each
well to solubilize the formazan product, and the plates were read
at 570 nm using a SpectraMax, Plus 384 plate reader (Molecular
Devices, LLC, San Jose, CA, United States). All experiments
were repeated three times.

Stimulation of Macrophage Inflammatory
Response
To mimic macrophage inflammatory responses in vitro, the
RAW cells were treated with IFN-γ (100 ng/ml) and LPS
(100 ng/ml) for 24 h, as previously described (Huang et al.,
2017). To investigate the effect of AuNCs on macrophage
inflammatory responses, the RAW cells were treated with
graded doses of AuNCs during IFN-γ and LPS stimulation:
0 μg/ml (vehicle control), 0.5 μg/ml (low dose), and 5 μg/ml
(high dose). Then, the culture medium was removed, the cells
were washed twice with PBS, and then subjected to serum-free
DMEM for another 12 h to harvest the conditioned medium
(CM). The CM was centrifuged (1,000 × g, 10 min, 4°C) and
then filtered using a 0.45-µm filter (Millipore Corporation,
Billerica, MA, United States) to remove cell debris. The
filtered CM was stored at –80°C for further experiments.

The RAW cells were harvested for RNA isolation and
protein analysis.

Mineralization of Human Dental Pulp
Stromal Cells
To examine the effect of AuNCs on the mineralization of hDPC
in vitro, the cells were treated with 10 mM β-glycerophosphate,
50 μM ascorbic acid, and 100 nM dexamethasone (in DMEM
with 10% FBS and 1% P/S) with AuNCs at graded concentrations:
0 μg/ml (vehicle control), 0.5 μg/ml (low dose), and 5 μg/ml (high
dose), to induce odontoblast-like differentiation as previously
described (Athirasala et al., 2018). The cells were harvested on 3,
7, and 14 days of treatment for RNA isolation, protein analysis,
and Alizarin red S staining.

To evaluate the effect of AuNC-treated macrophages on the
osteogenic differentiation of hDPC in vitro, the harvested RAW
cell-CM (as mentioned previously) was mixed with 2× osteogenic
medium (DMEM, 20% FBS, 2% P/S, 20 mM β-glycerophosphate,
100 μM ascorbic acid, and 200 nM dexamethasone) at a ratio of 1:
1 and the mixture was used to treat hDPC for osteogenic
differentiation for 3, 7, or 14 days. The cells were subsequently
harvested for RNA isolation, protein analysis, and Alizarin red S
staining.

RNA Extraction, cDNA Synthesis, and
Real-Time Quantitative-PCR
The Total RNA was extracted from the RAW cells (24 h of
stimulation) or hDPC (3/7 days of differentiation) using
TRIzol reagent (Ambion®, Thermo Fisher Scientific). We
used 1 μg total RNA for cDNA synthesis using the
SensiFAST™ cDNA Synthesis Kit (Bioline Reagents,
Meridian Bioscience Inc., Cincinnati, OH, United States)
following the manufacturer’s protocol. A real-time
polymerase chain reaction (qRT-PCR) was performed to
measure the mRNA levels of the following target genes:

TABLE 1 | Primer sequences for the genes investigated in this study.

Gene Full name Forward sequences Reverse sequences

MHC-II Histocompatibility-2, MHC 5′TGGGCACCATCTTCATCATTC3′ 5′GGTCACCCAGCACACCACTT3′
IL-10 Interleukin 10 5′GAGAAGCATGGCCCAGAAATC3′ 5′GAGAAATCGATGACAGCGCC3′
CD86 CD86 antigen 5′CTGCTCATCATTGTATGTCAC3′ 5′ACTGCCTTCACTCTGCATTTG3′
TNF Tumor necrosis factor 5′CTGAACTTCGGGGTGATCGG3′ 5′GGCTTGTCACTCGAATTTTGAGA3′
iNOS Nitric oxide synthase 2, inducible 5′TGGTGAAGGGACTGAGCTGT3′ 5′CTGAGAACAGCACAAGGGGT3′
IL-6 Interleukin 6 5′GTCTTCTGGAGTACCATAGCTACCTG3′ 5′CCTTCTGTGACTCCAGCTTATCTG3′
BMP2 Bone morphogenetic protein 2 5′ GACACAGTTCCCTACAGGGAG 3′ 5′ATGGTCGACCTTTAGGAGAC3′
BMP6 Bone morphogenetic protein 6 5′ TGGCAGGACTGGATCATTGC3′ 5′ACCAAGGTCTGTACAATGGCG3′
Wnt3a Wnt family member 3a 5′ CTATATCCACCCACCACTG3′ 5′ TTTCTCTCTTTTTACTTTCCCC 3′
Wnt5a Wnt family member 5a 5′ CAACTGGCAGGACTTTCTCAA 3′ 5′CCTGATACAAGTGGCAGAGTTTC 3′
Gapdh Glyceraldehyde-3-phosphate dehydrogenase 5′TCAGCAATGCCTCCTGCAC3′ 5′TCTGGGTGGCAGTGATGGC3′
Actb Actin, beta 5′ACTGAGCGTGGCTATTCCTTCG3′ 5′CTAGGGCCGTGATCTCCTTCTG3′
BSP Bone sialoprotein 5′ATTTCCAGTTCAGGGCAGTAGTG3′ 5′GGTATTCTCAGCCTCAGAGTCTTCA3′
Runx2 Runx family transcription factor 2 5′CATGGCGGGTAACGATGAA3′ 5′AGACGGTTATGGTCAAGGTGAAA3′
OCN Bone gamma-carboxyglutamate protein 5′TCACACTCCTCGCCCTATTG3′ 5′GAAGAGGAAAGAAGGGTGCC3′
OPN Secreted phosphoprotein 1 5′TCACCAGTCTGATGAGTCTCACCATTC3′ 5′TAGCATCAGGGTACTGGATGTCAGGTC3′
DMP-1 Dentin matrix acidic phosphoprotein 1 5′GGTATCACACCCAACTATGAAGATCA3′ 5′TGGTGCCTGAGCCAAATGA3′
DSPP Dentin sialophosphoprotein 5′GGGAATAGAAATCAAGGGTC3′ 5′CAAGATCATTCCATGTTGTCC3′
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CD11c, CD86, iNOS, IL-6, MHC-Ⅱ, TNF, BMP2, BMP6, IL-10,
Wnt3a, and Wnt5a (in RAW cells) and BSP, Runx2, OCN,
OPN, DMP-1, and DSPP (in hDPC). Primer sequences are
listed in Table 1 in the Supporting Information. Relative gene

expression was normalized against Actb and Gapdh,
calculated as previously described (Bookout and
Mangelsdorf, 2003). All experiments followed MIQE
guidelines (Bustin et al., 2009) and were repeated three times.

FIGURE 1 |Cytotoxicity of AuNCs onmacrophages (RAW cells) and hDPC examined using an MTT assay. (A) There was significant difference in the proliferation in
RAW cells treated with graded AuNCs for up to 24 h. (B–E) MTT assay results in hDPC treated with graded AuNCs for up to 5 days. AuNCs at doses than 0.5 μg/ml
significantly inhibited the proliferation in hDPC (as compared with AuNC-0 µg/ml-treated controls). (F)Growth curves of hDPC treated with graded doses of AuNCs. Data
are presented as the mean ± SD (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 versus the control group (AuNC-0 µg/ml).
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FIGURE 2 | Effect of AuNCs on the pro-inflammatory response of RAW cells, treated with AuNCs (0, 0.5, and 5 μg/ml; AuNCs at 0 μg/ml served as the control
group) during inflammatory stimulation (LPS + IFNγ) for 24 h. mRNA levels of AuNCs-0.5/5 μg/ml groups were normalized against the control group and are expressed
as fold-changes. (A)mRNA levels of pro-inflammatory M1-like markers (CD11c, CD86, iNOS, IL-6, MHC-Ⅱ, and TNF) were significantly downregulated, whereas (B) the
levels of anti-inflammatory M2-like markers (BMP2, BMP6, IL-10, Wnt3a, and Wnt5a) were significantly higher than those of the controls. (C) Western blotting
results revealing that protein levels of iNOS (M1) and arginase were downregulated following AuNC application, while arginase expression levels (M2) were elevated in
AuNC-treated cells. Data are presented as the mean ± SD (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001 versus the M1 control group (AuNC-0 µg/ml), respectively. M1/M1 +
0.5/M1 + 5: RAW cells treated with AuNCs at 0, 0.5, and 5 μg/ml, upon LPS and IFNγ stimulation.
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Protein Extraction and Western Blotting
The total protein was extracted from hDPC (3 or 7 days of
differentiation) using a lysis buffer (20 mM HEPES (pH 7.4),
10% glycerol, 1% Triton X-100, and 2 mM EDTA) containing the
cOmpleteTM protease inhibitor cocktail (Roche, Dee Why, NSW,
Australia). The BCA Protein Assay Kit (Thermo Fisher Scientific)
was used to determine the protein concentrations of the extracts
following the manufacturer’s protocol. Western blotting was
performed as previously described (Xiao et al., 2020). Briefly,
each sample (20 µg of protein) was loaded onto SDS-PAGE gels

(10–15%) and then separated and transferred onto nitrocellulose
membranes (MerckMillipore, Billerica, MA, United States). After
1 h of blocking with the Odyssey Blocking Buffer (LI-COR
Biosciences, Lincoln, NE, United States) at room temperature,
the membranes were subjected to incubation with primary
antibodies at 4°C overnight. The primary antibodies (all from
rabbits) were as follows: ALP (1:1,000, Abcam, Cambridge,
United Kingdom), osterix (1:1,000, Abcam), β-catenin (1:1,000,
Cell Signaling Technology, Danvers, MA, United States), iNOS
(1:250, Abcam), arginase (1:500, Cell Signaling Technology), and

FIGURE 3 | AuNC-treated RAW cell-originated CM improved the odontoblast differentiation of hDPC. The mRNA levels of odontoblat differentiation-related
markers (BSP, OPN, OCN, and RUNX2) and especially dentin regeneration markers DMP-1 and DSPP were upregulated in hDPC treated with the CM from AuNC-
treated RAW cells, at both 3 (A) and 7 (B) days of differentiation. Data are presented as the mean ± SD (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001 versus the M1 control
group. M1/M1 + 0.5/M1 + 5: hDPC treated with the CM from RAW cells (stimulated by LPS and IFNγ) treated with AuNCs at 0, 0.5, and 5 μg/ml.
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FIGURE 4 | AuNC-treated RAW cell-originated CM improved the odontoblast differentiation of hDPC. Western blotting results showed that protein levels of
odontoblast differentiation-related markers ALP, osterix (OSX) and especially the marker β-catenin (b-catenin) for the key signaling pathway in differentiation were
upregulated in hDPC treated with the CM from AuNC-treated RAW cells, at both 3 (A) and 7 (B) days of differentiation. Data are presented as the mean ± SD (n = 3). *p <
0.05, **p < 0.01, ***p < 0.001 versus the M1 control group. M1/M1 + 0.5/M1 + 5: hDPC treated with the CM from RAW cells (stimulated by LPS and IFNγ) treated
with AuNCs at 0, 0.5, and 5 μg/ml.
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α-tubulin (1:2000, Abcam, loading control). After three washes
with Tris-buffered saline (TBS) supplemented with 0.1% Tween
20 (TBST), the membranes were incubated with an anti-rabbit
IgG IRDye 800-conjugated secondary antibody (1:10,000,
Rockland Immunochemicals, Limerick, PA, United States) for
1 h at room temperature. After washing with TBS, the
membranes were scanned using the Odyssey® Infrared
Imaging System and Image Studio software (LI-COR

Biosciences) according to the manufacturer’s instructions. The
Odyssey Blocking Buffer was used for antibody dilution. All
procedures were repeated three times.

Alizarin Red S Staining
After 14 days of osteogenic differentiation, the hDPC were fixed with
4% paraformaldehyde for 10min at room temperature. After
washing with ultra-pure water, the cells were then stained with

FIGURE 5 | AuNC-treatment directly improved the odontoblast differentiation of hDPC. ThemRNA levels of odontoblast differentiation-relatedmarkers (BSP, OPN,
OCN, and RUNX2) and especially dentin regeneration markers DMP-1 and DSPP were upregulated in hDPC treated with AuNCs at both 3 (A) and 7 (B) days of
differentiation. Data are presented as the mean ± SD (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001 versus the control group (treated with AuNC-0 µg/ml). C/0.5/5: hDPC
treated with AuNCs at 0, 0.5, and 5 μg/ml.
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FIGURE 6 | AuNC-treatment directly improved the odontoblast differentiation of hDPC. Western blotting results showed that the protein levels of odontoblast
differentiation-related markers ALP, osterix/OSX, and especially the marker (β-catenin/b-catenin) for the key signaling pathway in differentiation were upregulated in
hDPC treated with the CM from AuNC-treated RAW cells, at both 3 (A) and 7 (B) days of differentiation. Data are presented as the mean ± SD (n = 3). *p < 0.05, **p <
0.01, ***p < 0.001 versus the control group (treated with AuNC-0 µg/ml). C/0.5/5: hDPC treated with AuNCs at 0, 0.5, and 5 μg/ml, respectively.
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FIGURE 7 | AuNC treatment directly facilitated hDPC’mineralization. (A) Alizarin red S staining results (original magnification: 200×) showed that the mineralization
of hDPC (red-staining area) was significantly greater in cells with AuNC treatment than in the AuNC-0 µg/ml control. AuNC-5 μg/ml showed the strongest positive
staining. In cells without osteogenic differentiation (negative control, NC), no positive stain was observed. (B) Quantification of Alizarin red S staining was performed
(percentage of positive area) using the ImageJ software. **p < 0.01, ****p < 0.0001 versus the AuNC-0 µg/ml group.
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1% Alizarin red S solution (pH: 4.1–4.3, Sigma Aldrich Pty., Ltd.) for
20min at room temperature andwashed again with ultra-pure water.
Cells without osteogenic differentiation were also stained with
Alizarin red S and served as negative controls. The samples were
observed and imaged with a stereoscopic microscope. Quantification
of positive-stained areas was performed using the ImageJ software.
All procedures were repeated three times.

Statistical Analysis
For comparison between multiple groups, data were subjected to a
statistical analysis using the one-way ANOVA followed by the
Student–Newman–Keul test at α = 0.05. p < 0.05 was considered
to indicate statistically significant differences. The data were analyzed
using Prism 7.0 (GraphPad software, San Diego, CA, United States).

RESULTS

Effect of Gold Nanoclusters on Cell
Proliferation
To examine the cytotoxic effects of AuNCs, the MTT assay was
performed to test metabolic changes in RAW cells and hDPC
treated with graded doses of AuNCs. As shown in Figure 1A,
RAW cells showed no metabolic changes (as compared with the
blank control) when treated with ≤5 μg/ml for 24 h. For hDPC
(Figures 1B–F), AuNCs inhibited the cell metabolism from day 3
to day 5 in a dose-dependent manner, while doses lower than
0.5 μg/ml did not show significant differences as compared with
the blank control group. We then chose a low dose (0.5 μg/ml)
and a high dose (5 μg/ml) for subsequent experiments.

Gold Nanoclusters Inhibited M1Makers and
Induced M2 Markers in Macrophages Upon
Inflammatory Stimulation
To investigate the regulatory effect of AuNCs on macrophage
inflammatory responses, the RAW cells were treated with graded
doses of AuNCs during inflammatory stimulation and we
measured M1/inflammatory markers and M2/anti-
inflammatory and tissue regenerative markers. As shown in
Figure 2A, AuNC treatment significantly reduced the mRNA
levels of inflammatory markers (iNOS, CD86, CD11c, IL-6, MHC-
Ⅱ, and TNF) (Xue et al., 2017; Xiao et al., 2020). In particular, the
mRNA levels of iNOS, CD86, IL-6, and TNF were downregulated
by AuNCs in a dose-dependent manner (Figure 2A), suggesting
that the M1 phenotype was inhibited under inflammatory
conditions. The mRNA levels of anti-inflammatory/tissue
regenerative markers (BMP2, BMP6, IL-10, Wnt3a, and
Wnt5a) (Zhang et al., 2017a; Li et al., 2018; Shapouri-
Moghaddam et al., 2018; Cosin-Roger et al., 2019) were
elevated by AuNCs in a dose-dependent manner (Figure 2B).
Accordingly, AuNC treatment downregulated the protein levels
of the M1 marker iNOS, whereas the protein levels of the M2
marker arginase were elevated following AuNC treatment
(Figure 2C). These findings suggest that AuNCs effectively
regulated macrophage inflammatory responses by introducing
the phenotype switch from M1 toward M2.

Gold Nanoclusters-Derived Macrophage
Regulation Facilitated Odontoblast-like
Differentiation of Human Dental Pulp
Stromal Cells
To examine the effect of theM1–M2 switch on hDPC differentiation
toward odontoblasts, the CMharvested fromRAWcells (treatedwith
graded AuNCs under inflammatory stimulation) was used to treat
hDPC under conditions of stimulated differentiation. As shown in
Figure 3, at 3 and 7 days of differentiation, the CM from AuNC-
treated macrophages gave rise to elevated mRNA levels of the
odontoblast differentiation markers BSP, OCN, and Runx2 in
hDPC (Ching et al., 2016; Jani et al., 2018; Wang et al., 2018),
whichwere increased consistently with the gradedAuNCdoses in the
macrophage treatment, as compared with hDPC treated with
M1–CM. In particular, the dentin generation markers DMP-1 and
DSPP (Ching et al., 2016) were upregulated by the CM from AuNC-
treated macrophages in a dose-dependent manner. On the other
hand, at 3 days of differentiation, the mRNA levels of OPN were
downregulated in hDPC (Figure 3A) treated with the CM from
AuNC-treated macrophages and at 7 days of differentiation, the CM
from AuNC-5 µg/ml-treated macrophages showed significantly
greater OPN expression in hDPC (Figure 3B) than in hDPC
treated with M1-CM. Similarly, AuNC-treated macrophage-
derived CM upregulated the expression levels of odontoblast-
differentiation markers (OCN and Runx2) and dentin generation
markers (DMP-1 andDSPP) in hDPC (Figure 3). Consistent with the
mRNA results, the CM fromAuNC-treatedmacrophages gave rise to
elevated protein levels of the odontoblast differentiationmarkers ALP
and osterix (Kim et al., 2015), and upregulated β-catenin (key factors
in the Wnt/β-catenin odontoblast differentiation pathway (Wang
et al., 2018)) in hDPC at both 3 and 7 days of differentiation, as
compared with hDPC treated with M1-CM (Figure 4). These
findings suggest that the AuNC-directed M1-to-M2 macrophage
phenotype switch facilitated hDPC’ odontoblast-like differentiation
to favor dentin regeneration.

Gold Nanoclusters Treatment-Induced
Odontoblast-like Differentiation and
Mineralization of Human Dental Pulp
Stromal Cells
In vitro experiments were performed to examine the direct effect
of AuNCs on the odontoblast differentiation of hDPC. As shown
in Figure 5A, the AuNC treatment gave rise to significantly
higher mRNA levels of odontoblast differentiation markers (BSP
OPN, OCN, and Runx2 (Ching et al., 2016; Jani et al., 2018; Wang
et al., 2018)) than in the control group. In particular, AuNCs
upregulated the expression levels of dentin generation markers
DMP-1 and DSPP in a dose-dependent manner. Accordingly, the
protein levels of odontoblast differentiation markers ALP and
osterix were elevated following the AuNC treatment (Figure 6).
β-catenin expression was also significantly higher in AuNC-
treated hDPC than in the controls (Figure 6). Furthermore, at
14 days of differentiation, AuNCs significantly enhanced the
mineralization of hDPC in a dose-dependent manner,
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suggesting that AuNC treatment facilitated dentin regeneration
(Figure 7).

DISCUSSION

Macrophages are found in several phenotypic subsets. The non-
activated subset is the M0 phenotype, which is polarized on
stimulation to generate a spectrum of macrophage phenotypes;
the two ends of this spectrum are termed the classically activated
pro-inflammatory M1 phenotype [by microbe-derived
lipopolysaccharide (LPS) and cytokine interferon γ, (IFNγ)], and
the alternatively activated anti-inflammatory M2 phenotype [by
interleukin 4 (IL-4) and IL-13] (Mills et al., 2000; Mantovani
et al., 2004; Murray et al., 2014; Horwood, 2015). On infection,
pulp macrophages are activated by bacteria-derived LPS, which then
induce M1 polarization. M1 macrophages induce an inflammatory
microenvironment and then trigger the activation of adaptive
immune cells to produce pro-inflammatory cytokines (e.g., tumor
necrosis factor-α/TNFα, interleukin-1β/IL-1β), and especiallymatrix
metalloproteinases to exacerbate tissue degeneration (Shapouri-
Moghaddam et al., 2018; Yang et al., 2018; Aristorena et al.,
2019). By contrast, cytokines from M2 macrophages not only
downregulate inflammation (e.g., IL-10) (Shapouri-Moghaddam
et al., 2018), but also induce dentin regeneration (e.g., BMP-2)
(Zhang et al., 2017a; Pajarinen et al., 2019). Biomaterials inducing the
M1-to-M2 phenotype switch have been found to promote bone
regeneration (Chen et al., 2014; Wu et al., 2014; Chen et al., 2015;
Chen et al., 2016). In a rat molar pulp tissue regeneration model,
macrophages showed phenotype conversion from M1 at the early
inflammatory stage to M2 at the late regenerative stage (Gu et al.,
2019), suggesting that modulating the M1-to-M2 phenotype switch
could be a strategy to induce dentin regeneration.

In the present study, first, the cytotoxicity of AuNCs onRAWcells
(macrophages) and hDPC was analyzed. Previous studies
demonstrated that AuNCs have good biocompatibility and show
negligible toxicity to cells in a culture (Shang et al., 2011; Shang et al.,
2012; Shang et al., 2013). In our previous study (Xiao et al., 2020),
AuNCs at doses ≤5 μg/ml did not inhibit the growth of BV2
microglia (residential macrophages in the central nervous system).
In the present study, AuNCs at doses lower than 5 μg/ml did not
significantly inhibit cell metabolism in the RAW cells (Figure 1A),
suggesting no impact on the macrophage proliferation with AuNCs
at doses ≤5 μg/ml. By contrast, hDPCweremore sensitive to AuNCs,
which reduced cell growth (metabolism) at doses higher than 0.5 μg/
ml (Figures 1B–E), suggesting that primary cultures might be more
sensitive than the cell lines. On the other hand, according to the cell
growth curve (Figure 1F), there was no decrease in cell amount from
days 1–5 with the treatment of AuNCs.

In our previous study (Kim et al., 2015), AuNCs reduced
inflammatory responses of microglial cells, a form of regulation
that was favorable for neuronal cell differentiation. Accordingly,
AuNC treatment efficiently regulated the macrophage
inflammatory response by introducing the phenotype
conversion from M1 to M2, which reduced the expression of
inflammatory markers (CD11c, CD86, iNOS, IL-6, MHC-Ⅱ, and
TNF) in a dose-dependent manner, while inducing the expression

of anti-inflammatory markers (BMP2, BMP6, IL-10, Wnt3a, and
Wnt5a). Previous studies demonstrated the critical role of
immunomodulation in material-derived hard tissue
regeneration, such that the M1-to-M2 phenotype switch
facilitated bone healing (Guihard et al., 2012; Loi et al., 2016;
Xiao et al., 2019), while the continuous inflammatory response of
M1 macrophages resulted in failed bone regeneration, culminating
in the generation of fibrous tissue (Chen et al., 2016).

Factors such as TNF-α and iNOS not only exacerbate
inflammatory responses to cause pain and tissue damage in
the pulp (Ringe et al., 2007; Colombo et al., 2014), but they
also impair osteogenic differentiation, thereby impeding the hard
tissue regeneration (Chen et al., 2016). By contrast, M2-derived
IL-10 exerts anti-inflammatory effects to protect cells from
inflammatory damage (Ekström et al., 2013). Moreover, the
tissue-regenerative factors such as BMPs and Wnt ligands
demonstrated osteoinductive effects (Nakashima, 2005; Zhao
et al., 2018; Ali et al., 2019). These findings suggest that the
AuNC-directed M1-to-M2 phenotype switch should be beneficial
for dentin regeneration.

To determine the effect of AuNC-derived macrophage
regulation on dentin regeneration, the CM from AuNC-treated
macrophages was applied during the hDPC’ odontoblast-like
differentiation as previously described (Huang et al., 2017). As
expected from the macrophage phenotype conversion, the CM
from AuNC-treated macrophages significantly induced the
expression of odontoblast differentiation-related markers in
hDPC; in particular, the expression levels of the two markers
reflecting dentin generation were upregulated in a dose-
dependent manner (Figures 3, 4). Consistent with the induced
expression of Wnt ligands in AuNC-treated macrophages
(Figure 2B), elevated β-catenin protein levels were observed in
hDPC stimulated with the CM from AuNC-treated macrophages
(Figure 4), suggesting that AuNC-directed regulation induced
the Wnt-ligand production from macrophages, which then
subsequently activated the Wnt/β-catenin signaling pathway to
facilitate odontoblast-like differentiation of the hDPC. Taken
together, these findings suggest that AuNCs induce
immunomodulation to create a microenvironment favorable
for odontoblast-like differentiation, thereby benefiting dentin
tissue regeneration.

We also examined the direct effects of AuNCs on odontoblast-
like differentiation and mineralization. AuNCs induced the
mRNA and protein levels of odontoblast differentiation-
associated markers in a dose-dependent manner (Figures 5,
6). Similarly, β-catenin levels were elevated following AuNC
treatment (Figure 6), suggesting that AuNCs facilitated
odontoblast-like differentiation through the Wnt/β-catenin
signaling pathway. AuNCs also induced the expression of
dentin regeneration-related markers (Figure 5), which
improved the in vitro mineralization of hDPC (Figure 7) in a
dose-dependent manner. These results suggest that AuNCs
potentially facilitate dentin tissue regeneration.

Because of the ultra-small size (less than 3 nm), AuNCs can
be efficiently uptaken by both immune cells and tissue
progenitor cells, as indicated in our previous study (Xiao
et al., 2020). It has been found that AuNCs accumulated
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intracellularly in microglia (macrophages in the central
nervous system), which partially co-localized with
autophagosomes in the microglia and induced autophagy
while reducing apoptosis in microglia under inflammatory
stimulation, an effect which may contribute to the M1-to-
M2 phenotype switch by facilitating the clearance of reactive
oxygen species (ROS) (Xiao et al., 2020). It is, therefore,
speculated that when applying AuNCs in the inflammatory
macrophage-DPC interplay, the endocytosis of AuNCs can
induce the M1-to-M2 conversion by activating autophagy, a
mechanism which should be further explored in our future
study. This then changes the microenvironment to induce
DPC differentiation. On the other hand, the AuNC-
endocytosis in DPC can improve the odontoblast-like
differentiation and mineralization. This, together with the
favorable immune microenvironment revised by AuNCs,
significantly facilitates dentin regeneration. A future in vivo
study is required to observe the distribution of AuNCs in the
dental pulp tissue and the translational potential of AuNCs in
dentin regeneration.

The most important feature in the maintenance of dental
pulp vitality and regeneration is the induction of the generation
of a dentin bridge that can prevent infection in the regenerating
pulp tissue and also prevent pulp cells from micro-leakage and
reinfection that would ultimately result in regeneration failure
(Slutzky-Goldberg et al., 2009; Kermanshahi et al., 2010;
Başaran et al., 2012). It is therefore unclear why dental pulp
progenitor cells, which have shown efficient odontoblast
differentiation and mineralization potential in vitro
(Waddington et al., 2009; d’Aquino et al., 2007; Iohara et al.,
2008), are unable to form functional dentin bridges in vivo in
pulpitis, even with pulp sterilization, thus making RCT the only
available clinical treatment of irreversible pulpitis in adult teeth.
Because infection triggers macrophage inflammatory responses
and induces M1 polarization, this phenotype would result in the
failure in regeneration of hard tissue such as bone (Chen et al.,
2016); we therefore wondered whether continuous
inflammation could explain the dentin regeneration failure,
and whether material-derived immunomodulation of
macrophage responses would induce the M1-to-M2
phenotype switch to serve as a potential therapeutic
approach for dental pulp regeneration. We found that
AuNCs, a type of nanomaterial with demonstrated
immunoregulatory effects (Xiao et al., 2020), effectively
induced the conversion from M1 to M2 macrophages in
inflammatory conditions, transforming the local immune
microenvironment to one favorable to dentin tissue
regeneration, as demonstrated by the induced odontoblast-
like differentiation of hDPC.

Presently, dentin-regenerative material development
focuses on stem cell transplantation with artificial scaffolds
or adding growth factors such as platelet-derived growth factor
(PDGF) to enhance osteoblast differentiation and dentin
regeneration (Colombo et al., 2014; Wang et al., 2016;
Bottino et al., 2017; Zhang et al., 2017b; Athirasala et al.,
2018; Xu et al., 2019). The present study suggests that material-

derived immunomodulation to induce the M1-to-M2
phenotype switch could be a potential strategy for the
material design of dentin regeneration. We found that
AuNCs directly enhanced the differentiation and
mineralization of hDPC, further suggesting the potential of
AuNC application in dentin regeneration. This study,
therefore, provides a potential approach to induce dentin
regeneration to favor dental pulp vitality maintenance and
regeneration, and this would improve the clinical treatment
against diseases such as irreversible pulpitis. Of note, because
we only tested the effects of AuNCs in vitro, further in vivo and
translational studies are required to verify the future of AuNC
application in dentistry.

Taken together, our results suggest that AuNCs could be a
potential therapeutic tool for dentin regeneration. AuNCs
efficiently facilitate the resolution of inflammation by
stimulating a macrophage phenotype switch from M1 to M2.
This switch would generate an immune microenvironment
suitable for odontoblast differentiation and mineralization,
thereby potentially facilitating dentin bridge formation. The
present study also suggests that immunomodulation could be
a potential strategy to enhance dentin regeneration in the design
of materials in the future.
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